Skip to main content
Erschienen in: Lasers in Medical Science 8/2022

30.07.2022 | Original Article

A comparison of human dental pulp stem cell activity cultured on sandblasted titanium discs decontaminated with Er:YAG laser and air-powder abrasion: an in vitro study

verfasst von: Mahdi Kadkhodazadeh, Reza Amid, Maedeh Gilvari Sarshari, Massoud Mojahedi, Ardavan Parhizkar

Erschienen in: Lasers in Medical Science | Ausgabe 8/2022

Einloggen, um Zugang zu erhalten

Abstract

Decontamination of implant surfaces is important to the treatment of peri-implantitis. Er:YAG laser and air-powder abrasion system are regarded as the most effective means of decontamination of implant surfaces. The aim of this in vitro study was to compare the activity of human dental pulp stem cells (hDPSCs) cultured on decontaminated sandblasted titanium discs using Er:YAG laser irradiation and air-powder abrasion. Forty-five titanium discs were contaminated with Escherichia coli (E. coli) bacteria and fifteen titanium discs served as sterile control groups. Thirty contaminated titanium discs were decontaminated with Er:YAG laser or air-powder abrasion system and fifteen contaminated discs were used as contaminated control group. Afterwards, hDPSCs were seeded on all sixty experimental titanium discs. The effects of two decontamination tools on hDPSCs viability were evaluated by MTT assay. Alkaline phosphatase (ALP) activity assay, quantitative real-time PCR analysis and alizarin red staining method were performed to assess hDPSCs osteogenic differentiation. Scanning microscope electron (SEM) was also used to evaluate the effects of two different decontaminated methods on cellular morphology. Our study showed that decontamination using Er:YAG laser caused maximum cell viability. However, the ALP activity was not different in laser and air-abrasion groups. The significant expression of an osteoblastic marker and stronger Alizarin red staining were observed in laser irradiation groups. In addition, SEM observation indicated that grown cells were more stretched and more filopodia in Er:YAG-treated discs. In the present study, Er:YAG laser and air-powder abrasion improved the activity of the cells cultured on the decontaminated titanium discs. However, in comparison with air-powder abrasion, Er:YAG laser was more effective.
Literatur
1.
Zurück zum Zitat Renvert S, Polyzois I, Maguire R (2009) Re-osseointegration on previously contaminated surfaces: a systematic review. Clin Oral Implants Res 20:216–227PubMedCrossRef Renvert S, Polyzois I, Maguire R (2009) Re-osseointegration on previously contaminated surfaces: a systematic review. Clin Oral Implants Res 20:216–227PubMedCrossRef
2.
Zurück zum Zitat Petri AD, Teixeira LN, Crippa GE, Beloti MM, Oliveira PTd, Rosa AL (2010) Effects of low-level laser therapy on human osteoblastic cells grown on titanium. Braz Dent J 21:491–498PubMedCrossRef Petri AD, Teixeira LN, Crippa GE, Beloti MM, Oliveira PTd, Rosa AL (2010) Effects of low-level laser therapy on human osteoblastic cells grown on titanium. Braz Dent J 21:491–498PubMedCrossRef
3.
4.
Zurück zum Zitat D’Ercole S, Piattelli A, Marzo G, Scarano A, Tripodi D (2013) Influence of bacterial colonization of the healing screws on peri-implant tissue. J Dent Sci 8:109–114CrossRef D’Ercole S, Piattelli A, Marzo G, Scarano A, Tripodi D (2013) Influence of bacterial colonization of the healing screws on peri-implant tissue. J Dent Sci 8:109–114CrossRef
5.
Zurück zum Zitat Chen C-J, Ding S-J, Chen C-C (2016) Effects of surface conditions of titanium dental implants on bacterial adhesion. Photomed Laser Surg 34:379–388PubMedCrossRef Chen C-J, Ding S-J, Chen C-C (2016) Effects of surface conditions of titanium dental implants on bacterial adhesion. Photomed Laser Surg 34:379–388PubMedCrossRef
6.
Zurück zum Zitat Hakki SS, Tatar G, Dundar N, Demiralp B (2017) The effect of different cleaning methods on the surface and temperature of failed titanium implants: an in vitro study. Lasers Med Sci 32:563–571PubMedCrossRef Hakki SS, Tatar G, Dundar N, Demiralp B (2017) The effect of different cleaning methods on the surface and temperature of failed titanium implants: an in vitro study. Lasers Med Sci 32:563–571PubMedCrossRef
7.
Zurück zum Zitat Dörtbudak O, Haas R, Bernhart T, Mailath-Pokorny G (2001) Lethal photosensitization for decontamination of implant surfaces in the treatment of peri-implantitis. Clin Oral Implants Res 12:104–108PubMedCrossRef Dörtbudak O, Haas R, Bernhart T, Mailath-Pokorny G (2001) Lethal photosensitization for decontamination of implant surfaces in the treatment of peri-implantitis. Clin Oral Implants Res 12:104–108PubMedCrossRef
8.
Zurück zum Zitat Prathapachandran J, Suresh N (2012) Management of peri-implantitis. Dent Res J (Isfahan) 9:516–521CrossRef Prathapachandran J, Suresh N (2012) Management of peri-implantitis. Dent Res J (Isfahan) 9:516–521CrossRef
9.
Zurück zum Zitat Mombelli A, Lang NP (1998) The diagnosis and treatment of peri-implantitis. Periodontol 2000 17:63–76PubMedCrossRef Mombelli A, Lang NP (1998) The diagnosis and treatment of peri-implantitis. Periodontol 2000 17:63–76PubMedCrossRef
10.
Zurück zum Zitat Schwarz F, Becker K, Renvert S (2015) Efficacy of air polishing for the non-surgical treatment of peri-implant diseases: a systematic review. J Clin Periodontol 42:951–959PubMedCrossRef Schwarz F, Becker K, Renvert S (2015) Efficacy of air polishing for the non-surgical treatment of peri-implant diseases: a systematic review. J Clin Periodontol 42:951–959PubMedCrossRef
11.
Zurück zum Zitat Persson GR, Roos-Jansåker AM, Lindahl C, Renvert S (2011) Microbiologic results after non-surgical erbium-doped: yttrium, aluminum, and garnet laser or air-abrasive treatment of peri-implantitis: a randomized clinical trial. J Periodontol 82:1267–1278PubMedCrossRef Persson GR, Roos-Jansåker AM, Lindahl C, Renvert S (2011) Microbiologic results after non-surgical erbium-doped: yttrium, aluminum, and garnet laser or air-abrasive treatment of peri-implantitis: a randomized clinical trial. J Periodontol 82:1267–1278PubMedCrossRef
12.
Zurück zum Zitat Jin S-H, Lee E-M, Park J-B, Kim K-K, Ko Y (2019) Decontamination methods to restore the biocompatibility of contaminated titanium surfaces. J Periodontal Implant 49:193–204CrossRef Jin S-H, Lee E-M, Park J-B, Kim K-K, Ko Y (2019) Decontamination methods to restore the biocompatibility of contaminated titanium surfaces. J Periodontal Implant 49:193–204CrossRef
13.
Zurück zum Zitat Kreisler M, Kohnen W, Christoffers AB, Götz H, Jansen B, Duschner H et al (2005) In vitro evaluation of the biocompatibility of contaminated implant surfaces treated with an Er: YAG laser and an air powder system. Clin Oral Implants Res 16:36–43PubMedCrossRef Kreisler M, Kohnen W, Christoffers AB, Götz H, Jansen B, Duschner H et al (2005) In vitro evaluation of the biocompatibility of contaminated implant surfaces treated with an Er: YAG laser and an air powder system. Clin Oral Implants Res 16:36–43PubMedCrossRef
14.
Zurück zum Zitat NejemWakim R, Namour M, Nguyen HV, Peremans A, Zeinoun T, Vanheusden A et al (2018) Decontamination of dental implant surfaces by the Er: YAG laser beam: a comparative in vitro study of various protocols. Dent J (Basel) 6:66CrossRef NejemWakim R, Namour M, Nguyen HV, Peremans A, Zeinoun T, Vanheusden A et al (2018) Decontamination of dental implant surfaces by the Er: YAG laser beam: a comparative in vitro study of various protocols. Dent J (Basel) 6:66CrossRef
15.
Zurück zum Zitat Eick S, Meier I, Spoerlé F, Bender P, Aoki A, Izumi Y et al (2017) In vitro-activity of Er: YAG laser in comparison with other treatment modalities on biofilm ablation from implant and tooth surfaces. PLoS ONE 12:e0171086PubMedPubMedCentralCrossRef Eick S, Meier I, Spoerlé F, Bender P, Aoki A, Izumi Y et al (2017) In vitro-activity of Er: YAG laser in comparison with other treatment modalities on biofilm ablation from implant and tooth surfaces. PLoS ONE 12:e0171086PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat Friedmann A, Antic L, Bernimoulin JP, Purucker P (2006) In vitro attachment of osteoblasts on contaminated rough titanium surfaces treated by Er: YAG laser. J Biomed Mater Res A 79:53–60PubMedCrossRef Friedmann A, Antic L, Bernimoulin JP, Purucker P (2006) In vitro attachment of osteoblasts on contaminated rough titanium surfaces treated by Er: YAG laser. J Biomed Mater Res A 79:53–60PubMedCrossRef
17.
Zurück zum Zitat Madi M, Htet M, Zakaria O, Alagl A, Kasugai S (2018) Re-osseointegration of dental implants after periimplantitis treatments: a systematic review. Implant Dent 27:101–110PubMedCrossRef Madi M, Htet M, Zakaria O, Alagl A, Kasugai S (2018) Re-osseointegration of dental implants after periimplantitis treatments: a systematic review. Implant Dent 27:101–110PubMedCrossRef
18.
Zurück zum Zitat Scarano A, Lorusso F, Inchingolo F, Postiglione F, Petrini M (2020) The effects of erbium-doped yttrium aluminum garnet laser (Er: YAG) irradiation on sandblasted and acid-etched (SLA) titanium, an in vitro study. Materials 13:4174PubMedCentralCrossRef Scarano A, Lorusso F, Inchingolo F, Postiglione F, Petrini M (2020) The effects of erbium-doped yttrium aluminum garnet laser (Er: YAG) irradiation on sandblasted and acid-etched (SLA) titanium, an in vitro study. Materials 13:4174PubMedCentralCrossRef
19.
Zurück zum Zitat Ando Y, Aoki A, Watanabe H, Ishikawa I (1996) Bactericidal effect of erbium YAG laser on periodontopathic bacteria. Lasers Surg Med 19:190–200PubMedCrossRef Ando Y, Aoki A, Watanabe H, Ishikawa I (1996) Bactericidal effect of erbium YAG laser on periodontopathic bacteria. Lasers Surg Med 19:190–200PubMedCrossRef
20.
Zurück zum Zitat Matsubara VH, Leong BW, Leong MJ, Lawrence Z, Becker T, Quaranta A (2020) Cleaning potential of different air abrasive powders and their impact on implant surface roughness. Clin Implant Dent Relat Res 22:96–104 Matsubara VH, Leong BW, Leong MJ, Lawrence Z, Becker T, Quaranta A (2020) Cleaning potential of different air abrasive powders and their impact on implant surface roughness. Clin Implant Dent Relat Res 22:96–104
21.
Zurück zum Zitat Kubasiewicz-Ross P, Fleischer M, Pitułaj A, Hadzik J, Nawrot-Hadzik I, Bortkiewicz O et al (2020) Evaluation of the three methods of bacterial decontamination on implants with three different surfaces. Adv Clin Exp Med 29:177–182PubMedCrossRef Kubasiewicz-Ross P, Fleischer M, Pitułaj A, Hadzik J, Nawrot-Hadzik I, Bortkiewicz O et al (2020) Evaluation of the three methods of bacterial decontamination on implants with three different surfaces. Adv Clin Exp Med 29:177–182PubMedCrossRef
22.
Zurück zum Zitat Ginani F, Soares DM, Barboza CAG (2015) Effect of low-level laser therapy on mesenchymal stem cell proliferation: a systematic review. Lasers Med Sci 30:2189–2194PubMedCrossRef Ginani F, Soares DM, Barboza CAG (2015) Effect of low-level laser therapy on mesenchymal stem cell proliferation: a systematic review. Lasers Med Sci 30:2189–2194PubMedCrossRef
23.
Zurück zum Zitat Amid R, Kadkhodazadeh M, Sarshari MG, Parhizkar A, Mojahedi M (2022) Effects of two protocols of low-level laser therapy on the proliferation and differentiation of human dental pulp stem cells on sandblasted titanium discs: an in vitro study. J Lasers Med Sci 13:e1PubMedPubMedCentralCrossRef Amid R, Kadkhodazadeh M, Sarshari MG, Parhizkar A, Mojahedi M (2022) Effects of two protocols of low-level laser therapy on the proliferation and differentiation of human dental pulp stem cells on sandblasted titanium discs: an in vitro study. J Lasers Med Sci 13:e1PubMedPubMedCentralCrossRef
24.
25.
Zurück zum Zitat Liu P, Zhang Y, Ma Y, Tan S, Ren B, Liu S et al (2022) Application of dental pulp stem cells in oral maxillofacial tissue engineering. Int J Med Sci 19:310–320PubMedPubMedCentralCrossRef Liu P, Zhang Y, Ma Y, Tan S, Ren B, Liu S et al (2022) Application of dental pulp stem cells in oral maxillofacial tissue engineering. Int J Med Sci 19:310–320PubMedPubMedCentralCrossRef
26.
27.
Zurück zum Zitat Iaculli F, Di Filippo ES, Piattelli A, Mancinelli R, Fulle S (2017) Dental pulp stem cells grown on dental implant titanium surfaces: an in vitro evaluation of differentiation and micro RNA s expression. J Biomed Mater Res B Appl Biomater 105:953–965PubMedCrossRef Iaculli F, Di Filippo ES, Piattelli A, Mancinelli R, Fulle S (2017) Dental pulp stem cells grown on dental implant titanium surfaces: an in vitro evaluation of differentiation and micro RNA s expression. J Biomed Mater Res B Appl Biomater 105:953–965PubMedCrossRef
28.
Zurück zum Zitat Galli C, Macaluso GM, Elezi E, Ravanetti F, Cacchioli A, Gualini G et al (2011) The effects of Er: YAG laser treatment on titanium surface profile and osteoblastic cell activity: an in vitro study. J Periodontol 82:1169–1177PubMedCrossRef Galli C, Macaluso GM, Elezi E, Ravanetti F, Cacchioli A, Gualini G et al (2011) The effects of Er: YAG laser treatment on titanium surface profile and osteoblastic cell activity: an in vitro study. J Periodontol 82:1169–1177PubMedCrossRef
29.
Zurück zum Zitat Wehner C, Laky M, Shokoohi-Tabrizi HA, Behm C, Moritz A, Rausch-Fan X et al (2021) Effects of Er: YAG laser irradiation of different titanium surfaces on osteoblast response. J Mater Sci Mater Med 32:1–10CrossRef Wehner C, Laky M, Shokoohi-Tabrizi HA, Behm C, Moritz A, Rausch-Fan X et al (2021) Effects of Er: YAG laser irradiation of different titanium surfaces on osteoblast response. J Mater Sci Mater Med 32:1–10CrossRef
30.
Zurück zum Zitat Bader C, Krejci I (2006) Indications and limitations of Er: YAG laser applications in dentistry. Am J Dent 19:178–186PubMed Bader C, Krejci I (2006) Indications and limitations of Er: YAG laser applications in dentistry. Am J Dent 19:178–186PubMed
31.
Zurück zum Zitat Schwarz F, Ferrari D, Popovski K, Hartig B, Becker J (2009) Influence of different air-abrasive powders on cell viability at biologically contaminated titanium dental implants surfaces. J Biomed Mater Res B Appl Biomater 88:83–91PubMedCrossRef Schwarz F, Ferrari D, Popovski K, Hartig B, Becker J (2009) Influence of different air-abrasive powders on cell viability at biologically contaminated titanium dental implants surfaces. J Biomed Mater Res B Appl Biomater 88:83–91PubMedCrossRef
32.
Zurück zum Zitat Ganjibakhsh M, Shahzadeh FA, Gohari NS, Rahmati H, Elyasi GZ, Izadpanah M et al (2017) Isolation, characterization and standard storage of human mesenchymal stem cell derived from adipose and dental pulp tissue. Razi J Med Sci 24:35–50 Ganjibakhsh M, Shahzadeh FA, Gohari NS, Rahmati H, Elyasi GZ, Izadpanah M et al (2017) Isolation, characterization and standard storage of human mesenchymal stem cell derived from adipose and dental pulp tissue. Razi J Med Sci 24:35–50
33.
Zurück zum Zitat Eggerschwiler B, Canepa DD, Pape H-C, Casanova EA, Cinelli P (2019) Automated digital image quantification of histological staining for the analysis of the trilineage differentiation potential of mesenchymal stem cells. Stem Cell Res Ther 10:1–10CrossRef Eggerschwiler B, Canepa DD, Pape H-C, Casanova EA, Cinelli P (2019) Automated digital image quantification of histological staining for the analysis of the trilineage differentiation potential of mesenchymal stem cells. Stem Cell Res Ther 10:1–10CrossRef
34.
Zurück zum Zitat Kamel MS, Khosa A, Tawse-Smith A, Leichter J (2014) The use of laser therapy for dental implant surface decontamination: a narrative review of in vitro studies. Lasers Med Sci 29:1977–1985PubMedCrossRef Kamel MS, Khosa A, Tawse-Smith A, Leichter J (2014) The use of laser therapy for dental implant surface decontamination: a narrative review of in vitro studies. Lasers Med Sci 29:1977–1985PubMedCrossRef
35.
Zurück zum Zitat Kreisler M, Götz H, Duschner H, d’Hoedt B (2002) Effect of Nd: YAG, Ho: YAG, Er: YAG, CO 2, and GaAlAs laser irradiation on surface properties of endosseous dental implants. Int J Oral Maxillofac Implants 17:202–211PubMed Kreisler M, Götz H, Duschner H, d’Hoedt B (2002) Effect of Nd: YAG, Ho: YAG, Er: YAG, CO 2, and GaAlAs laser irradiation on surface properties of endosseous dental implants. Int J Oral Maxillofac Implants 17:202–211PubMed
36.
Zurück zum Zitat Wei MC, Tran C, Meredith N, Walsh LJ (2017) Effectiveness of implant surface debridement using particle beams at differing air pressures. Clin Exp Dent Res 3:148–153PubMedPubMedCentralCrossRef Wei MC, Tran C, Meredith N, Walsh LJ (2017) Effectiveness of implant surface debridement using particle beams at differing air pressures. Clin Exp Dent Res 3:148–153PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Buddula A (2013) Bacteria and dental implants: a review. J Dent Implant 3:58CrossRef Buddula A (2013) Bacteria and dental implants: a review. J Dent Implant 3:58CrossRef
38.
Zurück zum Zitat Ardila M, Villa-Correa YA (2015) Gram-negative enteric rods associated to early implant failure and peri-implantitis: case report and systematic literature review. Int J Odontostomat 9:329–336CrossRef Ardila M, Villa-Correa YA (2015) Gram-negative enteric rods associated to early implant failure and peri-implantitis: case report and systematic literature review. Int J Odontostomat 9:329–336CrossRef
39.
Zurück zum Zitat Alshammari H, Neilands J, Svensäter G, Stavropoulos A (2021) Antimicrobial potential of strontium hydroxide on bacteria associated with peri-implantitis. Antibiotics 10:150PubMedPubMedCentralCrossRef Alshammari H, Neilands J, Svensäter G, Stavropoulos A (2021) Antimicrobial potential of strontium hydroxide on bacteria associated with peri-implantitis. Antibiotics 10:150PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Kuo H-N, Mei H-I, Liu T-K, Liu T-Y, Lo L-J, Lin C-L (2017) In vitro laser treatment platform construction with dental implant thread surface on bacterial adhesion for peri-implantitis. Biomed Res Int 2017:4732302PubMedPubMedCentralCrossRef Kuo H-N, Mei H-I, Liu T-K, Liu T-Y, Lo L-J, Lin C-L (2017) In vitro laser treatment platform construction with dental implant thread surface on bacterial adhesion for peri-implantitis. Biomed Res Int 2017:4732302PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Stanko P, Kaiserova K, Altanerova V, Altaner C (2014) Comparison of human mesenchymal stem cells derived from dental pulp, bone marrow, adipose tissue, and umbilical cord tissue by gene expression. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 158:373–377PubMedCrossRef Stanko P, Kaiserova K, Altanerova V, Altaner C (2014) Comparison of human mesenchymal stem cells derived from dental pulp, bone marrow, adipose tissue, and umbilical cord tissue by gene expression. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 158:373–377PubMedCrossRef
43.
Zurück zum Zitat Li B, Jin Y (2015) Periodontal tissue engineering: current approaches and future therapies. Stem Cell Biology and Tissue Engineering in Dental Sciences. Elsevier, Amsterdam, pp 471–482 Li B, Jin Y (2015) Periodontal tissue engineering: current approaches and future therapies. Stem Cell Biology and Tissue Engineering in Dental Sciences. Elsevier, Amsterdam, pp 471–482
44.
Zurück zum Zitat Manivasagam G, Reddy A, Sen D, Nayak S, Mathew MT, Rajamanikam A (2019) Dentistry: restorative and regenerative approaches. Elsevier, Amsterdam, pp 342–337 Manivasagam G, Reddy A, Sen D, Nayak S, Mathew MT, Rajamanikam A (2019) Dentistry: restorative and regenerative approaches. Elsevier, Amsterdam, pp 342–337
45.
Zurück zum Zitat Luo L, He Y, Wang X, Key B, Lee BH, Li H et al (2018) Potential roles of dental pulp stem cells in neural regeneration and repair. Stem Cells Int 2018:1731289PubMedPubMedCentralCrossRef Luo L, He Y, Wang X, Key B, Lee BH, Li H et al (2018) Potential roles of dental pulp stem cells in neural regeneration and repair. Stem Cells Int 2018:1731289PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Ayobian-Markazi N, Karimi M, Safar-Hajhosseini A (2015) Effects of Er: YAG laser irradiation on wettability, surface roughness, and biocompatibility of SLA titanium surfaces: an in vitro study. Lasers Med Sci 30:561–566PubMedCrossRef Ayobian-Markazi N, Karimi M, Safar-Hajhosseini A (2015) Effects of Er: YAG laser irradiation on wettability, surface roughness, and biocompatibility of SLA titanium surfaces: an in vitro study. Lasers Med Sci 30:561–566PubMedCrossRef
47.
Zurück zum Zitat Golub EE, Boesze-Battaglia K (2007) The role of alkaline phosphatase in mineralization. Curr Opin Orthop 18:444–448CrossRef Golub EE, Boesze-Battaglia K (2007) The role of alkaline phosphatase in mineralization. Curr Opin Orthop 18:444–448CrossRef
48.
Zurück zum Zitat Jafary F, Hanachi P, Gorjipour K (2017) Osteoblast differentiation on collagen scaffold with immobilized alkaline phosphatase. Int J Organ Transplant Med 8:195–202PubMedPubMedCentral Jafary F, Hanachi P, Gorjipour K (2017) Osteoblast differentiation on collagen scaffold with immobilized alkaline phosphatase. Int J Organ Transplant Med 8:195–202PubMedPubMedCentral
49.
Zurück zum Zitat Lai HC, Zhuang LF, Liu X, Wieland M, Zhang ZY, Zhang ZY (2010) The influence of surface energy on early adherent events of osteoblast on titanium substrates. J Biomed Mater Res A 93:289–296PubMed Lai HC, Zhuang LF, Liu X, Wieland M, Zhang ZY, Zhang ZY (2010) The influence of surface energy on early adherent events of osteoblast on titanium substrates. J Biomed Mater Res A 93:289–296PubMed
50.
Zurück zum Zitat Qu Z, Rausch-Fan X, Wieland M, Matejka M, Schedle A (2007) The initial attachment and subsequent behavior regulation of osteoblasts by dental implant surface modification. J Biomed Mater Res A 82:658–668PubMedCrossRef Qu Z, Rausch-Fan X, Wieland M, Matejka M, Schedle A (2007) The initial attachment and subsequent behavior regulation of osteoblasts by dental implant surface modification. J Biomed Mater Res A 82:658–668PubMedCrossRef
Metadaten
Titel
A comparison of human dental pulp stem cell activity cultured on sandblasted titanium discs decontaminated with Er:YAG laser and air-powder abrasion: an in vitro study
verfasst von
Mahdi Kadkhodazadeh
Reza Amid
Maedeh Gilvari Sarshari
Massoud Mojahedi
Ardavan Parhizkar
Publikationsdatum
30.07.2022
Verlag
Springer London
Erschienen in
Lasers in Medical Science / Ausgabe 8/2022
Print ISSN: 0268-8921
Elektronische ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-022-03615-y

Weitere Artikel der Ausgabe 8/2022

Lasers in Medical Science 8/2022 Zur Ausgabe