Skip to main content

07.05.2024 | Original Article

[18F]AlF-NOTA-PCP2: a novel PET/CT tracer for enhanced PD-L1 heterogeneity imaging and comparative analysis with [18F]AlF-NOTA-WL12 in glioblastoma xenografts

verfasst von: Yong Wang, Yang Zhang, Yunhao Chen, Shijie Wang, Wei Liu, Zhiguo Liu, Man Hu

Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging

Einloggen, um Zugang zu erhalten

Abstract

Purpose

The unsatisfactory efficacy of PD-L1 antibodies in glioblastoma (GBM) is largely due to the temporal and spatial heterogeneity of PD-L1 expression. Molecular imaging can enhance understanding of the tumor immune microenvironment and guide immunotherapy. However, highly sensitive imaging agents capable of effectively visualizing PD-L1 heterogeneity are limited. This study introduces a novel PET tracer, offering improved imaging of PD-L1 heterogeneity in GBM xenografts, with a comparative analysis to [18F]AlF-NOTA-WL12.

Methods

[18F]AlF-NOTA-PCP2 was synthesized with high purity and its affinity for PD-L1 was characterized using surface plasmon resonance (SPR) and cell binding assays. Its specificity for PD-L1 was evaluated both in vitro using various cell lines and in vivo with GBM xenograft models in NOD/SCID mice. PET/CT imaging was conducted to evaluate the tracer’s biodistribution, pharmacokinetics, and ability to quantify tumoral spatial heterogeneity of PD-L1 expression. A focused comparative analysis between [18F]AlF-NOTA-PCP2 and [18F]AlF-NOTA-WL12 was conducted, examining binding affinity, biodistribution, pharmacokinetics, and imaging effectiveness in GBM xenografts. Additionally, human radiation dosimetry estimates compared the safety profiles of both tracers.

Results

[18F]AlF-NOTA-PCP2 demonstrated high radiochemical purity (> 95%) and a strong affinity for PD-L1, comparable to [18F]AlF-NOTA-WL12. In vitro and in vivo studies confirmed its specificity for PD-L1, with increased uptake in PD-L1 expressing cells and tumors. Toxicological profiles indicated no significant abnormalities in serum biochemical indicators or major organ tissues. MicroPET/CT imaging showed [18F]AlF-NOTA-PCP2’s effectiveness in visualizing PD-L1 expression levels and spatial heterogeneity in GBM xenografts. Comparative studies revealed [18F]AlF-NOTA-PCP2’s improved pharmacokinetic properties, including higher tumor-to-blood ratios and lower nonspecific liver uptake, as well as reduced radiation exposure compared to [18F]AlF-NOTA-WL12.

Conclusion

[18F]AlF-NOTA-PCP2 distinguishes itself as an exceptionally sensitive PET/CT tracer, adept at non-invasively and accurately quantifying PD-L1 expression and its spatial heterogeneity in tumors, especially in GBM. Its favorable pharmacokinetic properties, safety profile, and high affinity for PD-L1 highlight its potential for enhancing the precision of cancer immunotherapy and guiding individualized treatment strategies. While promising, its clinical translation, especially in brain imaging, necessitates further validation in clinical trials.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Noorani I, Mischel PS, Swanton C. Leveraging extrachromosomal DNA to fine-tune trials of targeted therapy for glioblastoma: opportunities and challenges. Nat Rev Clin Oncol. 2022;19(11):733–43.CrossRefPubMed Noorani I, Mischel PS, Swanton C. Leveraging extrachromosomal DNA to fine-tune trials of targeted therapy for glioblastoma: opportunities and challenges. Nat Rev Clin Oncol. 2022;19(11):733–43.CrossRefPubMed
2.
Zurück zum Zitat Sharma P, et al. Immune checkpoint therapy-current perspectives and future directions. Cell. 2023;186(8):1652–69.CrossRefPubMed Sharma P, et al. Immune checkpoint therapy-current perspectives and future directions. Cell. 2023;186(8):1652–69.CrossRefPubMed
3.
Zurück zum Zitat Reardon DA, et al. Effect of Nivolumab vs Bevacizumab in patients with recurrent glioblastoma: the CheckMate 143 phase 3 Randomized Clinical Trial. JAMA Oncol. 2020;6(7):1003–10.CrossRefPubMed Reardon DA, et al. Effect of Nivolumab vs Bevacizumab in patients with recurrent glioblastoma: the CheckMate 143 phase 3 Randomized Clinical Trial. JAMA Oncol. 2020;6(7):1003–10.CrossRefPubMed
5.
Zurück zum Zitat Schalper KA, et al. Neoadjuvant nivolumab modifies the tumor immune microenvironment in resectable glioblastoma. Nat Med. 2019;25(3):470–6.CrossRefPubMed Schalper KA, et al. Neoadjuvant nivolumab modifies the tumor immune microenvironment in resectable glioblastoma. Nat Med. 2019;25(3):470–6.CrossRefPubMed
6.
Zurück zum Zitat Venkataramani V, et al. Glioblastoma hijacks neuronal mechanisms for brain invasion. Cell. 2022;185(16):2899–e291731.CrossRefPubMed Venkataramani V, et al. Glioblastoma hijacks neuronal mechanisms for brain invasion. Cell. 2022;185(16):2899–e291731.CrossRefPubMed
8.
Zurück zum Zitat Jacob F, et al. A patient-derived Glioblastoma Organoid Model and Biobank recapitulates Inter- and intra-tumoral heterogeneity. Cell. 2020;180(1):188–e20422.CrossRefPubMed Jacob F, et al. A patient-derived Glioblastoma Organoid Model and Biobank recapitulates Inter- and intra-tumoral heterogeneity. Cell. 2020;180(1):188–e20422.CrossRefPubMed
9.
Zurück zum Zitat Adam J, et al. Multicenter harmonization study for PD-L1 immunohistochemical testing in non-small-cell lung cancer. Ann Oncol. 2018;29(4):953–8.CrossRefPubMed Adam J, et al. Multicenter harmonization study for PD-L1 immunohistochemical testing in non-small-cell lung cancer. Ann Oncol. 2018;29(4):953–8.CrossRefPubMed
10.
Zurück zum Zitat Doroshow DB, et al. PD-L1 as a biomarker of response to immune-checkpoint inhibitors. Nat Rev Clin Oncol. 2021;18(6):345–62.CrossRefPubMed Doroshow DB, et al. PD-L1 as a biomarker of response to immune-checkpoint inhibitors. Nat Rev Clin Oncol. 2021;18(6):345–62.CrossRefPubMed
11.
Zurück zum Zitat Bensch F, et al. (89)Zr-atezolizumab imaging as a non-invasive approach to assess clinical response to PD-L1 blockade in cancer. Nat Med. 2018;24(12):1852–8.CrossRefPubMed Bensch F, et al. (89)Zr-atezolizumab imaging as a non-invasive approach to assess clinical response to PD-L1 blockade in cancer. Nat Med. 2018;24(12):1852–8.CrossRefPubMed
12.
Zurück zum Zitat Mu W et al. Non-invasive measurement of PD-L1 status and prediction of immunotherapy response using deep learning of PET/CT images. J Immunother Cancer, 2021. 9(6). Mu W et al. Non-invasive measurement of PD-L1 status and prediction of immunotherapy response using deep learning of PET/CT images. J Immunother Cancer, 2021. 9(6).
13.
Zurück zum Zitat Zhou M, et al. Preclinical and first-in-human evaluation of (18)F-labeled D-peptide antagonist for PD-L1 status imaging with PET. Eur J Nucl Med Mol Imaging. 2022;49(13):4312–24.CrossRefPubMed Zhou M, et al. Preclinical and first-in-human evaluation of (18)F-labeled D-peptide antagonist for PD-L1 status imaging with PET. Eur J Nucl Med Mol Imaging. 2022;49(13):4312–24.CrossRefPubMed
14.
Zurück zum Zitat Huisman MC, et al. Quantification of PD-L1 expression with (18)F-BMS-986192 PET/CT in patients with Advanced-Stage Non-small Cell Lung Cancer. J Nucl Med. 2020;61(10):1455–60.CrossRefPubMed Huisman MC, et al. Quantification of PD-L1 expression with (18)F-BMS-986192 PET/CT in patients with Advanced-Stage Non-small Cell Lung Cancer. J Nucl Med. 2020;61(10):1455–60.CrossRefPubMed
15.
Zurück zum Zitat Bouleau A, et al. Optimizing Immuno-PET Imaging of Tumor PD-L1 expression: pharmacokinetic, Biodistribution, and dosimetric comparisons of (89)Zr-Labeled Anti-PD-L1 antibody formats. J Nucl Med. 2022;63(8):1259–65.CrossRefPubMedPubMedCentral Bouleau A, et al. Optimizing Immuno-PET Imaging of Tumor PD-L1 expression: pharmacokinetic, Biodistribution, and dosimetric comparisons of (89)Zr-Labeled Anti-PD-L1 antibody formats. J Nucl Med. 2022;63(8):1259–65.CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Zhou X, et al. First-in-humans evaluation of a PD-L1-Binding peptide PET Radiotracer in Non-small Cell Lung Cancer patients. J Nucl Med. 2022;63(4):536–42.CrossRefPubMedPubMedCentral Zhou X, et al. First-in-humans evaluation of a PD-L1-Binding peptide PET Radiotracer in Non-small Cell Lung Cancer patients. J Nucl Med. 2022;63(4):536–42.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Chatterjee S, et al. Rapid PD-L1 detection in tumors with PET using a highly specific peptide. Biochem Biophys Res Commun. 2017;483(1):258–63.CrossRefPubMed Chatterjee S, et al. Rapid PD-L1 detection in tumors with PET using a highly specific peptide. Biochem Biophys Res Commun. 2017;483(1):258–63.CrossRefPubMed
18.
Zurück zum Zitat Jiang J, et al. Noninvasive evaluation of PD-L1 expression using copper 64 labeled peptide WL12 by micro-PET imaging in Chinese hamster ovary cell tumor model. Bioorg Med Chem Lett. 2021;40:127901.CrossRefPubMed Jiang J, et al. Noninvasive evaluation of PD-L1 expression using copper 64 labeled peptide WL12 by micro-PET imaging in Chinese hamster ovary cell tumor model. Bioorg Med Chem Lett. 2021;40:127901.CrossRefPubMed
19.
Zurück zum Zitat Kumar D et al. Pharmacodynamic measures within tumors expose differential activity of PD(L)-1 antibody therapeutics Proc Natl Acad Sci U S A, 2021. 118(37). Kumar D et al. Pharmacodynamic measures within tumors expose differential activity of PD(L)-1 antibody therapeutics Proc Natl Acad Sci U S A, 2021. 118(37).
20.
Zurück zum Zitat Mishra A, et al. Gallium-68-labeled peptide PET quantifies Tumor exposure of PD-L1 therapeutics. Clin Cancer Res. 2023;29(3):581–91.CrossRefPubMed Mishra A, et al. Gallium-68-labeled peptide PET quantifies Tumor exposure of PD-L1 therapeutics. Clin Cancer Res. 2023;29(3):581–91.CrossRefPubMed
21.
Zurück zum Zitat Liu Z, et al. Optimization, automation and validation of the large-scale radiosynthesis of Al 18 F tracers in a custom-made automatic platform for high yield. Reaction Chem Eng. 2020;5(8):1441–9.CrossRef Liu Z, et al. Optimization, automation and validation of the large-scale radiosynthesis of Al 18 F tracers in a custom-made automatic platform for high yield. Reaction Chem Eng. 2020;5(8):1441–9.CrossRef
22.
Zurück zum Zitat Fu Z, et al. Custom-built automated radiosynthesis platform for Al [18F] F radiochemistry and its application for clinical production. Chem Eng J. 2023;456:141080.CrossRef Fu Z, et al. Custom-built automated radiosynthesis platform for Al [18F] F radiochemistry and its application for clinical production. Chem Eng J. 2023;456:141080.CrossRef
23.
Zurück zum Zitat Nie S, et al. Determining optimal clinical target volume margins in high-grade glioma based on microscopic tumor extension and magnetic resonance imaging. Radiat Oncol. 2021;16(1):97.CrossRefPubMedPubMedCentral Nie S, et al. Determining optimal clinical target volume margins in high-grade glioma based on microscopic tumor extension and magnetic resonance imaging. Radiat Oncol. 2021;16(1):97.CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Miller MM, Patrick Allen CMM, Bowsher MS, Boy KM, Gillis EP, Langley DR, Mull E, Poirier MA, Nishith Sanghvi, Li-Qiang Sun DJ, Tenney, Kap-Sun Yeung J, Zhu PC, Reid, Paul Michael Scola, Macrocyclic inhibitors of the pd-1/pd-l1 and cd80(b7-1)/pd-l1 protein/protein interactions, B.-M. Squibb, Editor. 2014, Bristol-Myers Squibb. Miller MM, Patrick Allen CMM, Bowsher MS, Boy KM, Gillis EP, Langley DR, Mull E, Poirier MA, Nishith Sanghvi, Li-Qiang Sun DJ, Tenney, Kap-Sun Yeung J, Zhu PC, Reid, Paul Michael Scola, Macrocyclic inhibitors of the pd-1/pd-l1 and cd80(b7-1)/pd-l1 protein/protein interactions, B.-M. Squibb, Editor. 2014, Bristol-Myers Squibb.
25.
Zurück zum Zitat Nie S, et al. Clinicopathologic analysis of microscopic tumor extension in glioma for external beam radiotherapy planning. BMC Med. 2021;19(1):269.CrossRefPubMedPubMedCentral Nie S, et al. Clinicopathologic analysis of microscopic tumor extension in glioma for external beam radiotherapy planning. BMC Med. 2021;19(1):269.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Horbinski C, et al. NCCN Guidelines(R) insights: Central Nervous System Cancers, Version 2.2022. J Natl Compr Canc Netw. 2023;21(1):12–20.CrossRefPubMed Horbinski C, et al. NCCN Guidelines(R) insights: Central Nervous System Cancers, Version 2.2022. J Natl Compr Canc Netw. 2023;21(1):12–20.CrossRefPubMed
27.
Zurück zum Zitat Tsao MS, et al. PD-L1 immunohistochemistry comparability study in real-life clinical samples: results of Blueprint phase 2 project. J Thorac Oncol. 2018;13(9):1302–11.CrossRefPubMedPubMedCentral Tsao MS, et al. PD-L1 immunohistochemistry comparability study in real-life clinical samples: results of Blueprint phase 2 project. J Thorac Oncol. 2018;13(9):1302–11.CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Hong L, et al. Programmed death-ligand 1 heterogeneity and its impact on Benefit from Immune checkpoint inhibitors in NSCLC. J Thorac Oncol. 2020;15(9):1449–59.CrossRefPubMed Hong L, et al. Programmed death-ligand 1 heterogeneity and its impact on Benefit from Immune checkpoint inhibitors in NSCLC. J Thorac Oncol. 2020;15(9):1449–59.CrossRefPubMed
29.
Zurück zum Zitat Mansfield AS, et al. Temporal and spatial discordance of programmed cell death-ligand 1 expression and lymphocyte tumor infiltration between paired primary lesions and brain metastases in lung cancer. Ann Oncol. 2016;27(10):1953–8.CrossRefPubMedPubMedCentral Mansfield AS, et al. Temporal and spatial discordance of programmed cell death-ligand 1 expression and lymphocyte tumor infiltration between paired primary lesions and brain metastases in lung cancer. Ann Oncol. 2016;27(10):1953–8.CrossRefPubMedPubMedCentral
30.
31.
Zurück zum Zitat Ilie M, et al. Comparative study of the PD-L1 status between surgically resected specimens and matched biopsies of NSCLC patients reveal major discordances: a potential issue for anti-PD-L1 therapeutic strategies. Ann Oncol. 2016;27(1):147–53.CrossRefPubMed Ilie M, et al. Comparative study of the PD-L1 status between surgically resected specimens and matched biopsies of NSCLC patients reveal major discordances: a potential issue for anti-PD-L1 therapeutic strategies. Ann Oncol. 2016;27(1):147–53.CrossRefPubMed
32.
Zurück zum Zitat Gagne A, et al. Comprehensive Assessment of PD-L1 Staining Heterogeneity in Pulmonary Adenocarcinomas using tissue microarrays: impact of the Architecture Pattern and the number of cores. Am J Surg Pathol. 2018;42(5):687–94.CrossRefPubMed Gagne A, et al. Comprehensive Assessment of PD-L1 Staining Heterogeneity in Pulmonary Adenocarcinomas using tissue microarrays: impact of the Architecture Pattern and the number of cores. Am J Surg Pathol. 2018;42(5):687–94.CrossRefPubMed
33.
Zurück zum Zitat Munari E, et al. PD-L1 expression comparison between primary and relapsed non-small cell lung carcinoma using whole sections and clone SP263. Oncotarget. 2018;9(54):30465–71.CrossRefPubMedPubMedCentral Munari E, et al. PD-L1 expression comparison between primary and relapsed non-small cell lung carcinoma using whole sections and clone SP263. Oncotarget. 2018;9(54):30465–71.CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Gniadek TJ, et al. Heterogeneous expression of PD-L1 in pulmonary squamous cell carcinoma and adenocarcinoma: implications for assessment by small biopsy. Mod Pathol. 2017;30(4):530–8.CrossRefPubMed Gniadek TJ, et al. Heterogeneous expression of PD-L1 in pulmonary squamous cell carcinoma and adenocarcinoma: implications for assessment by small biopsy. Mod Pathol. 2017;30(4):530–8.CrossRefPubMed
38.
Zurück zum Zitat Greschner AA, et al. PEGylation of a peptide-based amphiphilic delivery Agent and Influence on protein delivery to cells. Biomacromolecules. 2023;24(11):4890–900.CrossRefPubMed Greschner AA, et al. PEGylation of a peptide-based amphiphilic delivery Agent and Influence on protein delivery to cells. Biomacromolecules. 2023;24(11):4890–900.CrossRefPubMed
Metadaten
Titel
[18F]AlF-NOTA-PCP2: a novel PET/CT tracer for enhanced PD-L1 heterogeneity imaging and comparative analysis with [18F]AlF-NOTA-WL12 in glioblastoma xenografts
verfasst von
Yong Wang
Yang Zhang
Yunhao Chen
Shijie Wang
Wei Liu
Zhiguo Liu
Man Hu
Publikationsdatum
07.05.2024
Verlag
Springer Berlin Heidelberg
Erschienen in
European Journal of Nuclear Medicine and Molecular Imaging
Print ISSN: 1619-7070
Elektronische ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-024-06743-5