Skip to main content
Erschienen in: Der MKG-Chirurg 4/2014

01.11.2014 | CME Zertifizierte Fortbildung

Implantatoberflächen und ihr Einfluss auf das periimplantäre Hartgewebe

verfasst von: PD Dr. Dr. B. Stadlinger, G.N. Belibasakis, S. Bierbaum

Erschienen in: Die MKG-Chirurgie | Ausgabe 4/2014

Einloggen, um Zugang zu erhalten

Zusammenfassung

Um die Implantatstabilität und die periimplantäre Knochenneubildung zu verbessern, werden das Implantatdesign, Implantatmaterialien und Implantatoberflächen kontinuierlich weiterentwickelt. Mit diesem Review wird ein Überblick über die Möglichkeiten der Oberflächenmodifikation gegeben. Der erste Teil befasst sich mit Implantaten, die bereits klinisch angewendet werden. Der Fokus liegt hier auf Methoden wie anodische Oxidation, Sandstrahlung, Säureätzung und der Erzeugung ultrahydrophiler Oberflächen. Im zweiten Teil werden Methoden zur Oberflächenmodifikation vorgestellt, die derzeit noch im präklinischen Stadium sind. Hierbei liegen die Schwerpunkte auf Nanostrukturierungen, Protein/Peptid- und Wachstumsfaktorbeschichtungen, insbesondere auch in der Kombination von mehr als einer Komponente. Da es kaum randomisierte klinische Studien gibt, die Implantate mit identischem Design und Material bei unterschiedlichem Oberflächenzustand analysieren, ist es schwierig, eine allgemeingültige Empfehlung zur Verwendung bestimmter Oberflächen in bestimmten klinischen Situationen zu geben.
Literatur
1.
Zurück zum Zitat Branemark PI (1983) Osseointegration and its experimental background. J Prosthet Dent 50:399–410PubMedCrossRef Branemark PI (1983) Osseointegration and its experimental background. J Prosthet Dent 50:399–410PubMedCrossRef
2.
Zurück zum Zitat Terheyden H, Lang NP, Bierbaum S et al (2012) Osseointegration – communication of cells. Clin Oral Implant Res 23:1127–1135CrossRef Terheyden H, Lang NP, Bierbaum S et al (2012) Osseointegration – communication of cells. Clin Oral Implant Res 23:1127–1135CrossRef
3.
Zurück zum Zitat Wennerberg A, Hallgren C, Johansson C et al (1998) A histomorphometric evaluation of screw-shaped implants each prepared with two surface roughnesses. Clin Oral Implant Res 9:11–19CrossRef Wennerberg A, Hallgren C, Johansson C et al (1998) A histomorphometric evaluation of screw-shaped implants each prepared with two surface roughnesses. Clin Oral Implant Res 9:11–19CrossRef
4.
Zurück zum Zitat Wennerberg A, Albrektsson T (2000) Suggested guidelines for the topographic evaluation of implant surfaces. Int J Oral Maxillofac Implants 15:331–344PubMed Wennerberg A, Albrektsson T (2000) Suggested guidelines for the topographic evaluation of implant surfaces. Int J Oral Maxillofac Implants 15:331–344PubMed
5.
Zurück zum Zitat Wennerberg A, Albrektsson T (2010) On implant surfaces: a review of current knowledge and opinions. Int J Oral Maxillofac Implants 25:63–74PubMed Wennerberg A, Albrektsson T (2010) On implant surfaces: a review of current knowledge and opinions. Int J Oral Maxillofac Implants 25:63–74PubMed
6.
Zurück zum Zitat Wennerberg A, Albrektsson T (2009) Effects of titanium surface topography on bone integration: a systematic review. Clin Oral Implant Res 20(Suppl 4):172–184CrossRef Wennerberg A, Albrektsson T (2009) Effects of titanium surface topography on bone integration: a systematic review. Clin Oral Implant Res 20(Suppl 4):172–184CrossRef
8.
Zurück zum Zitat Guo J, Padilla RJ, Ambrose W et al (2007) The effect of hydrofluoric acid treatment of TiO2 grit blasted titanium implants on adherent osteoblast gene expression in vitro and in vivo. Biomaterials 28:5418–5425PubMedCrossRef Guo J, Padilla RJ, Ambrose W et al (2007) The effect of hydrofluoric acid treatment of TiO2 grit blasted titanium implants on adherent osteoblast gene expression in vitro and in vivo. Biomaterials 28:5418–5425PubMedCrossRef
9.
Zurück zum Zitat Ellingsen JE, Thomsen P, Lyngstadaas SP (2006) Advances in dental implant materials and tissue regeneration. Periodontol 2000 41:136–156PubMedCrossRef Ellingsen JE, Thomsen P, Lyngstadaas SP (2006) Advances in dental implant materials and tissue regeneration. Periodontol 2000 41:136–156PubMedCrossRef
10.
Zurück zum Zitat Mertens C, Steveling HG (2011) Early and immediate loading of titanium implants with fluoride-modified surfaces: results of 5-year prospective study. Clin Oral Implant Res 22:1354–1360CrossRef Mertens C, Steveling HG (2011) Early and immediate loading of titanium implants with fluoride-modified surfaces: results of 5-year prospective study. Clin Oral Implant Res 22:1354–1360CrossRef
11.
Zurück zum Zitat Schliephake H, Rodiger M, Phillips K et al (2012) Early loading of surface modified implants in the posterior mandible – 5 year results of an open prospective non-controlled study. J Clin Periodontol 39:188–195PubMedCrossRef Schliephake H, Rodiger M, Phillips K et al (2012) Early loading of surface modified implants in the posterior mandible – 5 year results of an open prospective non-controlled study. J Clin Periodontol 39:188–195PubMedCrossRef
12.
Zurück zum Zitat Davies JE, Mendes VC, Ko JC et al (2014) Topographic scale-range synergy at the functional bone/implant interface. Biomaterials 35:25–35PubMedCrossRef Davies JE, Mendes VC, Ko JC et al (2014) Topographic scale-range synergy at the functional bone/implant interface. Biomaterials 35:25–35PubMedCrossRef
13.
Zurück zum Zitat Nevins M, Nevins ML, Schupbach P et al (2012) The impact of bone compression on bone-to-implant contact of an osseointegrated implant: a canine study. Int J Periodontics Restorative Dent 32:637–645PubMed Nevins M, Nevins ML, Schupbach P et al (2012) The impact of bone compression on bone-to-implant contact of an osseointegrated implant: a canine study. Int J Periodontics Restorative Dent 32:637–645PubMed
14.
Zurück zum Zitat Amato F, Polara G (2014) A prospective evaluation of a novel implant designed for immediate loading. Int J Periodontics Restorative Dent 34(Suppl):s43–s49PubMedCrossRef Amato F, Polara G (2014) A prospective evaluation of a novel implant designed for immediate loading. Int J Periodontics Restorative Dent 34(Suppl):s43–s49PubMedCrossRef
15.
Zurück zum Zitat Viornery C, Chevolot Y, Léonard D et al (2002) Surface modification of titanium with phosphonic acid to improve bone bonding: characterization by XPS and ToF-SIMS. Langmuir 18:8CrossRef Viornery C, Chevolot Y, Léonard D et al (2002) Surface modification of titanium with phosphonic acid to improve bone bonding: characterization by XPS and ToF-SIMS. Langmuir 18:8CrossRef
16.
Zurück zum Zitat Esposito M, Dojcinovic I, Germon L et al (2013) Safety and efficacy of a biomimetic monolayer of permanently bound multi-phosphonic acid molecules on dental implants: 1 year post-loading results from a pilot quadruple-blinded randomised controlled trial. Eur J Oral Implantol 6:227–236PubMed Esposito M, Dojcinovic I, Germon L et al (2013) Safety and efficacy of a biomimetic monolayer of permanently bound multi-phosphonic acid molecules on dental implants: 1 year post-loading results from a pilot quadruple-blinded randomised controlled trial. Eur J Oral Implantol 6:227–236PubMed
17.
Zurück zum Zitat Levine BR, Sporer S, Poggie RA et al (2006) Experimental and clinical performance of porous tantalum in orthopedic surgery. Biomaterials 27:4671–4681PubMedCrossRef Levine BR, Sporer S, Poggie RA et al (2006) Experimental and clinical performance of porous tantalum in orthopedic surgery. Biomaterials 27:4671–4681PubMedCrossRef
18.
Zurück zum Zitat Bobyn JD, Stackpool GJ, Hacking SA et al (1999) Characteristics of bone ingrowth and interface mechanics of a new porous tantalum biomaterial. J Bone Joint Surg Br 81:907–914PubMedCrossRef Bobyn JD, Stackpool GJ, Hacking SA et al (1999) Characteristics of bone ingrowth and interface mechanics of a new porous tantalum biomaterial. J Bone Joint Surg Br 81:907–914PubMedCrossRef
19.
Zurück zum Zitat Schlee M, Pradies G, Mehmke WU et al (2014) Prospective, multicenter evaluation of trabecular metal-enhanced titanium dental implants placed in routine dental practices: 1-year interim reprot from the developement period (2010 to 2011). Clin Implant Dent Relat Res (accepted) Schlee M, Pradies G, Mehmke WU et al (2014) Prospective, multicenter evaluation of trabecular metal-enhanced titanium dental implants placed in routine dental practices: 1-year interim reprot from the developement period (2010 to 2011). Clin Implant Dent Relat Res (accepted)
20.
Zurück zum Zitat Bernhard N, Berner S, De Wild M et al (2009) The binary TiZr Alloy – a newly developed Ti alloy for the use in dental implants. Forum Implantol 5:30–39 Bernhard N, Berner S, De Wild M et al (2009) The binary TiZr Alloy – a newly developed Ti alloy for the use in dental implants. Forum Implantol 5:30–39
21.
Zurück zum Zitat Gottlow J, Dard M, Kjellson F et al (2012) Evaluation of a new titanium-zirconium dental implant: a biomechanical and histological comparative study in the mini pig. Clin Implant Dent Relat Res 14:538–545PubMedCrossRef Gottlow J, Dard M, Kjellson F et al (2012) Evaluation of a new titanium-zirconium dental implant: a biomechanical and histological comparative study in the mini pig. Clin Implant Dent Relat Res 14:538–545PubMedCrossRef
22.
Zurück zum Zitat Wen B, Zhu F, Li Z et al (2014) The osseointegration behavior of titanium-zirconium implants in ovariectomized rabbits. Clin Oral Implant Res 25:819–825CrossRef Wen B, Zhu F, Li Z et al (2014) The osseointegration behavior of titanium-zirconium implants in ovariectomized rabbits. Clin Oral Implant Res 25:819–825CrossRef
23.
Zurück zum Zitat Al-Nawas B, Domagala P, Fragola G et al (2014) A prospective non-interventional study to evaluate survival and success of reduced diameter implants made from titanium-zirconium alloy. J Oral Implantol (Epub ahead of print) Al-Nawas B, Domagala P, Fragola G et al (2014) A prospective non-interventional study to evaluate survival and success of reduced diameter implants made from titanium-zirconium alloy. J Oral Implantol (Epub ahead of print)
24.
Zurück zum Zitat Rupp F, Scheideler L, Olshanska N et al (2006) Enhancing surface free energy and hydrophilicity through chemical modification of microstructured titanium implant surfaces. J Biomed Mater Res A 76:323–334PubMedCrossRef Rupp F, Scheideler L, Olshanska N et al (2006) Enhancing surface free energy and hydrophilicity through chemical modification of microstructured titanium implant surfaces. J Biomed Mater Res A 76:323–334PubMedCrossRef
25.
Zurück zum Zitat Zhao G, Schwartz Z, Wieland M et al (2005) High surface energy enhances cell response to titanium substrate microstructure. J Biomed Mater Res A 74:49–58PubMedCrossRef Zhao G, Schwartz Z, Wieland M et al (2005) High surface energy enhances cell response to titanium substrate microstructure. J Biomed Mater Res A 74:49–58PubMedCrossRef
26.
Zurück zum Zitat Buser D, Broggini N, Wieland M et al (2004) Enhanced bone apposition to a chemically modified SLA titanium surface. J Dent Res 83:529–533PubMedCrossRef Buser D, Broggini N, Wieland M et al (2004) Enhanced bone apposition to a chemically modified SLA titanium surface. J Dent Res 83:529–533PubMedCrossRef
27.
Zurück zum Zitat Cochran DL, Jackson JM, Bernard JP et al (2011) A 5-year prospective multicenter study of early loaded titanium implants with a sandblasted and acid-etched surface. Int J Oral Maxillofac Implants 26:1324–1332PubMed Cochran DL, Jackson JM, Bernard JP et al (2011) A 5-year prospective multicenter study of early loaded titanium implants with a sandblasted and acid-etched surface. Int J Oral Maxillofac Implants 26:1324–1332PubMed
28.
Zurück zum Zitat Milleret V, Tugulu S, Schlottig F et al (2011) Alkali treatment of microrough titanium surfaces affects macrophage/monocyte adhesion, platelet activation and architecture of blood clot formation. Eur Cell Mater 21:430–444 (discussion 444)PubMed Milleret V, Tugulu S, Schlottig F et al (2011) Alkali treatment of microrough titanium surfaces affects macrophage/monocyte adhesion, platelet activation and architecture of blood clot formation. Eur Cell Mater 21:430–444 (discussion 444)PubMed
29.
Zurück zum Zitat Tugulu S, Lowe K, Scharnweber D et al (2010) Preparation of superhydrophilic microrough titanium implant surfaces by alkali treatment. J Mater Sci Mater Med 21:2751–2763PubMedCrossRef Tugulu S, Lowe K, Scharnweber D et al (2010) Preparation of superhydrophilic microrough titanium implant surfaces by alkali treatment. J Mater Sci Mater Med 21:2751–2763PubMedCrossRef
30.
Zurück zum Zitat Stadlinger B, Lode AT, Eckelt U et al (2009) Surface-conditioned dental implants: an animal study on bone formation. J Clin Periodontol 36:882–891PubMedCrossRef Stadlinger B, Lode AT, Eckelt U et al (2009) Surface-conditioned dental implants: an animal study on bone formation. J Clin Periodontol 36:882–891PubMedCrossRef
31.
Zurück zum Zitat Held U, Rohner D, Rothamel D (2013) Early loading of hydrophilic titanium implants inserted in low-mineralized (D3 and D4) bone: one year results of a prospective clinical trial. Head Face Med 9:37PubMedPubMedCentralCrossRef Held U, Rohner D, Rothamel D (2013) Early loading of hydrophilic titanium implants inserted in low-mineralized (D3 and D4) bone: one year results of a prospective clinical trial. Head Face Med 9:37PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Stadlinger B, Korn P, Todtmann N et al (2013) Osseointegration of biochemically modified implants in an osteoporosis rodent model. Eur Cell Mater 25:326–340 (discussion 339–340)PubMed Stadlinger B, Korn P, Todtmann N et al (2013) Osseointegration of biochemically modified implants in an osteoporosis rodent model. Eur Cell Mater 25:326–340 (discussion 339–340)PubMed
33.
Zurück zum Zitat Abtahi J, Tengvall P, Aspenberg P (2012) A bisphosphonate-coating improves the fixation of metal implants in human bone. A randomized trial of dental implants. Bone 50:1148–1151PubMedCrossRef Abtahi J, Tengvall P, Aspenberg P (2012) A bisphosphonate-coating improves the fixation of metal implants in human bone. A randomized trial of dental implants. Bone 50:1148–1151PubMedCrossRef
34.
Zurück zum Zitat Sculean A, Gruber R, Bosshardt DD (2014) Soft tissue wound healing around teeth and dental implants. J Clin Periodontol 41(Suppl 15):S6–S22PubMedCrossRef Sculean A, Gruber R, Bosshardt DD (2014) Soft tissue wound healing around teeth and dental implants. J Clin Periodontol 41(Suppl 15):S6–S22PubMedCrossRef
35.
Zurück zum Zitat Schwarz F, Ferrari D, Herten M et al (2007) Effects of surface hydrophilicity and microtopography on early stages of soft and hard tissue integration at non-submerged titanium implants: an immunohistochemical study in dogs. J Periodontol 78:2171–2184PubMedCrossRef Schwarz F, Ferrari D, Herten M et al (2007) Effects of surface hydrophilicity and microtopography on early stages of soft and hard tissue integration at non-submerged titanium implants: an immunohistochemical study in dogs. J Periodontol 78:2171–2184PubMedCrossRef
36.
Zurück zum Zitat Schwarz F, Mihatovic I, Becker J et al (2013) Histological evaluation of different abutments in the posterior maxilla and mandible: an experimental study in humans. J Clin Periodontol 40:807–815PubMedCrossRef Schwarz F, Mihatovic I, Becker J et al (2013) Histological evaluation of different abutments in the posterior maxilla and mandible: an experimental study in humans. J Clin Periodontol 40:807–815PubMedCrossRef
37.
Zurück zum Zitat Renvert S, Lindahl C, Renvert H et al (2008) Clinical and microbiological analysis of subjects treated with Branemark or AstraTech implants: a 7-year follow-up study. Clin Oral Implant Res 19:342–347CrossRef Renvert S, Lindahl C, Renvert H et al (2008) Clinical and microbiological analysis of subjects treated with Branemark or AstraTech implants: a 7-year follow-up study. Clin Oral Implant Res 19:342–347CrossRef
38.
Zurück zum Zitat Mombelli A, Muller N, Cionca N (2012) The epidemiology of peri-implantitis. Clin Oral Implant Res 23(Suppl 6):67–76CrossRef Mombelli A, Muller N, Cionca N (2012) The epidemiology of peri-implantitis. Clin Oral Implant Res 23(Suppl 6):67–76CrossRef
39.
Zurück zum Zitat Simion M, Gionso L, Grossi GB et al (2014) Twelve-year retrospective follow-up of machined implants in the posterior maxilla: radiographic and peri-implant outcome. Clin Implant Dent Relat Res (Epub ahead of print) Simion M, Gionso L, Grossi GB et al (2014) Twelve-year retrospective follow-up of machined implants in the posterior maxilla: radiographic and peri-implant outcome. Clin Implant Dent Relat Res (Epub ahead of print)
40.
Zurück zum Zitat Albouy JP, Abrahamsson I, Berglundh T (2012) Spontaneous progression of experimental peri-implantitis at implants with different surface characteristics: an experimental study in dogs. J Clin Periodontol 39:182–187PubMedCrossRef Albouy JP, Abrahamsson I, Berglundh T (2012) Spontaneous progression of experimental peri-implantitis at implants with different surface characteristics: an experimental study in dogs. J Clin Periodontol 39:182–187PubMedCrossRef
41.
Zurück zum Zitat Albouy JP, Abrahamsson I, Persson LG et al (2011) Implant surface characteristics influence the outcome of treatment of peri-implantitis: an experimental study in dogs. J Clin Periodontol 38:58–64PubMedCrossRef Albouy JP, Abrahamsson I, Persson LG et al (2011) Implant surface characteristics influence the outcome of treatment of peri-implantitis: an experimental study in dogs. J Clin Periodontol 38:58–64PubMedCrossRef
42.
Zurück zum Zitat Shalabi MM, Gortemaker A, Van’t Hof MA et al (2006) Implant surface roughness and bone healing: a systematic review. J Dent Res 85:496–500PubMedCrossRef Shalabi MM, Gortemaker A, Van’t Hof MA et al (2006) Implant surface roughness and bone healing: a systematic review. J Dent Res 85:496–500PubMedCrossRef
43.
Zurück zum Zitat Sato M, Aslani A, Sambito MA et al (2008) Nanocrystalline hydroxyapatite/titania coatings on titanium improves osteoblast adhesion. J Biomed Mater Res A 84:265–272PubMedCrossRef Sato M, Aslani A, Sambito MA et al (2008) Nanocrystalline hydroxyapatite/titania coatings on titanium improves osteoblast adhesion. J Biomed Mater Res A 84:265–272PubMedCrossRef
44.
Zurück zum Zitat Ward BC, Webster TJ (2006) The effect of nanotopography on calcium and phosphorus deposition on metallic materials in vitro. Biomaterials 27:3064–3074PubMedCrossRef Ward BC, Webster TJ (2006) The effect of nanotopography on calcium and phosphorus deposition on metallic materials in vitro. Biomaterials 27:3064–3074PubMedCrossRef
45.
Zurück zum Zitat Bjursten LM, Rasmusson L, Oh S et al (2010) Titanium dioxide nanotubes enhance bone bonding in vivo. J Biomed Mater Res A 92:1218–1224PubMed Bjursten LM, Rasmusson L, Oh S et al (2010) Titanium dioxide nanotubes enhance bone bonding in vivo. J Biomed Mater Res A 92:1218–1224PubMed
46.
Zurück zum Zitat Meirelles L, Arvidsson A, Andersson M et al (2008) Nano hydroxyapatite structures influence early bone formation. J Biomed Mater Res A 87:299–307PubMedCrossRef Meirelles L, Arvidsson A, Andersson M et al (2008) Nano hydroxyapatite structures influence early bone formation. J Biomed Mater Res A 87:299–307PubMedCrossRef
47.
Zurück zum Zitat Legeros RZ (2002) Properties of osteoconductive biomaterials: calcium phosphates. Clin Orthop Relat Res 395:81–98PubMedCrossRef Legeros RZ (2002) Properties of osteoconductive biomaterials: calcium phosphates. Clin Orthop Relat Res 395:81–98PubMedCrossRef
49.
Zurück zum Zitat Xiaolong Z, Eibl O, Berthold C et al (2006) Structural characterization of nanocrystalline hydroxyapatite and adhesion of pre-osteoblast cells. Nanotechnology 17:2711–2721CrossRef Xiaolong Z, Eibl O, Berthold C et al (2006) Structural characterization of nanocrystalline hydroxyapatite and adhesion of pre-osteoblast cells. Nanotechnology 17:2711–2721CrossRef
50.
Zurück zum Zitat Wang M, Castro NJ, Li J et al (2012) Greater osteoblast and mesenchymal stem cell adhesion and proliferation on titanium with hydrothermally treated nanocrystalline hydroxyapatite/magnetically treated carbon nanotubes. J Nanosci Nanotechnol 12:7692–7702PubMedCrossRef Wang M, Castro NJ, Li J et al (2012) Greater osteoblast and mesenchymal stem cell adhesion and proliferation on titanium with hydrothermally treated nanocrystalline hydroxyapatite/magnetically treated carbon nanotubes. J Nanosci Nanotechnol 12:7692–7702PubMedCrossRef
51.
Zurück zum Zitat Alghamdi HS, Van Oirschot BA, Bosco R et al (2014) Biological response to titanium implants coated with nanocrystals calcium phosphate or type 1 collagen in a dog model. Clin Oral Implants Res 24:475–483CrossRef Alghamdi HS, Van Oirschot BA, Bosco R et al (2014) Biological response to titanium implants coated with nanocrystals calcium phosphate or type 1 collagen in a dog model. Clin Oral Implants Res 24:475–483CrossRef
52.
Zurück zum Zitat Coelho PG, Freire JN, Granato R et al (2011) Bone mineral apposition rates at early implantation times around differently prepared titanium surfaces: a study in beagle dogs. Int J Oral Maxillofac Implants 26:63–69PubMed Coelho PG, Freire JN, Granato R et al (2011) Bone mineral apposition rates at early implantation times around differently prepared titanium surfaces: a study in beagle dogs. Int J Oral Maxillofac Implants 26:63–69PubMed
53.
Zurück zum Zitat Melin Svanborg L, Meirelles L, Franke Stenport V et al (2014) Evaluation of bone healing on sandblasted and acid etched implants coated with nanocrystalline hydroxyapatite: an in vivo study in rabbit femur. Int J Dent 2014:197581 Melin Svanborg L, Meirelles L, Franke Stenport V et al (2014) Evaluation of bone healing on sandblasted and acid etched implants coated with nanocrystalline hydroxyapatite: an in vivo study in rabbit femur. Int J Dent 2014:197581
54.
Zurück zum Zitat Bryington MS, Hayashi M, Kozai Y et al (2013) The influence of nano hydroxyapatite coating on osseointegration after extended healing periods. Dent Mater 29:514–520PubMedCrossRef Bryington MS, Hayashi M, Kozai Y et al (2013) The influence of nano hydroxyapatite coating on osseointegration after extended healing periods. Dent Mater 29:514–520PubMedCrossRef
55.
Zurück zum Zitat Cheng Z, Guo C, Dong W et al (2011) Effect of thin nano-hydroxyapatite coating on implant osseointegration in ovariectomized rats. Oral Surg Oral Med Oral Pathol Oral Radiol 113:e48–e53CrossRef Cheng Z, Guo C, Dong W et al (2011) Effect of thin nano-hydroxyapatite coating on implant osseointegration in ovariectomized rats. Oral Surg Oral Med Oral Pathol Oral Radiol 113:e48–e53CrossRef
56.
57.
Zurück zum Zitat Yamada M, Ueno T, Tsukimura N et al (2012) Bone integration capability of nanopolymorphic crystalline hydroxyapatite coated on titanium implants. Int J Nanomedicine 7:859–873PubMedPubMedCentral Yamada M, Ueno T, Tsukimura N et al (2012) Bone integration capability of nanopolymorphic crystalline hydroxyapatite coated on titanium implants. Int J Nanomedicine 7:859–873PubMedPubMedCentral
58.
Zurück zum Zitat Innoceni P, Zub YL, Kessler VG (2008) Sol-gel methods for materials processing. Springer, Berlin Heidelberg New York Innoceni P, Zub YL, Kessler VG (2008) Sol-gel methods for materials processing. Springer, Berlin Heidelberg New York
59.
Zurück zum Zitat Dimitrievska S, Bureau MN, Antoniou J et al (2011) Titania-hydroxyapatite nanocomposite coatings support human mesenchymal stem cells osteogenic differentiation. J Biomed Mater Res A 98:576–588PubMedCrossRef Dimitrievska S, Bureau MN, Antoniou J et al (2011) Titania-hydroxyapatite nanocomposite coatings support human mesenchymal stem cells osteogenic differentiation. J Biomed Mater Res A 98:576–588PubMedCrossRef
60.
Zurück zum Zitat Walpole AR, Xia Z, Wilson CW et al (2009) A novel nano-porous alumina biomaterial with potential for loading with bioactive materials. J Biomed Mater Res A 90:46–54PubMedCrossRef Walpole AR, Xia Z, Wilson CW et al (2009) A novel nano-porous alumina biomaterial with potential for loading with bioactive materials. J Biomed Mater Res A 90:46–54PubMedCrossRef
61.
Zurück zum Zitat Memarzadeh K, Sharili AS, Huang J et al (2014) Nanoparticulate zinc oxide as a coating material for orthopedic and dental implants. J Biomed Mater Res A (Epub ahead of print) Memarzadeh K, Sharili AS, Huang J et al (2014) Nanoparticulate zinc oxide as a coating material for orthopedic and dental implants. J Biomed Mater Res A (Epub ahead of print)
62.
Zurück zum Zitat Marsich E, Travan A, Donati I et al (2013) Biological responses of silver-coated thermosets: an in vitro and in vivo study. Acta Biomater 9:5088–5099PubMedCrossRef Marsich E, Travan A, Donati I et al (2013) Biological responses of silver-coated thermosets: an in vitro and in vivo study. Acta Biomater 9:5088–5099PubMedCrossRef
63.
Zurück zum Zitat Roy M, Bandyopadhyay A, Bose S (2011) Induction plasma sprayed Sr and Mg doped nano hydroxyapatite coatings on Ti for bone implant. J Biomed Mater Res B Appl Biomater 99:258–265PubMedCrossRef Roy M, Bandyopadhyay A, Bose S (2011) Induction plasma sprayed Sr and Mg doped nano hydroxyapatite coatings on Ti for bone implant. J Biomed Mater Res B Appl Biomater 99:258–265PubMedCrossRef
64.
Zurück zum Zitat Zhang W, Wang G, Liu Y et al (2013) The synergistic effect of hierarchical micro/nano-topography and bioactive ions for enhanced osseointegration. Biomaterials 34:3184–3195PubMedCrossRef Zhang W, Wang G, Liu Y et al (2013) The synergistic effect of hierarchical micro/nano-topography and bioactive ions for enhanced osseointegration. Biomaterials 34:3184–3195PubMedCrossRef
65.
Zurück zum Zitat Inzunza D, Covarrubias C, Marttens AV et al (2013) Synthesis of nanostructured porous silica coatings on titanium and their cell adhesive and osteogenic differentiation properties. J Biomed Mater Res A (Epub ahead of print) Inzunza D, Covarrubias C, Marttens AV et al (2013) Synthesis of nanostructured porous silica coatings on titanium and their cell adhesive and osteogenic differentiation properties. J Biomed Mater Res A (Epub ahead of print)
66.
Zurück zum Zitat Xie Y, Li H, Zhang C et al (2014) Graphene-reinforced calcium silicate coatings for load-bearing implants. Biomed Mater 9:025009PubMedCrossRef Xie Y, Li H, Zhang C et al (2014) Graphene-reinforced calcium silicate coatings for load-bearing implants. Biomed Mater 9:025009PubMedCrossRef
67.
Zurück zum Zitat Ananth KP, Suganya S, Mangalaraj D et al (2013) Electrophoretic bilayer deposition of zirconia and reinforced bioglass system on Ti6Al4V for implant applications: an in vitro investigation. Mater Sci Eng C Mater Biol Appl 33:4160–4166PubMedCrossRef Ananth KP, Suganya S, Mangalaraj D et al (2013) Electrophoretic bilayer deposition of zirconia and reinforced bioglass system on Ti6Al4V for implant applications: an in vitro investigation. Mater Sci Eng C Mater Biol Appl 33:4160–4166PubMedCrossRef
68.
Zurück zum Zitat Sverzut AT, Crippa GE, Morra M et al (2012) Effects of type I collagen coating on titanium osseointegration: histomorphometric, cellular and molecular analyses. Biomed Mater 7:035007PubMedCrossRef Sverzut AT, Crippa GE, Morra M et al (2012) Effects of type I collagen coating on titanium osseointegration: histomorphometric, cellular and molecular analyses. Biomed Mater 7:035007PubMedCrossRef
69.
Zurück zum Zitat Stadlinger B, Bierbaum S, Grimmer S et al (2009) Increased bone formation around coated implants. J Clin Periodontol 36:698–704PubMedCrossRef Stadlinger B, Bierbaum S, Grimmer S et al (2009) Increased bone formation around coated implants. J Clin Periodontol 36:698–704PubMedCrossRef
70.
Zurück zum Zitat Iafiscol M, Quirici N, Foltran I et al (2013) Electrospun collagen mimicking the reconstituted extracellular matrix improves osteoblastic differentiation onto titanium surfaces. J Nanosci Nanotechnol 13:4720–4726PubMedCrossRef Iafiscol M, Quirici N, Foltran I et al (2013) Electrospun collagen mimicking the reconstituted extracellular matrix improves osteoblastic differentiation onto titanium surfaces. J Nanosci Nanotechnol 13:4720–4726PubMedCrossRef
71.
Zurück zum Zitat De Jonge LT, Leeuwenburgh SC, Van Den Beucken JJ et al (2010) The osteogenic effect of electrosprayed nanoscale collagen/calcium phosphate coatings on titanium. Biomaterials 31:2461–2469CrossRef De Jonge LT, Leeuwenburgh SC, Van Den Beucken JJ et al (2010) The osteogenic effect of electrosprayed nanoscale collagen/calcium phosphate coatings on titanium. Biomaterials 31:2461–2469CrossRef
72.
Zurück zum Zitat Ravichandran R, Ng C, Liao S et al (2012) Biomimetic surface modification of titanium surfaces for early cell capture by advanced electrospinning. Biomed Mater 7:015001PubMedCrossRef Ravichandran R, Ng C, Liao S et al (2012) Biomimetic surface modification of titanium surfaces for early cell capture by advanced electrospinning. Biomed Mater 7:015001PubMedCrossRef
73.
Zurück zum Zitat Uezono M, Takakuda K, Kikuchi M et al (2013) Hydroxyapatite/collagen nanocomposite-coated titanium rod for achieving rapid osseointegration onto bone surface. J Biomed Mater Res B Appl Biomater 101:1031–1038PubMedCrossRef Uezono M, Takakuda K, Kikuchi M et al (2013) Hydroxyapatite/collagen nanocomposite-coated titanium rod for achieving rapid osseointegration onto bone surface. J Biomed Mater Res B Appl Biomater 101:1031–1038PubMedCrossRef
74.
Zurück zum Zitat Alghamdi HS, Van Oirschot BA, Bosco R et al (2013) Biological response to titanium implants coated with nanocrystals calcium phosphate or type 1 collagen in a dog model. Clin Oral Implants Res 24:475–483PubMedCrossRef Alghamdi HS, Van Oirschot BA, Bosco R et al (2013) Biological response to titanium implants coated with nanocrystals calcium phosphate or type 1 collagen in a dog model. Clin Oral Implants Res 24:475–483PubMedCrossRef
75.
Zurück zum Zitat Bougas K, Stenport VF, Currie F et al (2012) Laminin coating promotes calcium phosphate precipitation on titanium discs in vitro. J Oral Maxillofac Res 2:e5PubMedPubMedCentral Bougas K, Stenport VF, Currie F et al (2012) Laminin coating promotes calcium phosphate precipitation on titanium discs in vitro. J Oral Maxillofac Res 2:e5PubMedPubMedCentral
76.
Zurück zum Zitat Miron RJ, Oates CJ, Molenberg A et al (2010) The effect of enamel matrix proteins on the spreading, proliferation and differentiation of osteoblasts cultured on titanium surfaces. Biomaterials 31:449–460PubMedCrossRef Miron RJ, Oates CJ, Molenberg A et al (2010) The effect of enamel matrix proteins on the spreading, proliferation and differentiation of osteoblasts cultured on titanium surfaces. Biomaterials 31:449–460PubMedCrossRef
77.
Zurück zum Zitat Kammerer PW, Heller M, Brieger J et al (2011) Immobilisation of linear and cyclic RGD-peptides on titanium surfaces and their impact on endothelial cell adhesion and proliferation. Eur Cell Mater 21:364–372PubMed Kammerer PW, Heller M, Brieger J et al (2011) Immobilisation of linear and cyclic RGD-peptides on titanium surfaces and their impact on endothelial cell adhesion and proliferation. Eur Cell Mater 21:364–372PubMed
78.
Zurück zum Zitat Wang D, Mao J, Zhou B et al (2011) A chimeric peptide that binds to titanium and mediates MC3T3-E1 cell adhesion. Biotechnol Lett 33:191–197PubMedCrossRef Wang D, Mao J, Zhou B et al (2011) A chimeric peptide that binds to titanium and mediates MC3T3-E1 cell adhesion. Biotechnol Lett 33:191–197PubMedCrossRef
79.
Zurück zum Zitat Lutz R, Srour S, Nonhoff J et al (2010) Biofunctionalization of titanium implants with a biomimetic active peptide (P-15) promotes early osseointegration. Clin Oral Implants Res 21:726–734PubMedCrossRef Lutz R, Srour S, Nonhoff J et al (2010) Biofunctionalization of titanium implants with a biomimetic active peptide (P-15) promotes early osseointegration. Clin Oral Implants Res 21:726–734PubMedCrossRef
80.
Zurück zum Zitat Lutz R, Prechtl C, Nonhoff J et al (2013) Biofunctionalization of the implant surface with different concentrations of a synthetic peptide (P-15). Clin Oral Implants Res 24:781–786PubMedCrossRef Lutz R, Prechtl C, Nonhoff J et al (2013) Biofunctionalization of the implant surface with different concentrations of a synthetic peptide (P-15). Clin Oral Implants Res 24:781–786PubMedCrossRef
81.
Zurück zum Zitat Chen X, Sevilla P, Aparicio C (2013) Surface biofunctionalization by covalent co-immobilization of oligopeptides. Colloids Surf B Biointerfaces 107:189–197PubMedCrossRef Chen X, Sevilla P, Aparicio C (2013) Surface biofunctionalization by covalent co-immobilization of oligopeptides. Colloids Surf B Biointerfaces 107:189–197PubMedCrossRef
82.
Zurück zum Zitat Min SK, Kang HK, Jang Da H et al (2013) Titanium surface coating with a laminin-derived functional peptide promotes bone cell adhesion. Biomed Res Int 2013:638348PubMedPubMedCentral Min SK, Kang HK, Jang Da H et al (2013) Titanium surface coating with a laminin-derived functional peptide promotes bone cell adhesion. Biomed Res Int 2013:638348PubMedPubMedCentral
83.
Zurück zum Zitat Kang HK, Kim OB, Min SK et al (2013) The effect of the DLTIDDSYWYRI motif of the human laminin alpha2 chain on implant osseointegration. Biomaterials 34:4027–4037PubMedCrossRef Kang HK, Kim OB, Min SK et al (2013) The effect of the DLTIDDSYWYRI motif of the human laminin alpha2 chain on implant osseointegration. Biomaterials 34:4027–4037PubMedCrossRef
84.
Zurück zum Zitat Rubert M, Monjo M, Lyngstadaas SP et al (2012) Effect of alginate hydrogel containing polyproline-rich peptides on osteoblast differentiation. Biomed Mater 7:055003PubMedCrossRef Rubert M, Monjo M, Lyngstadaas SP et al (2012) Effect of alginate hydrogel containing polyproline-rich peptides on osteoblast differentiation. Biomed Mater 7:055003PubMedCrossRef
85.
Zurück zum Zitat Petzold C, Monjo M, Rubert M et al (2013) Effect of proline-rich synthetic peptide-coated titanium implants on bone healing in a rabbit model. Int J Oral Maxillofac Implants 28:e547–e555PubMedCrossRef Petzold C, Monjo M, Rubert M et al (2013) Effect of proline-rich synthetic peptide-coated titanium implants on bone healing in a rabbit model. Int J Oral Maxillofac Implants 28:e547–e555PubMedCrossRef
86.
Zurück zum Zitat Warnke PH, Voss E, Russo PA et al (2013) Antimicrobial peptide coating of dental implants: biocompatibility assessment of recombinant human beta defensin-2 for human cells. Int J Oral Maxillofac Implants 28:982–988PubMedCrossRef Warnke PH, Voss E, Russo PA et al (2013) Antimicrobial peptide coating of dental implants: biocompatibility assessment of recombinant human beta defensin-2 for human cells. Int J Oral Maxillofac Implants 28:982–988PubMedCrossRef
87.
Zurück zum Zitat Holmberg KV, Abdolhosseini M, Li Y et al (2013) Bio-inspired stable antimicrobial peptide coatings for dental applications. Acta Biomater 9:8224–8231PubMedPubMedCentralCrossRef Holmberg KV, Abdolhosseini M, Li Y et al (2013) Bio-inspired stable antimicrobial peptide coatings for dental applications. Acta Biomater 9:8224–8231PubMedPubMedCentralCrossRef
88.
Zurück zum Zitat Bronk JK, Russell BH, Rivera JJ et al (2014) A multifunctional streptococcal collagen-mimetic protein coating prevents bacterial adhesion and promotes osteoid formation on titanium. Acta Biomater 10:3354–3362PubMedCrossRef Bronk JK, Russell BH, Rivera JJ et al (2014) A multifunctional streptococcal collagen-mimetic protein coating prevents bacterial adhesion and promotes osteoid formation on titanium. Acta Biomater 10:3354–3362PubMedCrossRef
89.
Zurück zum Zitat Huh JB, Park CK, Kim SE et al (2011) Alveolar ridge augmentation using anodized implants coated with Escherichia coli-derived recombinant human bone morphogenetic protein 2. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 112:42–49PubMedCrossRef Huh JB, Park CK, Kim SE et al (2011) Alveolar ridge augmentation using anodized implants coated with Escherichia coli-derived recombinant human bone morphogenetic protein 2. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 112:42–49PubMedCrossRef
90.
Zurück zum Zitat Lee JK, Cho LR, Um HS et al (2013) Bone formation and remodeling of three different dental implant surfaces with Escherichia coli-derived recombinant human bone morphogenetic protein 2 in a rabbit model. Int J Oral Maxillofac Implants 28:424–430PubMedCrossRef Lee JK, Cho LR, Um HS et al (2013) Bone formation and remodeling of three different dental implant surfaces with Escherichia coli-derived recombinant human bone morphogenetic protein 2 in a rabbit model. Int J Oral Maxillofac Implants 28:424–430PubMedCrossRef
91.
Zurück zum Zitat Yoo D, Tovar N, Jimbo R et al (2014) Increased osseointegration effect of bone morphogenetic protein 2 on dental implants: an in vivo study. J Biomed Mater Res A 102:1921–1927PubMedCrossRef Yoo D, Tovar N, Jimbo R et al (2014) Increased osseointegration effect of bone morphogenetic protein 2 on dental implants: an in vivo study. J Biomed Mater Res A 102:1921–1927PubMedCrossRef
92.
Zurück zum Zitat La WG, Jin M, Park S et al (2014) Delivery of bone morphogenetic protein-2 and substance P using graphene oxide for bone regeneration. Int J Nanomedicine 9(Suppl 1):107–116PubMedPubMedCentral La WG, Jin M, Park S et al (2014) Delivery of bone morphogenetic protein-2 and substance P using graphene oxide for bone regeneration. Int J Nanomedicine 9(Suppl 1):107–116PubMedPubMedCentral
93.
Zurück zum Zitat La WG, Park S, Yoon HH et al (2013) Delivery of a therapeutic protein for bone regeneration from a substrate coated with graphene oxide. Small 9:4051–4060PubMedCrossRef La WG, Park S, Yoon HH et al (2013) Delivery of a therapeutic protein for bone regeneration from a substrate coated with graphene oxide. Small 9:4051–4060PubMedCrossRef
94.
Zurück zum Zitat Ma J, Lee K, Ban J et al (2013) Evaluation of sustained drug delivery for bone morphogenetic protein on the functionalized nanotubular surface. J Nanosci Nanotechnol 13:3801–3804PubMedCrossRef Ma J, Lee K, Ban J et al (2013) Evaluation of sustained drug delivery for bone morphogenetic protein on the functionalized nanotubular surface. J Nanosci Nanotechnol 13:3801–3804PubMedCrossRef
95.
Zurück zum Zitat Lee SW, Hahn BD, Kang TY et al (2014) Hydroxyapatite and collagen combination-coated dental implants display better bone formation in the peri-implant area than the same combination plus bone morphogenetic protein-2-coated implants, hydroxyapatite only coated implants, and uncoated implants. J Oral Maxillofac Surg 72:53–60PubMedCrossRef Lee SW, Hahn BD, Kang TY et al (2014) Hydroxyapatite and collagen combination-coated dental implants display better bone formation in the peri-implant area than the same combination plus bone morphogenetic protein-2-coated implants, hydroxyapatite only coated implants, and uncoated implants. J Oral Maxillofac Surg 72:53–60PubMedCrossRef
96.
Zurück zum Zitat Hunziker EB, Enggist L, Kuffer A et al (2012) Osseointegration: the slow delivery of BMP-2 enhances osteoinductivity. Bone 51:98–106PubMedCrossRef Hunziker EB, Enggist L, Kuffer A et al (2012) Osseointegration: the slow delivery of BMP-2 enhances osteoinductivity. Bone 51:98–106PubMedCrossRef
97.
Zurück zum Zitat Shah NJ, Hyder MN, Moskowitz JS et al (2013) Surface-mediated bone tissue morphogenesis from tunable nanolayered implant coatings. Sci Transl Med 5:191ra183CrossRef Shah NJ, Hyder MN, Moskowitz JS et al (2013) Surface-mediated bone tissue morphogenesis from tunable nanolayered implant coatings. Sci Transl Med 5:191ra183CrossRef
98.
Zurück zum Zitat Jung HD, Yook SW, Han CM et al (2013) Highly aligned porous Ti scaffold coated with bone morphogenetic protein-loaded silica/chitosan hybrid for enhanced bone regeneration. J Biomed Mater Res B Appl Biomater 102:913–921PubMedCrossRef Jung HD, Yook SW, Han CM et al (2013) Highly aligned porous Ti scaffold coated with bone morphogenetic protein-loaded silica/chitosan hybrid for enhanced bone regeneration. J Biomed Mater Res B Appl Biomater 102:913–921PubMedCrossRef
99.
Zurück zum Zitat Chien CY, Tsai WB (2013) Poly(dopamine)-assisted immobilization of Arg-Gly-Asp peptides, hydroxyapatite, and bone morphogenic protein-2 on titanium to improve the osteogenesis of bone marrow stem cells. ACS Appl Mater Interfaces 5:6975–6983PubMedCrossRef Chien CY, Tsai WB (2013) Poly(dopamine)-assisted immobilization of Arg-Gly-Asp peptides, hydroxyapatite, and bone morphogenic protein-2 on titanium to improve the osteogenesis of bone marrow stem cells. ACS Appl Mater Interfaces 5:6975–6983PubMedCrossRef
100.
Zurück zum Zitat Chen S, Yang J, Wang H et al (2013) Adenovirus encoding BMP-7 immobilized on titanium surface exhibits local delivery ability and regulates osteoblast differentiation in vitro. Arch Oral Biol 58:1225–1231PubMedCrossRef Chen S, Yang J, Wang H et al (2013) Adenovirus encoding BMP-7 immobilized on titanium surface exhibits local delivery ability and regulates osteoblast differentiation in vitro. Arch Oral Biol 58:1225–1231PubMedCrossRef
101.
Zurück zum Zitat Cevher E, Sezer AD, Çağlar ES (2012) Gene delivery systems: recent progress in viral and non-viral therapy. In: Sezer AD (ed) Recent advances in novel drug carrier systems. InTech, Rijeka, pp 437–470 Cevher E, Sezer AD, Çağlar ES (2012) Gene delivery systems: recent progress in viral and non-viral therapy. In: Sezer AD (ed) Recent advances in novel drug carrier systems. InTech, Rijeka, pp 437–470
102.
Zurück zum Zitat Jiang QH, Liu L, Shen JW et al (2012) Influence of multilayer rhBMP-2 DNA coating on the proliferation and differentiation of MC3T3-E1 cells seeded on roughed titanium surface. J Biomed Mater Res A 100:2766–2774PubMedCrossRef Jiang QH, Liu L, Shen JW et al (2012) Influence of multilayer rhBMP-2 DNA coating on the proliferation and differentiation of MC3T3-E1 cells seeded on roughed titanium surface. J Biomed Mater Res A 100:2766–2774PubMedCrossRef
103.
Zurück zum Zitat He CX, Tabata Y, Gao JQ (2010) Non-viral gene delivery carrier and its three-dimensional transfection system. Int J Pharm 386:232–242PubMedCrossRef He CX, Tabata Y, Gao JQ (2010) Non-viral gene delivery carrier and its three-dimensional transfection system. Int J Pharm 386:232–242PubMedCrossRef
104.
Zurück zum Zitat He FM, Shan HQ, Shen JW et al (2013) Bone formation at porous titanium implants coated with multiple layers of recombinant human bone morphogenetic protein-2 cDNA plasmid in the posterior mandible in dogs. Int J Oral Maxillofac Implants 28:1648–1654PubMedCrossRef He FM, Shan HQ, Shen JW et al (2013) Bone formation at porous titanium implants coated with multiple layers of recombinant human bone morphogenetic protein-2 cDNA plasmid in the posterior mandible in dogs. Int J Oral Maxillofac Implants 28:1648–1654PubMedCrossRef
105.
Zurück zum Zitat Baltzer AW, Lattermann C, Whalen JD et al (1999) A gene therapy approach to accelerating bone healing. Evaluation of gene expression in a New Zealand white rabbit model. Knee Surg Sports Traumatol Arthrosc 7:197–202PubMedCrossRef Baltzer AW, Lattermann C, Whalen JD et al (1999) A gene therapy approach to accelerating bone healing. Evaluation of gene expression in a New Zealand white rabbit model. Knee Surg Sports Traumatol Arthrosc 7:197–202PubMedCrossRef
106.
Zurück zum Zitat Chan RC, Marino V, Bartold PM (2012) The effect of emdogain and platelet-derived growth factor on the osteoinductive potential of hydroxyapatite tricalcium phosphate. Clin Oral Investig 16:1217–1227PubMedCrossRef Chan RC, Marino V, Bartold PM (2012) The effect of emdogain and platelet-derived growth factor on the osteoinductive potential of hydroxyapatite tricalcium phosphate. Clin Oral Investig 16:1217–1227PubMedCrossRef
107.
Zurück zum Zitat Bates C, Marino V, Fazzalari NL et al (2013) Soft tissue attachment to titanium implants coated with growth factors. Clin Implant Dent Relat Res 15:53–63PubMedCrossRef Bates C, Marino V, Fazzalari NL et al (2013) Soft tissue attachment to titanium implants coated with growth factors. Clin Implant Dent Relat Res 15:53–63PubMedCrossRef
108.
Zurück zum Zitat Lee SY, Koak JY, Heo SJ et al (2010) Osseointegration of anodized titanium implants coated with poly(lactide-co-glycolide)/basic fibroblast growth factor by electrospray. Int J Oral Maxillofac Implants 25:315–320PubMed Lee SY, Koak JY, Heo SJ et al (2010) Osseointegration of anodized titanium implants coated with poly(lactide-co-glycolide)/basic fibroblast growth factor by electrospray. Int J Oral Maxillofac Implants 25:315–320PubMed
109.
Zurück zum Zitat Shim IK, Chung HJ, Jung MR et al (2013) Biofunctional porous anodized titanium implants for enhanced bone regeneration. J Biomed Mater Res A (Epub ahead of print) Shim IK, Chung HJ, Jung MR et al (2013) Biofunctional porous anodized titanium implants for enhanced bone regeneration. J Biomed Mater Res A (Epub ahead of print)
110.
Zurück zum Zitat Jin C, Ren LF, Ding HZ et al (2012) Enhanced attachment, proliferation, and differentiation of human gingival fibroblasts on titanium surface modified with biomolecules. J Biomed Mater Res B Appl Biomater 100:2167–2177PubMedCrossRef Jin C, Ren LF, Ding HZ et al (2012) Enhanced attachment, proliferation, and differentiation of human gingival fibroblasts on titanium surface modified with biomolecules. J Biomed Mater Res B Appl Biomater 100:2167–2177PubMedCrossRef
111.
Zurück zum Zitat Mueller CK, Thorwarth M, Schmidt M et al (2011) Comparative analysis of osseointegration of titanium implants with acid-etched surfaces and different biomolecular coatings. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 112:726–736PubMedCrossRef Mueller CK, Thorwarth M, Schmidt M et al (2011) Comparative analysis of osseointegration of titanium implants with acid-etched surfaces and different biomolecular coatings. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 112:726–736PubMedCrossRef
Metadaten
Titel
Implantatoberflächen und ihr Einfluss auf das periimplantäre Hartgewebe
verfasst von
PD Dr. Dr. B. Stadlinger
G.N. Belibasakis
S. Bierbaum
Publikationsdatum
01.11.2014
Verlag
Springer Berlin Heidelberg
Erschienen in
Die MKG-Chirurgie / Ausgabe 4/2014
Print ISSN: 2731-748X
Elektronische ISSN: 2731-7498
DOI
https://doi.org/10.1007/s12285-013-0388-1

Weitere Artikel der Ausgabe 4/2014

Der MKG-Chirurg 4/2014 Zur Ausgabe

Einführung zum Thema

Infektiologie und Prophylaxe

Update Chirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.

S3-Leitlinie „Diagnostik und Therapie des Karpaltunnelsyndroms“

CME: 2 Punkte

Prof. Dr. med. Gregor Antoniadis Das Karpaltunnelsyndrom ist die häufigste Kompressionsneuropathie peripherer Nerven. Obwohl die Anamnese mit dem nächtlichen Einschlafen der Hand (Brachialgia parästhetica nocturna) sehr typisch ist, ist eine klinisch-neurologische Untersuchung und Elektroneurografie in manchen Fällen auch eine Neurosonografie erforderlich. Im Anfangsstadium sind konservative Maßnahmen (Handgelenksschiene, Ergotherapie) empfehlenswert. Bei nicht Ansprechen der konservativen Therapie oder Auftreten von neurologischen Ausfällen ist eine Dekompression des N. medianus am Karpaltunnel indiziert.

Prof. Dr. med. Gregor Antoniadis
Berufsverband der Deutschen Chirurgie e.V.

S2e-Leitlinie „Distale Radiusfraktur“

CME: 2 Punkte

Dr. med. Benjamin Meyknecht, PD Dr. med. Oliver Pieske Das Webinar S2e-Leitlinie „Distale Radiusfraktur“ beschäftigt sich mit Fragen und Antworten zu Diagnostik und Klassifikation sowie Möglichkeiten des Ausschlusses von Zusatzverletzungen. Die Referenten erläutern, welche Frakturen konservativ behandelt werden können und wie. Das Webinar beantwortet die Frage nach aktuellen operativen Therapiekonzepten: Welcher Zugang, welches Osteosynthesematerial? Auf was muss bei der Nachbehandlung der distalen Radiusfraktur geachtet werden?

PD Dr. med. Oliver Pieske
Dr. med. Benjamin Meyknecht
Berufsverband der Deutschen Chirurgie e.V.

S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“

CME: 2 Punkte

Dr. med. Mihailo Andric
Inhalte des Webinars zur S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“ sind die Darstellung des Projektes und des Erstellungswegs zur S1-Leitlinie, die Erläuterung der klinischen Relevanz der Klassifikation EAES 2015, die wissenschaftliche Begründung der wichtigsten Empfehlungen und die Darstellung stadiengerechter Therapieoptionen.

Dr. med. Mihailo Andric
Berufsverband der Deutschen Chirurgie e.V.