Skip to main content
Erschienen in: Cardiovascular Ultrasound 1/2020

Open Access 01.12.2020 | Review

A review of current trends in three-dimensional analysis of left ventricular myocardial strain

verfasst von: Yosuke Nabeshima, Yoshihiro Seo, Masaaki Takeuchi

Erschienen in: Cardiovascular Ultrasound | Ausgabe 1/2020

Abstract

Three-dimensional (3D) left ventricular (LV) myocardial strain measurements using transthoracic 3D echocardiography speckle tracking analysis have several advantages over two-dimensional (2D) LV strain measurements, because 3D strain values are derived from the entire LV myocardium, yielding more accurate estimates of global and regional LV function. In this review article, we summarize the current status of 3D LV myocardial strain. Specifically, we describe how 3D LV strain analysis is performed. Next, we compare characteristics of 2D and 3D strain, and we explain validation of 3D strain measurements, feasibility and measurement differences between 2D and 3D strain, reference values of 3D strain, and its applications in several clinical scenarios. In some parts of this review, we used a meta-analysis to draw reliable conclusions. We also describe the added value of 3D over 2D strain in several specific pathologies and prognoses. Finally, we discuss novel techniques using 3D strain and suggest its future directions.
Hinweise

Supplementary information

Supplementary information accompanies this paper at https://​doi.​org/​10.​1186/​s12947-020-00204-3.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
2D
Two-dimensional
3D
Three-dimensional
2DE
Two-dimensional echocardiography
3DE
Three-dimensional echocardiography
CRT
Cardiac resynchronization therapy
CTCA
Computed tomography coronary angiography
EACVI
European Association of Cardiovascular Imaging
FFR
Fractional flow reserve
GAS
Global area strain
GCS
Global circumferential strain
GLS
Global longitudinal strain
GRS
Global radial strain
LLN
Lower limit normal
LGE
Late gadolinium enhancement
LV
Left ventricular
LVEF
Left ventricular ejection fraction
LVH
Left ventricular hypertrophy
ROI
Region of interest

Introduction

During the last two decades, two-dimensional (2D) myocardial strain measurements from 2D echocardiography (2DE) speckle tracking analysis have become an established technique for quantifying left and right heart chamber function. Their usefulness has been validated to 1) detect subtle heart chamber dysfunction [13], 2) evaluate the extent and severity of heart disease [13], and 3) predict future outcomes in various cardiovascular pathologies [2]. All ultrasound vendors now have their own proprietary 2DE speckle tracking analytical software for the left ventricle, and some vendors have launched fully automated 2D strain analytical software employing artificial intelligence. Since the left ventricular (LV) myocardium consists of three different myocardial layers that contract in different directions simultaneously, accurate assessment requires three-dimensional (3D) analysis. Three-dimensional echocardiography (3DE) datasets with 3D speckle tracking analytical software have made it possible to perform clinical 3D strain analysis during the last decade [35]. 3D strain software offered by most ultrasound companies is designed to measure LV myocardial strain; thus, this review manuscript focuses only on 3D LV strain. For simplicity, strain values in each direction are presented as absolute values in the text, figures, and tables.

3D strain analysis

3D strain analysis starts by generating a region of interest (ROI), followed by segmentation of the left ventricle into a 16- or 17-segment model. The size of the ROI differs among 3D strain analytical software packages (LV subendocardial myocardium or the entire LV myocardium). Moreover, some software uses a library of various LV shapes from a large volume of patient data, and selects an appropriate LV shape to generate an ROI in each case (artificial intelligence). While 2D speckle tracking analysis pursues areas that contain specific natural acoustic markers, frame by frame within the ROI (pattern matching), 3D speckle tracking analysis tracks cubes with specific 3D patterns of acoustic markers within the ROI (block matching) to calculate global and regional 3D strain components (Fig. 1). Since the endocardial border is tracked throughout the cardiac cycle, the software also provides time domain LV volume curves from which the LV ejection fraction (LVEF) is calculated. In addition to longitudinal strain, circumferential strain, and radial strain, 3D strain software provides new deformation parameters, such as area strain and principal strain (Figs. 1, 2, 3 and 4). Area strain is determined as the percentage decrease in the size of endocardial (or mid-myocardial) surface area, defined by vectors of longitudinal and circumferential deformation at end-systole from its original area at end-diastole [6]. Principal strain represents the major direction and magnitude of the deformation in which no shear strain occurs. It reflects longitudinal, circumferential, and torsional deformation; therefore, it can represent dynamic 3D movements of the left ventricle [7].
It is important to note that each software system has its own proprietary tracking algorithm, with different analytical approaches. Although strain values should be 0 at the start and end of the cardiac cycle, this does not always happen in regional speckle tracking analysis. Some software rejects regional strain values if drift exceeds a certain level, but other vendors use drift compensation to force strain values to 0 at the end of the cardiac cycle. Radial strain is calculated as a change in transmural wall thickness during a cardiac cycle. Since the myocardium is incompressible, some vendors estimate radial strain from segmental area changes, assuming volume conservation [6]. Strain values may be represented as end-systolic strain or peak strain. These differences result in inter-vendor variability of 3D strain values that are significant, even when 3DE images are acquired from the same subjects [8].

Characteristics of 2D and 3D strain

2D strain requires acquisition of multiple 2DE images, including three short-axis views to measure global circumferential strain (GCS) and global radial strain (GRS), and three apical views to measure global longitudinal strain (GLS), resulting in longer data acquisition times. For analysis of all strain components by 2DE, adequate quality of both parasternal and apical images is necessary. However, temporal and spatial resolution are higher, and feasibility is usually high. There have been several validation studies, and normal 2D global strain values have been reported from various large-scale studies [912]. Since 2D strain analysis is performed on a fixed 2DE cutting plane, some speckles or features may be lost in the 2DE imaging plane during a cardiac cycle, due to out-of-plane or twisting motion of the left ventricle [13].
In contrast, only a single apical acquisition is required for 3D strain analysis, resulting in shorter acquisition times and the opportunity to measure all 3D strain components from a single cardiac cycle. 3D strain measurements are not impacted by out-of-plane and twisting motion. However, 3D strain suffers from lower temporal and spatial resolution, which adversely affects tracking reliability. Multi-beat acquisition sometimes produces a stitching artifact between sub-volumes, which results in inaccurate speckle tracking analysis.

Validation of 3D strain

Reliability and accuracy of 3D strain measurements have been validated in several studies (Table 1) [1418]. First, the accuracy of regional longitudinal, circumferential, and radial strain measurements was determined in experimental studies under different loading conditions, using sonomicrometry data as a reference [14]. There is good agreement between 3D regional strain measurements and corresponding values acquired using sonomicrometry. The best results have been observed in circumferential strain. The same authors subsequently reported that endocardial area strain correlated strongly with sonomicrometry data [15]. Area strain values differed significantly with baseline, pharmacologic stress, and acute ischemia, whereas there were no differences in longitudinal and circumferential strains at baseline or with propranolol infusion or dobutamine infusion, indicating that area strain is a more sensitive parameter than longitudinal or circumferential strain for detecting subtle changes in LV deformation. Other authors applied 3D strain analysis in humans to validate its accuracy. However, it is important to note that there is no true “gold standard” for 3D myocardial mechanics [19]. Instead they employed surrogates, such as cardiac magnetic resonance myocardial tagging [16], feature tracking [18], or 2DE/3DE-derived LVEF [17].
Table 1
Validation studies for 3D strain
Experimental studies
Author Year (Ref.#)
Vendor
Materials
Reference
3D regional LS
3D regional CS
3D regional RS
3D regional AS
 Seo 2009 [14]
Toshiba
Sheep
Sonomicrometry
r = 0.89
p < 0.001
r = 0.90
p < 0.001
r = 0.84
p < 0.001
NA
 Seo 2011 [15]
Toshiba
Sheep
Sonomicrometry
NA
NA
NA
r = 0.87
p < 0.001
Human studies
Author Year (Ref.#)
Vendor
Subjects
Reference
3D GLS
3D GCS
3D GRS
3D GAS
2D GLS
2D GCS
2D GRS
 Kleijn 2012 [16]
Toshiba
Volunteer
CMR tagging
NA
r = 0.80
p: NA
NA
NA
NA
NA
NA
 Luis 2014 [17]
GE
Patient
2D LVEF
r = 0.74
p < 0.001
r = 0.89
p < 0.001
r = 0.86
p < 0.001
r = 0.87
p < 0.001
r = 0.86
p < 0.001
r = 0.82
p < 0.001
r = 0.67
p < 0.001
 Luis 2014 [17]
GE
Patient
3D LVEF
r = 0.75
p < 0.001
r = 0.89
p < 0.001
r = 0.87
p < 0.001
r = 0.88
p < 0.001
r = 0.86
p < 0.001
r = 0.84
p < 0.001
r = 0.64
p < 0.001
 Obokata 2016 [18]
TomTec
Patient
CMR feature tracking
r = 0.87
p < 0.001
r = 0.88
p < 0.001
r = 0.82
p < 0.001
NA
r = 0.83
p < 0.001
r = 0.90
p < 0.001
r = 0.69
p < 0.001
AS area strain, CMR cardiac magnetic resonance, CS circumferential strain, GAS global area strain, GCS global circumferential strain, GLS global longitudinal strain, GRS global radial strain, LS longitudinal strain, LVEF left ventricular ejection fraction, NA not available, RS radial strain

Feasibility of 3D strain

The main impediment to acceptance of 3D strain is the lack of proof that it is truly superior to 2D strain for clinical use, beyond its theoretical advantages, resulting in its use mainly for research. A recent European Association of Cardiovascular Imaging (EACVI) survey from 96 echo laboratories in 22 European countries revealed that only 32% of European laboratories routinely use transthoracic 3DE, mainly due to limitations in image quality and operator dependency [20]. We performed a meta-analysis concerning the feasibility of 2D and 3D GLS in studies with sample sizes > 100 patients [2129]. Feasibility of 3D GLS was 85% (95% confidence interval (CI): 79 to 89%). Corresponding values of 2D GLS were 91% (95% CI: 88 to 93%). If we compared feasibility of 3D GLS among different ethnicities, values were 91% (95% CI: 84 to 95%) in Asians, 81% (95% CI: 71 to 88%) in Europeans, and 73% (95% CI: 65 to 80%) in American patients. These results showed that feasibility of 3D GLS is lower than that of 2D GLS, and that feasibility is better in Asian patients than in American or European patients. However, there could be a selection bias, since some studies only selected patients with adequate 2DE image quality [2325], and patients with poor 2DE image quality (the authors did not mention the number of these patients in the manuscripts) were excluded before strain analysis. Thus, actual feasibility of 2D/3D strain in consecutive series of patients could be much lower than the observed results. All published studies came from echocardiographic laboratories where physicians and sonographers were thoroughly familiar with 3DE data acquisition and analysis. Thus, the results may not be generally applicable.

Direct comparisons of 2D and 3D strain values

We performed a meta-analysis to compare global 2D and 3D strain values using the same ultrasound vendor’s 2D and 3D strain software. We selected only publications in which 2D GCS/GRS were measured using three short-axis views, and 2D GLS was measured with three apical views. We found 3846 paired comparisons of GLS between 2DE and 3DE in 36 publications using one of the three vendors (GE Healthcare, TomTec Imaging Systems, Toshiba Medical Systems) [13, 17, 18, 2123, 2528, 3055]. The mean value of 3D GLS was significantly lower than that of 2D GLS, with a mean bias of 1.4% (Fig. 5). The pooled mean value of 3D GLS for GE and Toshiba was significantly lower than that of 2D GLS. However, there were no significant differences when using TomTec software. Regarding GCS, there were no statistically significant differences between 3D GCS and 2D GCS in 1894 paired comparisons [13, 18, 23, 25, 26, 30, 3537, 4043, 48, 50, 56]. Vendor analysis showed that 3D GCS was significantly smaller than 2D GCS when GE analytical software was used, but 3D GCS was significantly larger than 2D GCS when we used Toshiba or TomTec software. Finally, there were no significant differences between 3D GRS and 2D GRS in 1778 paired comparisons from 14 studies [18, 23, 25, 26, 30, 36, 37, 4043, 48, 56, 57]. Although software from all three vendors yielded no differences in GRS between the two techniques, results in each publication showed different trends, such that 2D GRS was larger than 3D GRS in some studies [25, 26, 42, 43] and 2D GRS was smaller than 3D GRS in others [23, 36, 37, 41, 56]. These results showed that differences in global strain between 2DE and 3DE vary according to the ultrasound vendor. Thus, 2D and 3D strain are not interchangeable, and we need vendor-dependent reference values of 3D strain.

Reference values for 3D GLS

Truong et al. [58] recently performed meta-analysis to determine normal ranges of LV 3D GLS, 3D GCS, 3D GRS, and 3D GAS in 2346 subjects from 32 studies. The authors reported that the mean value of 3D GLS was 19.1%, ranging from 15.8 to 23.4% among the studies. However, the majority of selected studies had small sample sizes (n = 20–50), and the authors were forced to exclude one large study because median and interquartile range were presented in the manuscript, rather than means ± standard deviations [59]. When we searched publications in which at least 100 healthy subjects were evaluated, there were seven independent datasets from six publications (Table 2) [5964]. Overall, the mean value of 3D GLS was 18.1% (95% CI: 16.1 to 20.1%). Mean values of 3D GLS ranged from 15.2 to 21.0% among the studies, and if we defined the lower limit of normal (LLN) as the mean – 1.96SD, LLN ranged from 11.1 to 15.9%. The mean value of 3D GLS in male subjects (n = 696) was 18.4% (95% CI: 16.5 to 20.3%) in four studies that addressed gender-based strain analysis [59, 60, 62, 63]. The corresponding value in female subjects (n = 818) was 19.8% (95% CI: 17.7 to 21.8%). It is interesting that 3D GLS in female subjects was consistently and significantly higher than in male subjects, irrespective of the software used for the analysis, with a mean bias of 1.3% (95% CI: 0.9 to 1.7%). This finding suggests the need for establishment of gender-dependent reference values. Finally, as in a previous 2D GLS study [12], there were inter-vendor differences in 3D GLS reference values. The lowest values were observed when Toshiba software (15.4 ± 1.4%, n = 634) was used, followed by GE software (18.7 ± 2.6%, n = 265). The highest values were obtained with TomTec software (20.6 ± 3.0%, n = 946). This is partly because ultrasound vendors use different ROIs for speckle tracking (both TomTec and Toshiba software use subendocardial tracking [14], but GE software uses full myocardial tracking). Different 3D dataset characteristics in each vendor is another cause of discrepancy [65]. The World Alliance Societies of Echocardiography Normal Values Study plans to address whether racial differences in 3D strain are observed [11].
Table 2
Reference range of 3D global longitudinal strain from six large studies
Author year
(Ref.#)
n
Race
Vendor
Tracking
Mean ± SD
LLN (Overall)
(mean-1.96SD)
Mean ± SD
male
Mean ± SD
female
P (male vs. female)
LLN (Male)
(mean-1.96SD)
LLN (Female)
(mean-1.96SD)
Kaku 2014 [59]
241
Japanese/American
TomTec
Subendocardial
19.6 ± 3.1%
13.5%
18.7 ± 2.8%
20.6 ± 3.1%
< 0.001
13.2%
14.5%
Xia 2014 [60]
153
Chinese
Toshiba
Full myocardial
15.2 ± 0.8%
13.6%
NA
NA
NA
NA
NA
Muraru 2014 [58]
265
European
GE
Full myocardial
18.7 ± 2.6%
13.5%
17.8 ± 2.4%
19.4 ± 2.6%
< 0.001
13.0%
14.2%
Muraru 2014 [58]
265
European
TomTec
Subendocardial
20.4 ± 3.8%
12.8%
19.5 ± 3.8%
21.1 ± 3.6%
< 0.001
11.9%
13.9%
Kleijn 2015 [61]
303
European/American
Toshiba
Full myocardial
15.9 ± 2.4%
11.2%
15.5 ± 2.4%
16.3 ± 2.3%
0.003
10.8%
11.8%
Bernard 2017 [62]
440
European
TomTec
Subendocardial
21.0 ± 2.6%
15.9%
20.4 ± 2.7%
21.4 ± 2.4%
< 0.001
15.1%
16.7%
Kovacs 2019 [63]
178
European
Toshiba
Full myocardial
16.1 ± 2.5%
11.1%
NA
NA
NA
NA
NA
LLN lower limit of normal, NA not available, SD standard deviation
Other abbreviations are the same in Table 1

Clinical applications of 3D strain

Since clinical applications of 3D strain are still limited, we focus here on its usefulness in several clinical scenarios.

Ischemic heart disease

Even in patients who had received successful primary percutaneous coronary intervention after acute myocardial infarction, when LV adverse remodeling occurs, it is associated with poor outcomes; thus, for reliable, accurate assessment, it is of paramount importance to stratify high risk patients after the intervention. Infarct size negatively affects LV function; thus, it is a major determinant of LV adverse remodeling. 2D and 3D deformation parameters, which reflect regional and global LV function, may reliably evaluate infarct size and transmural extent of myocardial infarction. Several studies have demonstrated the clinical usefulness of 3D strain analysis in patients with acute or recent myocardial infarction, who underwent primary percutaneous coronary intervention [28, 31, 34, 50, 6670]. Some studies addressed the utility of 3D strain for predicting LV adverse remodeling (defined as an increase in LV end-diastolic volume ≥ 15% or 20%) or LV functional recovery (defined as an improvement ≥5% of LVEF) during the chronic phase (Table 3) [28, 31, 34, 50, 6669]. 3D global strain analysis was possible in > 80% of study subjects. All studies revealed that 3D global strain, especially 3D GLS and 3D GAS, predict LV adverse remodeling with moderate accuracy (57 to 75%). Only one study compared predictive values of 2D and 3D global strain. It showed that 3D GLS was a significantly better predictor of LV adverse remodeling than 2D GLS, 3D GAS, or 3D GRS [28].
Table 3
Usefulness of 3D strain in patients with myocardial infarction
Author Year (Ref.#)
n
Patients
Vendor
Feasibility
Remarks
LV remodeling
 Abate 2012 [64]
153
Acute STEMI
GE
96% (patients)
1) Regional 3D LS of 11.1% had a > 90% sensitivity and specificity for predicting improvement of LV regional function.
2) 3D GLS had an incremental value over clinical and standard echocardiography parameters for predicting improvement of LVEF (> 5%).
 Li 2012 [65]
61
Recent NSTEMI
Toshiba
80% (patients)
1) Regional AS > 23% at baseline had a 75% sensitivity and a 76% specificity for predicting improvement of LV regional function.
2) 3D GAS ≤32% after PCI predicted LV adverse remodeling with 86% sensitivity and 68% specificity.
 Sugano 2017 [49]
71
Acute STEMI
Toshiba
96% (patients)
1) 3D GCS < 23% had an 84% sensitivity and a 74% specificity for predicting LV adverse remodeling.
2) 3D GAS < 31% had an 84% sensitivity and a 58% specificity for predicting LV adverse remodeling.
 Xu 2017 [27]
110
Acute STEMI
GE
91% (patients)
1) 2D GLS, 3D GLS, 3D GAS, and 3D GRS were independent predictors of LV adverse remodeling.
2) 3D GLS < 12.6% had a 92% sensitivity and a 60% specificity for predicting LV adverse remodeling.
3) 3D GAS < 24.2% had a 92% sensitivity and a 46% specificity for predicting LV adverse remodeling.
4) AUC of 3D GLS (0.82) was significantly higher than that of 2D GLS (0.72), 3D GAS (0.68) and 3D GRS (0.68) for predicting LV adverse remodeling.
Transmurality of MI
 Hayat 2012 [30]
25
OMI
Toshiba
76% (patients) 96% (segments)
1) 2D LS and CS and all 3D regional strains were significantly different among segments derived from control subjects, those with non-transmural MI, and those with transmural MI.
 Thorstensen 2013 [33]
58
RMI
GE
62% (patients)
71% (segments)
1) All 3D regional strains were significantly different among segments with no MI, those with non-transmural MI, and those with transmural MI.
2) All 3D regional strains predicted transmural MI (AUC: 0.73–0.87).
3) 2D GLS had a higher AUC (0.88) for the prediction of transmural MI than 3DGLS (0.73, p < 0.05).
 Zhu 2014 [66]
26
AMI
Toshiba
Not described
1. Regional 3D LS and 3D CS discriminated among segments with no MI, those with non-transmural MI, and those with transmural MI.
 Aly 2016 [67]
82
LV dysfunction
Toshiba
88% (segments)
1. Regional 3D CS and 3D AS discriminated among segments with no MI, those with non-transmural MI, and those with transmural MI.
2. Regional 3D LS discriminated between segments with non-transmural MI and those with transmural MI.
3. Included 11 patients with non-ischemic LV dysfunction.
 Sugano 2017 [49]
71
Acute STEMI
Toshiba
95% (segments)
1. Regional 2D CS, 3D CS, and 3D AS discriminated among segments with no MI, those with non-transmural MI, and those with transmural MI.
2. Regional 2D LS failed to differentiate between non-transmural MI and transmural MI. 3D LS failed to differentiate between no MI and non-transmural MI.
Infarct size
Author Year (Ref.#)
n
Patients
Vendor
Correlation of infarction size
remarks
2D GLS
3D GLS
3D GCS
3D GRS
3DS
3D AS
 
 Hayat 2012 [30]
25
OMI
Toshiba
NA
r = 0.45
r = 0.47
r = 0.07
r = 0.10
r = 0.49
 
 Thorstensen 2013 [33]
58
RMI
GE
r = 0.67
r = 0.42
r = 0.47
r = 0.48
r = 0.52
r = 0.50
2DGLS was more closely correlated with infarct size than 3DGLS.
 Zhu 2014 [66]
26
AMI
Toshiba
NA
r = 0.86
r = 0.81
r = 0.71
NA
NA
 
 Aly 2016 [67]
71
ICM
Toshiba
NA
r = 0.29
r = 0.32
r = 0.08
r = 0.29
r = 0.39
 
AMI acute myocardial infarction, AUC area under the curve, AS area strain, CS circumferential strain, LS longitudinal strain, GAS global area strain, GCS global circumferential strain, GLS global longitudinal strain, GRS global radial strain, MI myocardial infarction, NA not available, OMI old myocardial infraction, RMI recent myocardial infraction, STEMI ST elevation myocardial infarction
Since endocardial fibers are oriented longitudinally, and mid-myocardial fibers run circumferentially, preferential reduction of longitudinal strain and preserved circumferential strain could reflect the presence of subendocardial myocardial infarction, and reduction of both longitudinal and circumferential strains may represent transmural myocardial infarction. Other studies investigated the diagnostic value of 3D strain measurements for evaluating the transmurality of infarction, which was verified using cardiac magnetic resonance with late gadolinium enhancement (LGE) (subendocardial infarction, 0% to ≤50%; transmural infarction, > 50% of the transmural extent of LGE) [31, 34, 50, 68, 69]. In contrast to the aforementioned theory, all 3D regional strain measurements differed significantly among segments with no myocardial infarction, segments with non-transmural infarction, and segments with transmural infarction. In addition, none of the studies unequivocally demonstrated that 3D regional strain is superior to 2D regional strain for evaluating transmurality of myocardial infarction.
The potential utility of 3D strain to determine myocardial infarct size has been also reported [31, 34, 68, 69]. Overall, there were modest correlations between 3D GLS/ 3D GCS and infarct size assessed by LGE using cardiac magnetic resonance imaging. A meta-analysis revealed that the r value for the correlation between 3D GLS and the percentage of myocardial infarction size in four studies [31, 34, 68, 69] was only 0.55 (95% CI: 0.19 to 0.78) with notable heterogeneity [70]. Pooled r values further decreased to 0.38 (95% CI: 0.22 to 0.54) when one study that was a potential cause of heterogeneity was excluded from the analysis.
These results suggest that 3D global strain analysis may be useful to predict LV adverse remodeling. However, their diagnostic accuracy is modest at best. 3D regional strain measurement is not sufficiently sensitive to discriminate between subendocardial infarction and transmural infarction. 3D global strain values are not useful to determine infarct size. There are also no consistent findings to suggest that 3D strain is more useful than 2D strain. Further large-scale studies are required to determine whether 3D strain has some added value over 2D strain for evaluating patients with myocardial infarction after coronary intervention.

Cardio-oncology

As the development of tumor-targeted anticancer drugs allows cancer patients to live longer, cancer therapy-related cardiac dysfunction and/or heart failure is becoming a major issue [71]. Although cardiac dysfunction in patients undergoing cancer treatment is complex with respect to treatment regimen, cardiotoxic anticancer drugs, age, and comorbidities, detection of subclinical myocardial dysfunction facilitates timely intervention and reduces the risk of adverse outcomes. 2D strain has proven useful to detect subclinical LV dysfunction in cancer patients [72]. Several studies have attempted to determine the clinical usefulness of 3D strain in cancer patients who had been treated with cardiotoxic anticancer drugs [27, 40, 54, 7376]. All but one study showed a significant reduction of 3D global strain during and after cardiotoxic anticancer drugs, compared with baseline (Table 4). A significant reduction of 3D global strain was already observed at a timepoint when 2D LVEF and/or 2D global strains were still normal in some studies [73, 74]. Another study revealed that 3D LVEF and 3D global strains were associated with concurrent and subsequent changes in 2D LVEF [75]. However, there were no consistent findings that a specific 3D strain component is most robust for detecting subtle LV dysfunction. There were also very few articles that validated added value of 3D strain over 2D strain for predicting LV dysfunction [75]. Thus, 3D strain can predict subclinical LV dysfunction, but data were insufficient to conclude whether 3D strain is better than 2D strain.
Table 4
Summary of studies using 3D strain in cancer patients who had received cardiotoxic drugs
Author Year (Ref.#)
Type of cancer
n
Treatment
Echo timing
Feasibility
CTRCD
(%)
Pre-echo
Post-echo
Remarks
Mornos 2014 [71]
various
79
Anthracycline (100%)
Before and at 12 and 36 weeks
3D STE: 75%
14%
3D GLS: 19.4 ± 2.3%
3D GCS: 21.4 ± 1.7%
3D GRS: 42.4 ± 5.3%
17.5 ± 2.4%*
20.9 ± 1.7%
37.6 ± 5.4%*
Δ3D GLS was an independent predictor for future CTRCD. Δ3D GLS of 13.7% had an 88% sensitivity and a 71% specificity for CTRCD.
Tarr 2015 [39]
various
25
Anthracycline (28%)
Before and 3 months
2D STE: 100%
3D STE: 100%
NA
2D GLS: 15.0 ± 4.2%
2D GRS: 28.0 ± 10.6%
3D GLS: 13.0 ± 2.6%
3D GCS: 21.0 ± 4.5%
3D GRS: 28.0 ± 12.8%
14.0 ± 4.6%*
21.0 ± 11.5%*
12.0 ± 2.2%
22.0 ± 4.7%
26.0 ± 14.5%
3D global strains did not show a significant decrease after therapy.
Santoro 2017 [26]
breast
100
Anthracycline (100%)
Before and at 4 months
2D STE: 91% /90%
3D vol.: 88% /67%
3D STE: 84% /60%
NA
2D GLS: 22.2 ± 2.3%
3D LVEF: 62 ± 7%
3D GLS: 17.6 ± 3.2%
3D GCS: 16.8 ± 2.8%
3D GAS: 30.2 ± 4.5%
3D GRS: 47.4 ± 9.2%
20.1 ± 6.6%*
60 ± 7%*
16.2 ± 3.5%*
15.2 ± 2.9%*
27.5 ± 5.4%*
43.1 ± 10.7%
% reduction of 2D GLS > 15% was observed in 17 patients (17%).
3D-derived LVEF decreased < 50% in 4 out of 67 patients (6%).
Song 2017 [72]
lymphoma
89
Anthracycline (100%)
Before, at 3 weeks, and at the end of Tx.
2D STE: 93% /93%/93%
3D STE: 93% /93%/93%
NA
2D LVEF: 70 ± 3%
2D GLS: 21.5 ± 2.5%
3D GLS: 21.8 ± 2.9%
3D GCS: 29.9 ± 4.4%
69 ± 3%
20.7 ± 2.1%
27.5 ± 4.5%*
27.3 ± 5.0%*
2D GLS and LVEF did not change, but 3D GLS and 3D GCS were significantly reduced 3 weeks after therapy.
Zhang 2018 [73]
breast
142
Anthracycline (100%)
Trastuzumab (9%)
Before and annually
3D STE: 94%
NA
3D LVEF: 56.8%
3D GLS:16.8%
3D GCS: 27.3%
3D principal strain: 29.9%
51.5%*
15.3%*
24.2%*
26.0%*
3D LVEF, 3D GLS, 3D GCS, and 3D principal strain were associated with concurrent and subsequent changes in systolic function.
Chen 2019 [74]
breast
83
Anthracycline (100%)
Before, during, and after Tx.
3D STE:100%
NA
3D GLS 18.1 ± 2.2%
3D GCS 18.7 ± 2.6%
3D GAS 34.1 ± 2.8%
3D GRS 44.9 ± 5.2%
14.9 ± 2.5%*
15.7 ± 0.3%*
23.9 ± 2.6%*
43.3 ± 4.9%
There was a significant correlation between 3D GAS and the culminating dose of anthracycline (r = 0.77).
Cruz 2019 [53]
breast
105
Anthracycline (100%)
Trastuzumab (52%)
Before and during Tx.
2D STE: 100% (patients)/ 96% (segments)
3D STE: 100% (patients)/ 94% (segments)
23%
2D LVEF: 66 ± 8%
2D GLS: 21.1 ± 3.0%
3D LVEF: 62 ± 6%
3D GLS: 15.6 ± 3.4%
3D GCS: 14.0 ± 4.0%
3D GAS: 27.0 ± 8.5%
3D GRS: 42.0 ± 17.0%
58 ± 11%*
18.8 ± 3.1%*
54 ± 9%*
10.9 ± 4.1%*
11.0 ± 5.0%*
20.0 ± 9.0%*
28.5 ± 17.5%*
Percent reduction of 3D GCS (cut-off value of 34.2%) and that of 3D GRS (34.5%) predicted CTRCT with 70% diagnostic accuracy.
CTRCD, cancer therapy related cardiac dysfunction; STE, speckle tracking echocardiography; Tx., therapy
Other abbreviations are the same in Table 1
*p < 0.05 versus baseline
Acquisition of good-quality echocardiographic images is a potential concern in breast cancer patients because patients often receive mastectomies and radiation therapy of the chest. A meta-analysis from seven studies (Table 4) revealed that feasibility of 3D strain measurements before and after treatment were 93% (95% CI: 85 to 97%) and 92% (95% CI:80 to 97%), respectively. However, it is worth noting that patients with bad image quality were excluded in some studies [40, 54]. In this regard, the results from Santoro and colleagues may represent the current feasibility of 2D/3D strain measurements in prospectively enrolled breast cancer patients [27]. This study also showed that 2D GLS was better than 3D global strain for evaluating treatment course in breast cancer patients due to high feasibility and reasonable detection of subclinical LV dysfunction.
Only two studies investigated the prognostic value of 3D global strain to predict cancer therapy-related cardiac dysfunction and/or heart failure with moderate accuracy (70 and 73%) [54, 73]. Thus, further studies are required to verify whether 3D strain is better than 2D strain to predict outcomes. It is also necessary to investigate whether patient management guided by 3D LVEF and/or 3D strain is better than that guided by 2D LVEF and/or 2D strain to prevent heart failure in cancer patients.

Subclinical LV dysfunction

LV longitudinal functional impairment in patients with preserved LVEF is the first component that has been demonstrated using 2D strain analysis [1, 2]. 3D strain analysis has been performed to verify this concept in asymptomatic patients with normal LVEF who had comorbidities (hypertension, diabetes or collagen disease) [6, 36, 37, 44, 49, 52, 56, 77]. Pooled analysis revealed that both 2D and 3D GLS in patients were consistently and significantly depressed compared with control subjects (Supplementary Figure 1). Thus, both 2D and 3D strain can detect subclinical LV dysfunction.

Left ventricular hypertrophy

LV hypertrophy (LVH) has been associated with increased cardiovascular death and all causes of death, independent of traditional risk factors [78]. The potential usefulness of 3D strain in patients with LVH is summarized in Table 5 [39, 47, 53, 7983]. In patients with hypertension, Tadic et al. demonstrated that 2D and 3D global strain values differed among five types of LV geometry showing that the worst LV deformation parameters were observed in concentric LVH and dilated LVH, even after adjusting anthropometric and hemodynamic parameters [39].
Table 5
Summary of studies using 3D strain in patients with LV hypertrophy
Author Year (Ref #)
Type of disease
(number)
Purpose
Remarks
Baccouche 2012 [77]
CA (n = 12) / HCM (n = 12)
To differentiate two pathologies.
1) Basal LS, CS and RS were significantly reduced in patients with CA compared with HCM.
2) Regional strain values were irreversibly correlated with LGE, and the best correlation was observed between RS and LGE (r = −0.82)
Aly 2014 [78]
HCM mutation carriers (n = 23) / HCM (n = 28) / control (n = 29)
To detect early changes in myocardial mechanics in HCM mutations.
1) There were no significant differences in 3D global/regional strains between HCM mutations and control subjects.
2) 3D global/regional LS and AS were significantly impaired in HCM compared with HCM mutations.
3) 3D GCS and 3DGRS were not different between HCM and HCM mutations.
Tadic 2015 [38]
HT with normal LV geometry (n = 85) / concentric LV remodeling (n = 28) / eccentric nondilated LVH (42) / concentric LVH (n = 30) / dilated and concentric-dilated LVH (n = 12)
To investigate LV mechanics in HT with different geometric patterns
1) 2D and 3D global strains decreased normal geometry, followed by concentric remodeling, eccentric nondilated LVH, concentric LVH, dilated LVH and concentric dilated LVH.
2) Reduced 2D and 3D strains were associated with concentric and dilated LVH patterns independent of demographic and clinical parameters.
Urbano-Moral 2015 [79]
AL amyloidosis (n = 40)
To detect cardiac involvement.
1) 3D GLS and GCS were significantly lower in patients with cardiac involvement than those without.
2) Prominent reduction of LS/CS was observed in the basal myocardium.
Voilliot 2015 [80]
HCM (n = 40) / control (n = 53)
To assess impact of hypertrophy on strains.
Compared to control subjects,
1) 3D GLS, GAS, and GRS were significantly lower in HCM patients.
2) No significant differences in 3D GCS were noted.
3) 3D regional LS/AS was significantly depressed irrespective to the degree of hypertrophy.
4) 3D regional CS was higher in no or mildly hypertrophied segments.
Ternacle 2017 [52]
Athlete with moderate LVH (n = 25) / Athlete without LVH (n = 25) / HCM (n = 25) / control (n = 25)
To differentiate patients with HCM from athletes with moderate LVH.
1) 2D GLS and 3D GLS were significantly lower in HCM than athletes with moderate LVH.
2) 2D LV dyssynchrony index (SD of time to peak LS in 16 segment model) had a highest AUC for identifying HCM in the presence of moderate LVH.
3) 3D GCS was not different between the two groups.
Cho 2017 [46]
Severe AS with normal LVEF (≥ 55%, n = 45) / control (n = 18)
To evaluate early myocardial dysfunction
1) 2D GLS and 3D GLS were significantly impaired in severe AS patients with increased LV wall thickness compared with normal LV wall thickness.
2) 3D GCS, GAS, and GRS did not show any differences between the two groups.
Pradel 2019 [81]
AL amyloidosis (n = 58) / control (n = 21)
To detect LV dysfunction.
1) There were no significant differences in 3D LVEF and 3D global strains between Mayo Clinic Stage I AL amyloidosis and control subjects.
2) 3D LVEF and 3D global strains decreased according to the advanced Mayo Clinic stage.
AS aortic stenosis, CA cardiac amyloidosis, HCM hypertrophic cardiomyopathy, HT hypertension, LGE late gadolinium enhancement, LVH left ventricular hypertrophy, SD standard deviation
Other abbreviations are the same in Table 1
Both 3D GLS and GAS were consistently impaired irrespective of the severity of LVH, but 3D GCS was preserved or even enhanced in patients with hypertrophic cardiomyopathy [53, 80, 82]. These results indicate that preservation of 3D GCS may be a compensatory mechanism for maintaining LVEF.
3D strains are also reportedly impaired in patients with cardiac amyloidosis [79, 83]. Regional assessment of strain values has been reported in only one study [79]. Compared to hypertrophic cardiomyopathy, basal radial strain was remarkably reduced, but apical radial strain was preserved in patients with cardiac amyloidosis, and the findings were compatible to the apical sparing pattern observed using 2D longitudinal strain [84] (Fig. 6). Finally, there are still not enough data to validate whether 3D strain has added value over 2D strain in patients with LVH.

Valvular heart disease

3D strain has been assessed in patients with valvular heart disease [26, 41, 47, 8588]. Several authors analyzed 3D strain before and after transcatheter aortic valve replacement (TAVR) or MitraClip [41, 85, 87]. 2D and 3D GLS were significantly improved 6 months after TAVR in patients with severe aortic stenosis, and this beneficial trend was more obvious in patients whose baseline LVEF was more impaired, which reflects the presence of afterload mismatch [85]. All 3D global strains except 3D GRS were improved significantly 6 months after the MitraClip in patients with more than moderate mitral regurgitation [41]. The authors also noted that right ventricular dysfunction at baseline was associated with poor improvement of 3D global strains. The other study showed that 3D LV volumes, LVEF, and 2D GLS were not improved, but 3D GLS was improved 1 month after the MitraClip [87]. An impairment of 3D GLS with compensated augmentation of 3D GCS has been reported in asymptomatic patients with moderate or severe aortic regurgitation [88]. This compensating circumferential function could result in normal LVEF, a finding also reported in patients with hypertrophic cardiomyopathy [53, 80, 82].

Cardiac resynchronization therapy

Although echocardiographic assessment of LV mechanical dyssynchrony was expected to assist selection of optimal candidates for cardiac resynchronization therapy (CRT), because of the negative outcome of the PROSPECT trial, echocardiography was not recommended by current guidelines [89]. Several investigators have used 3D strain to evaluate LV dyssynchrony to predict CRT responders [9094]. The authors measured time from onset of the QRS complex to peak strain, and determined the earliest and latest activation sites or created a new dyssynchrony index. However, it should be noted that time to peak strain does not reflect time to onset of mechanical contraction.
Seo et al. developed an activation imaging system using 3D area strain analysis which sought to quantify time from the QRS complex to the onset of regional deformation, and its reliability and accuracy has been validated against 3D voltage-mapping systems [95]. Activation imaging allows detection of the earliest activation site, subsequent propagation sequence, and latest activation. The same authors also demonstrated that the presence of a U-shaped propagation pattern, which was characterized as activation propagated from the mid septum, followed by the apex to the lateral or posterior wall, had a sensitivity of 88% and a specificity of 95% for predicting CRT volume responder (≥15% reduction of LV end-systolic volume at 6 months after CRT) [96] (Fig. 7). A U-shaped propagation pattern was also associated with good outcomes after adjusting left bundle branch block or LV end-diastolic volume. Thus, activation imaging with 3D speckle tracking analysis has potential to visualize propagation of LV regional activation and to provide additional value for predicting outcomes in patients who are referred for CRT.

Prognostic value

Several studies investigated the prognostic value of 3D strain in myocardial infarction, hemodialysis, valvular heart disease, and a diverse variety of subjects [24, 26, 48, 86, 97100] (Table 6). These studies all showed that 3D global strains were impaired in patients who had cardiac events, and reduction of 3D global strains was associated with poor outcomes. Reduction of 2D and 3D strains was attributed to myocardial fibrosis or inflammation [101]. Three of eight studies directly compared prognostic values between 2D GLS and 3D GLS, and all three studies showed that 3D GLS had superior prognostic value over 2D GLS [26, 99, 100]. Further studies are needed to validate whether 3D GLS is distinctly superior to 2D GLS for predicting future outcomes in specific cardiovascular pathologies.
Table 6
Prognostic values of 3D strain
Author
Year
(Ref. #)
n
Etiology
2DSTE
3DSTE
Events
Remarks
Chang 2014 [23]
200
Diverse
Not described
Toshiba
HF hospitalization or CD
(n = 32)
1) All 3D global strains were associated with outcomes.
2) 3D GLS and 3D GRS had an incremental value over 3D LVEF.
Nagata 2015 [25]
104
Asymptomatic severe AS with preserved LVEF (> 50%)
TomTec
TomTec
MACE or AVR (n = 33)
1) 2D GLS, 3D GLS, and 3D GRS were associated with outcomes.
2) AUC of 3D GLS was significantly larger than that of 2D GLS and 3D GRS.
3) 3D GLS was an only significant predictor after adjusting LV mass index and mean PG.
Sun 2016 [96]
66
Hemodialysis
Not performed
TomTec
MACE (n = 23)
3D GLS and 3D GRS were associated with MACE.
Casaa-Rojo 2016 [84]
45
Asymptomatic severe MR with
Preserved LVEF (> 60%)
Not performed
Toshiba
MACE, LVEF< 60% or MV surgery (n = 15)
3D GLS, GAS, and GCS were associated with outcomes.
Shin 2016 [95]
96
Acute MI
Toshiba
Toshiba
MACE (n = 12)
3D GAS was associated with outcomes.
Howard-Quijano 2017 [47]
163
Cardiac surgery
GE
GE
MACE (n = 34)
All 3D global strains were associated with MACE.
Medvedofsky 2018 [97]
416
Diverse
Philips
TomTec
CV death (n = 114)
1) 2D/3D LVEF, 2D/3D GLS were significantly associated with outcomes.
2) 3D GLS was the strongest predictor for CV mortality.
Medvedofsky 2019 [98]
104
30–50% of 2D LVEF
Philips
TomTec
CV death (n = 32)
1) Not 2D LVEF/2D GLS and 3DLVEF but 3D GLS was associated with outcomes.
AUC area under the curve, AS aortic stenosis, AVR aortic valve replacement, CD cardiac death, CV cardiovascular, LV left ventricular, LVEF left ventricular ejection fraction, MACE major adverse cardiac event, MI myocardial infarction, MR mitral regurgitation, MV mitral valve, PG pressure gradient
Other abbreviations are the same in Table 1

Novel techniques

Multimodality imaging allows fusion imaging [102104]. Mor-Avi and colleagues performed fusion imaging using computed tomography coronary angiography (CTCA) and 3D longitudinal strain [103, 104]. Resting 3D regional longitudinal strain was color-coded to detect regional abnormalities in a 3D map. Stress CT perfusion was also color-coded to detect regional perfusion abnormalities. Fractional flow reserve (FFR) was also measured using CTCA. The presence of resting strain abnormalities had 71% sensitivity and 81% specificity for detecting > 50% stenosis in CTCA and stress-induced myocardial perfusion defects within specific coronary vascular beds. It had a sensitivity of 83% and a specificity of 81% for detecting stress-induced myocardial perfusion and FFR < 0.80. These results suggest that fusion imaging with 3D strain and CTCA provide valuable information to detect functionally significant coronary stenosis, even at rest. Additional large-scale studies are required to validate whether 3D regional longitudinal strain abnormalities at rest reflect solely reductions of coronary blood flow due to functionally significant coronary stenosis.

Future directions

Like the 2D strain standardization taskforce [105108], the American Society of Echocardiography/ EACVI and instrument partners should work together to identify causes of inter-vendor variability of 3D strain measurements with the objective of reducing it. Current 3D LV strain analysis is predominantly performed to evaluate global LV function. Segmental 3D strain abnormalities may represent specific pathologies. However, accurate 3D segmental tracking requires clearer 3D images with fine spatial resolution and high temporal resolution. Although one-beat acquisition of 3DE full-volume datasets using smaller 3DE transducers is now possible, spatial and temporal resolution are still not adequate to perform reliable segmental deformation analysis. This limitation also causes some underestimation of 3D global strain values, compared with corresponding 2D global strain values. Non-segmental (e.g., coronary artery territories) analysis of deformation is one solution to overcome current problems for segmental analysis [109]. Myocardial curvature analysis or LV shape analysis is another fruitful field of research, because it will provide useful information regarding disease severity and prognosis [99]. Since 3D strain simultaneously provides multidirectional strains, extraction of shear strain components which combine deformation in two different directions is also an interesting field for research [7, 110]. 3DE could be more useful than 2DE in complex and irregular heart chambers, like the right ventricle. 3D strain software aimed at other cardiac chambers is just starting and is now commercially available. It will soon be determined whether 3D RV global strains are more robust parameters than 3D RVEF to predict future outcomes, and whether 3D RV global strains detect subtle RV dysfunction in patients whose 3D RVEF is still normal. Finally, fully automated 3D strain analytical software will eliminate observer variability of 3D strain measurements, and will facilitate the use of 3D strain for routine adoption in the clinical arena.

Conclusions

3D LV speckle tracking software simultaneously provides LV volumes, LVEF, and 3D global strains with multiple directions. It also provides a new 3D deformation parameter, such as area strain, which is an integral marker of longitudinal and circumferential function. However, 3DE data acquisition and subsequent strain analysis have not been widely adopted, and their evaluation is still limited to research applications. There are no consistent findings to suggest that 3D LV strain is superior to 2D LV strain in some clinical scenarios. In addition to facilitating further refinements of both 3DE image quality and 3D LV strain software, application of fully-automated 3D strain software may expand its adoption into routine echocardiography examinations.

Supplementary information

Supplementary information accompanies this paper at https://​doi.​org/​10.​1186/​s12947-020-00204-3.

Acknowledgements

We thank Dr. Tetsuji Kitano for contributing data collection.
Not applicable.
All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Geyer H, Caracciolo G, Abe H, Wilansky S, Carerj S, Gentile F, et al. Assessment of myocardial mechanics using speckle tracking echocardiography: fundamentals and clinical applications. J Am Soc Echocardiogr. 2010;23(4):351–69 quiz 453–5.PubMed Geyer H, Caracciolo G, Abe H, Wilansky S, Carerj S, Gentile F, et al. Assessment of myocardial mechanics using speckle tracking echocardiography: fundamentals and clinical applications. J Am Soc Echocardiogr. 2010;23(4):351–69 quiz 453–5.PubMed
2.
Zurück zum Zitat Smiseth OA, Torp H, Opdahl A, Haugaa KH, Urheim S. Myocardial strain imaging: how useful is it in clinical decision making? Eur Heart J. 2016;37(15):1196–207.PubMed Smiseth OA, Torp H, Opdahl A, Haugaa KH, Urheim S. Myocardial strain imaging: how useful is it in clinical decision making? Eur Heart J. 2016;37(15):1196–207.PubMed
3.
Zurück zum Zitat Voigt J-U, Cvijic M. 2- and 3-dimensional myocardial strain in cardiac health and disease. J Am Coll Cardiol Img. 2019;12(9):1849–63. Voigt J-U, Cvijic M. 2- and 3-dimensional myocardial strain in cardiac health and disease. J Am Coll Cardiol Img. 2019;12(9):1849–63.
4.
Zurück zum Zitat Jasaityte R, Heyde B, D’hooge J. Current state of three-dimensional myocardial strain estimation using echocardiography. J Am Soc Echocardiogr. 2013;26(1):15–28.PubMed Jasaityte R, Heyde B, D’hooge J. Current state of three-dimensional myocardial strain estimation using echocardiography. J Am Soc Echocardiogr. 2013;26(1):15–28.PubMed
5.
Zurück zum Zitat Muraru D, Niero A, Rodriguez-Zanella H, Cherata D, Badano L. Three-dimensional speckle-tracking echocardiography: benefits and limitations of integrating myocardial mechanics with three-dimensional imaging. Cardiovasc Diagn Ther. 2018;8(1):101–17.PubMedPubMedCentral Muraru D, Niero A, Rodriguez-Zanella H, Cherata D, Badano L. Three-dimensional speckle-tracking echocardiography: benefits and limitations of integrating myocardial mechanics with three-dimensional imaging. Cardiovasc Diagn Ther. 2018;8(1):101–17.PubMedPubMedCentral
6.
Zurück zum Zitat Galderisi M, Esposito R, Schiano-Lomoriello V, Santoro A, Ippolito R, Schiattarella P, et al. Correlates of global area strain in native hypertensive patients: a three-dimensional speckle-tracking echocardiography study. Eur Heart J Cardiovasc Imaging. 2012;13(9):730–8.PubMed Galderisi M, Esposito R, Schiano-Lomoriello V, Santoro A, Ippolito R, Schiattarella P, et al. Correlates of global area strain in native hypertensive patients: a three-dimensional speckle-tracking echocardiography study. Eur Heart J Cardiovasc Imaging. 2012;13(9):730–8.PubMed
7.
Zurück zum Zitat Pedrizzetti G, Sengupta S, Caracciolo G, Park CS, Amaki M, Goliasch G, et al. Three-dimensional principal strain analysis for characterizing subclinical changes in left ventricular function. J Am Soc Echocardiogr. 2014;27(10):1041–50 e1.PubMed Pedrizzetti G, Sengupta S, Caracciolo G, Park CS, Amaki M, Goliasch G, et al. Three-dimensional principal strain analysis for characterizing subclinical changes in left ventricular function. J Am Soc Echocardiogr. 2014;27(10):1041–50 e1.PubMed
8.
Zurück zum Zitat Gayat E, Ahmad H, Weinert L, Lang RM, Mor-Avi V. Reproducibility and inter-vendor variability of left ventricular deformation measurements by three-dimensional speckle-tracking echocardiography. J Am Soc Echocardiogr. 2011;24(8):878–85.PubMed Gayat E, Ahmad H, Weinert L, Lang RM, Mor-Avi V. Reproducibility and inter-vendor variability of left ventricular deformation measurements by three-dimensional speckle-tracking echocardiography. J Am Soc Echocardiogr. 2011;24(8):878–85.PubMed
9.
Zurück zum Zitat Takigiku K, Takeuchi M, Izumi C, Yuda S, Sakata K, Ohte N, et al. Normal range of left ventricular 2-dimensional strain: Japanese ultrasound speckle tracking of the left ventricle (JUSTICE) study. Circ J. 2012;76(11):2623–32.PubMed Takigiku K, Takeuchi M, Izumi C, Yuda S, Sakata K, Ohte N, et al. Normal range of left ventricular 2-dimensional strain: Japanese ultrasound speckle tracking of the left ventricle (JUSTICE) study. Circ J. 2012;76(11):2623–32.PubMed
10.
Zurück zum Zitat Sugimoto T, Dulgheru R, Bernard A, Ilardi F, Contu L, Addetia K, et al. Echocardiographic reference ranges for normal left ventricular 2D strain: results from the EACVI NORRE study. Eur Heart J Cardiovasc Imaging. 2017;18(8):833–40.PubMed Sugimoto T, Dulgheru R, Bernard A, Ilardi F, Contu L, Addetia K, et al. Echocardiographic reference ranges for normal left ventricular 2D strain: results from the EACVI NORRE study. Eur Heart J Cardiovasc Imaging. 2017;18(8):833–40.PubMed
11.
Zurück zum Zitat Asch FM, Miyoshi T, Addetia K, Citro R, Daimon M, Desale S, et al. Similarities and Differences in Left Ventricular Size and Function among Races and Nationalities: Results of the World Alliance Societies of Echocardiography Normal Values Study. J Am Soc Echocardiogr. 2019;32(11):1396–406 e2.PubMed Asch FM, Miyoshi T, Addetia K, Citro R, Daimon M, Desale S, et al. Similarities and Differences in Left Ventricular Size and Function among Races and Nationalities: Results of the World Alliance Societies of Echocardiography Normal Values Study. J Am Soc Echocardiogr. 2019;32(11):1396–406 e2.PubMed
12.
Zurück zum Zitat D’Elia N, Caselli S, Kosmala W, Lancellotti P, Morris D, Muraru D, et al. Normal global longitudinal strain: an individual patient meta-analysis. J Am Coll Cardiol Img. 2020;13(1):167–9. D’Elia N, Caselli S, Kosmala W, Lancellotti P, Morris D, Muraru D, et al. Normal global longitudinal strain: an individual patient meta-analysis. J Am Coll Cardiol Img. 2020;13(1):167–9.
13.
Zurück zum Zitat Wu VC-C, Takeuchi M, Otani K, Haruki N, Yoshitani H, Tamura M, et al. Effect of through-plane and twisting motion on left ventricular strain calculation: direct comparison between two-dimensional and three-dimensional speckle-tracking echocardiography. J Am Soc Echocardiogr. 2013;26(11):1274–81 e4.PubMed Wu VC-C, Takeuchi M, Otani K, Haruki N, Yoshitani H, Tamura M, et al. Effect of through-plane and twisting motion on left ventricular strain calculation: direct comparison between two-dimensional and three-dimensional speckle-tracking echocardiography. J Am Soc Echocardiogr. 2013;26(11):1274–81 e4.PubMed
14.
Zurück zum Zitat Seo Y, Ishizu T, Enomoto Y, Sugimori H, Yamamoto M, Machino T, et al. Validation of 3-dimensional speckle tracking imaging to quantify regional myocardial deformation. Circ Cardiovasc Imaging. 2009;2(6):451–9.PubMed Seo Y, Ishizu T, Enomoto Y, Sugimori H, Yamamoto M, Machino T, et al. Validation of 3-dimensional speckle tracking imaging to quantify regional myocardial deformation. Circ Cardiovasc Imaging. 2009;2(6):451–9.PubMed
15.
Zurück zum Zitat Seo Y, Ishizu T, Enomoto Y, Sugimori H, Aonuma K. Endocardial surface area tracking for assessment of regional LV Wall deformation with 3D speckle tracking imaging. J Am Coll Cardiol Img. 2011;4(4):358–65. Seo Y, Ishizu T, Enomoto Y, Sugimori H, Aonuma K. Endocardial surface area tracking for assessment of regional LV Wall deformation with 3D speckle tracking imaging. J Am Coll Cardiol Img. 2011;4(4):358–65.
16.
Zurück zum Zitat Kleijn SA, Brouwer WP, Aly MFA, Rüssel IK, de Roest GJ, Beek AM, et al. Comparison between three-dimensional speckle-tracking echocardiography and cardiac magnetic resonance imaging for quantification of left ventricular volumes and function. Eur Heart J Cardiovasc Imaging. 2012;13(10):834–9.PubMed Kleijn SA, Brouwer WP, Aly MFA, Rüssel IK, de Roest GJ, Beek AM, et al. Comparison between three-dimensional speckle-tracking echocardiography and cardiac magnetic resonance imaging for quantification of left ventricular volumes and function. Eur Heart J Cardiovasc Imaging. 2012;13(10):834–9.PubMed
17.
Zurück zum Zitat Luis SA, Yamada A, Khandheria BK, Speranza V, Benjamin A, Ischenko M, et al. Use of three-dimensional speckle-tracking echocardiography for quantitative assessment of global left ventricular function: a comparative study to three-dimensional echocardiography. J Am Soc Echocardiogr. 2014;27(3):285–91.PubMed Luis SA, Yamada A, Khandheria BK, Speranza V, Benjamin A, Ischenko M, et al. Use of three-dimensional speckle-tracking echocardiography for quantitative assessment of global left ventricular function: a comparative study to three-dimensional echocardiography. J Am Soc Echocardiogr. 2014;27(3):285–91.PubMed
18.
Zurück zum Zitat Obokata M, Nagata Y, Wu VC-C, Kado Y, Kurabayashi M, Otsuji Y, et al. Direct comparison of cardiac magnetic resonance feature tracking and 2D/3D echocardiography speckle tracking for evaluation of global left ventricular strain. Eur Heart J Cardiovasc Imaging. 2016;17(5):525–32.PubMed Obokata M, Nagata Y, Wu VC-C, Kado Y, Kurabayashi M, Otsuji Y, et al. Direct comparison of cardiac magnetic resonance feature tracking and 2D/3D echocardiography speckle tracking for evaluation of global left ventricular strain. Eur Heart J Cardiovasc Imaging. 2016;17(5):525–32.PubMed
19.
Zurück zum Zitat Mor-Avi V, Lang RM, Badano LP, Belohlavek M, Cardim NM, Derumeaux G, et al. Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: ASE/EAE consensus statement on methodology and indications endorsed by the Japanese Society of Echocardiography. Eur Heart J Cardiovasc Imaging. 2011;12(3):167–205. Mor-Avi V, Lang RM, Badano LP, Belohlavek M, Cardim NM, Derumeaux G, et al. Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: ASE/EAE consensus statement on methodology and indications endorsed by the Japanese Society of Echocardiography. Eur Heart J Cardiovasc Imaging. 2011;12(3):167–205.
20.
Zurück zum Zitat Ajmone Marsan N, Michalski B, Cameli M, Podlesnikar T, Manka R, Sitges M, et al. EACVI survey on standardization of cardiac chambers quantification by transthoracic echocardiography. Eur Heart J Cardiovasc Imaging. 2019;21(2):119–23. Ajmone Marsan N, Michalski B, Cameli M, Podlesnikar T, Manka R, Sitges M, et al. EACVI survey on standardization of cardiac chambers quantification by transthoracic echocardiography. Eur Heart J Cardiovasc Imaging. 2019;21(2):119–23.
21.
Zurück zum Zitat Negishi K, Negishi T, Agler DA, Plana JC, Marwick TH. Role of temporal resolution in selection of the appropriate strain technique for evaluation of subclinical myocardial dysfunction. Echocardiogr. 2011;29(3):334–9. Negishi K, Negishi T, Agler DA, Plana JC, Marwick TH. Role of temporal resolution in selection of the appropriate strain technique for evaluation of subclinical myocardial dysfunction. Echocardiogr. 2011;29(3):334–9.
22.
Zurück zum Zitat Reant P, Barbot L, Touche C, Dijos M, Arsac F, Pillois X, et al. Evaluation of global left ventricular systolic function using three-dimensional echocardiography speckle-tracking strain parameters. J Am Soc Echocardiogr. 2012;25(1):68–79.PubMed Reant P, Barbot L, Touche C, Dijos M, Arsac F, Pillois X, et al. Evaluation of global left ventricular systolic function using three-dimensional echocardiography speckle-tracking strain parameters. J Am Soc Echocardiogr. 2012;25(1):68–79.PubMed
23.
Zurück zum Zitat Altman M, Bergerot C, Aussoleil A, Davidsen ES, Sibellas F, Ovize M, et al. Assessment of left ventricular systolic function by deformation imaging derived from speckle tracking: a comparison between 2D and 3D echo modalities. Eur Heart J Cardiovasc Imaging. 2014;15(3):316–23.PubMed Altman M, Bergerot C, Aussoleil A, Davidsen ES, Sibellas F, Ovize M, et al. Assessment of left ventricular systolic function by deformation imaging derived from speckle tracking: a comparison between 2D and 3D echo modalities. Eur Heart J Cardiovasc Imaging. 2014;15(3):316–23.PubMed
24.
Zurück zum Zitat Chang S-N, Lai Y-H, Yen C-H, Tsai C-T, Lin J-W, Bulwer BE, et al. Cardiac mechanics and ventricular twist by three-dimensional strain analysis in relation to B-type natriuretic peptide as a clinical prognosticator for heart failure patients. PLoS One. 2014;9(12):e115260.PubMedPubMedCentral Chang S-N, Lai Y-H, Yen C-H, Tsai C-T, Lin J-W, Bulwer BE, et al. Cardiac mechanics and ventricular twist by three-dimensional strain analysis in relation to B-type natriuretic peptide as a clinical prognosticator for heart failure patients. PLoS One. 2014;9(12):e115260.PubMedPubMedCentral
25.
Zurück zum Zitat Xu T-Y, Sun JP, Lee AP-W, Yang XS, Qiao Z, Luo X, et al. Three-dimensional speckle strain echocardiography is more accurate and efficient than 2D strain in the evaluation of left ventricular function. Int J Cardiol. 2014;176(2):360–6.PubMed Xu T-Y, Sun JP, Lee AP-W, Yang XS, Qiao Z, Luo X, et al. Three-dimensional speckle strain echocardiography is more accurate and efficient than 2D strain in the evaluation of left ventricular function. Int J Cardiol. 2014;176(2):360–6.PubMed
26.
Zurück zum Zitat Nagata Y, Takeuchi M, Wu VC-C, Izumo M, Suzuki K, Sato K, et al. Prognostic value of LV deformation parameters using 2D and 3D speckle-tracking echocardiography in asymptomatic patients with severe aortic stenosis and preserved LV ejection fraction. J Am Coll Cardiol Img. 2015;8(3):235–45. Nagata Y, Takeuchi M, Wu VC-C, Izumo M, Suzuki K, Sato K, et al. Prognostic value of LV deformation parameters using 2D and 3D speckle-tracking echocardiography in asymptomatic patients with severe aortic stenosis and preserved LV ejection fraction. J Am Coll Cardiol Img. 2015;8(3):235–45.
27.
Zurück zum Zitat Santoro C, Arpino G, Esposito R, Lembo M, Paciolla I, Cardalesi C, et al. 2D and 3D strain for detection of subclinical anthracycline cardiotoxicity in breast cancer patients: a balance with feasibility. Eur Heart J Cardiovasc Imaging. 2017;18(8):930–6.PubMed Santoro C, Arpino G, Esposito R, Lembo M, Paciolla I, Cardalesi C, et al. 2D and 3D strain for detection of subclinical anthracycline cardiotoxicity in breast cancer patients: a balance with feasibility. Eur Heart J Cardiovasc Imaging. 2017;18(8):930–6.PubMed
28.
Zurück zum Zitat Xu L, Huang X, Ma J, Huang J, Fan Y, Li H, et al. Value of three-dimensional strain parameters for predicting left ventricular remodeling after ST-elevation myocardial infarction. Int J Cardiovasc Imaging. 2017;33(5):663–73.PubMed Xu L, Huang X, Ma J, Huang J, Fan Y, Li H, et al. Value of three-dimensional strain parameters for predicting left ventricular remodeling after ST-elevation myocardial infarction. Int J Cardiovasc Imaging. 2017;33(5):663–73.PubMed
29.
Zurück zum Zitat Amzulescu MS, Langet H, Saloux E, Manrique A, Slimani A, Allain P, et al. Improvements of Myocardial Deformation Assessment by Three-Dimensional Speckle-Tracking versus Two-Dimensional Speckle-Tracking Revealed by Cardiac Magnetic Resonance Tagging. J Am Soc Echocardiogr. 2018;31(9):1021–33 e1.PubMed Amzulescu MS, Langet H, Saloux E, Manrique A, Slimani A, Allain P, et al. Improvements of Myocardial Deformation Assessment by Three-Dimensional Speckle-Tracking versus Two-Dimensional Speckle-Tracking Revealed by Cardiac Magnetic Resonance Tagging. J Am Soc Echocardiogr. 2018;31(9):1021–33 e1.PubMed
30.
Zurück zum Zitat Saito K, Okura H, Watanabe N, Hayashida A, Obase K, Imai K, et al. Comprehensive evaluation of left ventricular strain using speckle tracking echocardiography in Normal adults: comparison of three-dimensional and two-dimensional approaches. J Am Soc Echocardiogr. 2009;22(9):1025–30.PubMed Saito K, Okura H, Watanabe N, Hayashida A, Obase K, Imai K, et al. Comprehensive evaluation of left ventricular strain using speckle tracking echocardiography in Normal adults: comparison of three-dimensional and two-dimensional approaches. J Am Soc Echocardiogr. 2009;22(9):1025–30.PubMed
31.
Zurück zum Zitat Hayat D, Kloeckner M, Nahum J, Ecochard-Dugelay E, Dubois-Randé J-L, Jean-François D, et al. Comparison of real-time three-dimensional speckle tracking to magnetic resonance imaging in patients with coronary heart disease. Am J Cardiol. 2012;109(2):180–6.PubMed Hayat D, Kloeckner M, Nahum J, Ecochard-Dugelay E, Dubois-Randé J-L, Jean-François D, et al. Comparison of real-time three-dimensional speckle tracking to magnetic resonance imaging in patients with coronary heart disease. Am J Cardiol. 2012;109(2):180–6.PubMed
32.
Zurück zum Zitat Matsumoto K, Tanaka H, Kaneko A, Ryo K, Fukuda Y, Tatsumi K, et al. Contractile reserve assessed by three-dimensional global circumferential strain as a predictor of cardiovascular events in patients with idiopathic dilated cardiomyopathy. J Am Soc Echocardiogr. 2012;25(12):1299–308.PubMed Matsumoto K, Tanaka H, Kaneko A, Ryo K, Fukuda Y, Tatsumi K, et al. Contractile reserve assessed by three-dimensional global circumferential strain as a predictor of cardiovascular events in patients with idiopathic dilated cardiomyopathy. J Am Soc Echocardiogr. 2012;25(12):1299–308.PubMed
33.
Zurück zum Zitat Ternacle J, Gallet R, Champagne S, Teiger E, Gellen B, Dubois-Randé J-L, et al. Changes in three-dimensional speckle-tracking-derived myocardial strain during percutaneous coronary intervention. J Am Soc Echocardiogr. 2013;26(12):1444–9.PubMed Ternacle J, Gallet R, Champagne S, Teiger E, Gellen B, Dubois-Randé J-L, et al. Changes in three-dimensional speckle-tracking-derived myocardial strain during percutaneous coronary intervention. J Am Soc Echocardiogr. 2013;26(12):1444–9.PubMed
34.
Zurück zum Zitat Thorstensen A, Dalen H, Hala P, Kiss G, D&apos, Hooge J, Torp H, et al. Three-dimensional echocardiography in the evaluation of global and regional function in patients with recent myocardial infarction: a comparison with magnetic resonance imaging. Echocardiogr 2013;30(6):682–692. Thorstensen A, Dalen H, Hala P, Kiss G, D&apos, Hooge J, Torp H, et al. Three-dimensional echocardiography in the evaluation of global and regional function in patients with recent myocardial infarction: a comparison with magnetic resonance imaging. Echocardiogr 2013;30(6):682–692.
35.
Zurück zum Zitat Urbano-Moral JA, Arias-Godinez JA, Ahmad R, Malik R, Kiernan MS, DeNofrio D, et al. Evaluation of myocardial mechanics with three-dimensional speckle tracking echocardiography in heart transplant recipients: comparison with two-dimensional speckle tracking and relationship with clinical variables. Eur Heart J Cardiovasc Imaging. 2013;14(12):1167–73.PubMed Urbano-Moral JA, Arias-Godinez JA, Ahmad R, Malik R, Kiernan MS, DeNofrio D, et al. Evaluation of myocardial mechanics with three-dimensional speckle tracking echocardiography in heart transplant recipients: comparison with two-dimensional speckle tracking and relationship with clinical variables. Eur Heart J Cardiovasc Imaging. 2013;14(12):1167–73.PubMed
36.
Zurück zum Zitat Tadic M, Cuspidi C, Backovic S, Kleut M, Ivanovic B, Scepanovic R, et al. High-normal blood pressure, functional capacity and left heart mechanics: is there any connection? Blood Press. 2014;23(5):315–21.PubMed Tadic M, Cuspidi C, Backovic S, Kleut M, Ivanovic B, Scepanovic R, et al. High-normal blood pressure, functional capacity and left heart mechanics: is there any connection? Blood Press. 2014;23(5):315–21.PubMed
37.
Zurück zum Zitat Tadic M, Cuspidi C, Pencic B, Pavlovic SU, Ivanovic B, Kocijancic V, et al. Association between left ventricular mechanics and heart rate variability in untreated hypertensive patients. J Clin Hypertens. 2014;17(2):118–25. Tadic M, Cuspidi C, Pencic B, Pavlovic SU, Ivanovic B, Kocijancic V, et al. Association between left ventricular mechanics and heart rate variability in untreated hypertensive patients. J Clin Hypertens. 2014;17(2):118–25.
38.
Zurück zum Zitat Trache T, Stöbe S, Tarr A, Pfeiffer D, Hagendorff A. The agreement between 3D, standard 2D and triplane 2D speckle tracking: effects of image quality and 3D volume rate. Echo Res Pract. 2014;1(2):71–83.PubMedPubMedCentral Trache T, Stöbe S, Tarr A, Pfeiffer D, Hagendorff A. The agreement between 3D, standard 2D and triplane 2D speckle tracking: effects of image quality and 3D volume rate. Echo Res Pract. 2014;1(2):71–83.PubMedPubMedCentral
39.
Zurück zum Zitat Tadic M, Cuspidi C, Majstorovic A, Kocijancic V, Celic V. The relationship between left ventricular deformation and different geometric patterns according to the updated classification. J Hypertens. 2015;33(9):1954–61.PubMed Tadic M, Cuspidi C, Majstorovic A, Kocijancic V, Celic V. The relationship between left ventricular deformation and different geometric patterns according to the updated classification. J Hypertens. 2015;33(9):1954–61.PubMed
40.
Zurück zum Zitat Tarr A, Stoebe S, Tuennemann J, Baka Z, Pfeiffer D, Varga A, et al. Early detection of cardiotoxicity by 2D and 3D deformation imaging in patients receiving chemotherapy. Echo Res Pract. 2015;2(3):81–8.PubMedPubMedCentral Tarr A, Stoebe S, Tuennemann J, Baka Z, Pfeiffer D, Varga A, et al. Early detection of cardiotoxicity by 2D and 3D deformation imaging in patients receiving chemotherapy. Echo Res Pract. 2015;2(3):81–8.PubMedPubMedCentral
41.
Zurück zum Zitat Vitarelli A, Mangieri E, Capotosto L, Tanzilli G, D&apos;Angeli I, Viceconte N, et al. Assessment of biventricular function by three-dimensional speckle-tracking echocardiography in secondary mitral regurgitation after repair with the MitraClip system. J Am Soc Echocardiogr 2015;28(9):1070–1082. Vitarelli A, Mangieri E, Capotosto L, Tanzilli G, D&apos;Angeli I, Viceconte N, et al. Assessment of biventricular function by three-dimensional speckle-tracking echocardiography in secondary mitral regurgitation after repair with the MitraClip system. J Am Soc Echocardiogr 2015;28(9):1070–1082.
42.
Zurück zum Zitat Wang Q, Huang D, Zhang L, Shen D, Ouyang Q, Duan Z, et al. Assessment of myocardial infarct size by three-dimensional and two-dimensional speckle tracking echocardiography: a comparative study to single photon emission computed tomography. Echocardiogr. 2015;32(10):1539–46. Wang Q, Huang D, Zhang L, Shen D, Ouyang Q, Duan Z, et al. Assessment of myocardial infarct size by three-dimensional and two-dimensional speckle tracking echocardiography: a comparative study to single photon emission computed tomography. Echocardiogr. 2015;32(10):1539–46.
43.
Zurück zum Zitat D’Ascenzi F, Solari M, Mazzolai M, Cameli M, Lisi M, Andrei V, et al. Two-dimensional and three-dimensional left ventricular deformation analysis: a study in competitive athletes. Int J Cardiovasc Imaging. 2016;32(12):1697–705.PubMed D’Ascenzi F, Solari M, Mazzolai M, Cameli M, Lisi M, Andrei V, et al. Two-dimensional and three-dimensional left ventricular deformation analysis: a study in competitive athletes. Int J Cardiovasc Imaging. 2016;32(12):1697–705.PubMed
44.
Zurück zum Zitat Tadic M, Cuspidi C, Ivanovic B, Ilic I, Kocijancic V. Influence of white-coat hypertension on left ventricular deformation 2- and 3-dimensional speckle tracking study. Hypertension. 2016;67:592–6.PubMed Tadic M, Cuspidi C, Ivanovic B, Ilic I, Kocijancic V. Influence of white-coat hypertension on left ventricular deformation 2- and 3-dimensional speckle tracking study. Hypertension. 2016;67:592–6.PubMed
45.
Zurück zum Zitat Tadic M, Cuspidi C, Pencic B, Andric A, Pavlovic SU, Iracek O, et al. The interaction between blood pressure variability, obesity, and left ventricular mechanics. J Hypertens. 2016;34(4):772–80.PubMed Tadic M, Cuspidi C, Pencic B, Andric A, Pavlovic SU, Iracek O, et al. The interaction between blood pressure variability, obesity, and left ventricular mechanics. J Hypertens. 2016;34(4):772–80.PubMed
46.
Zurück zum Zitat Ahn H-S, Kim Y-K, Song HC, Choi EJ, Kim G-H, Cho JS, et al. The impact of preload on 3-dimensional deformation parameters: principal strain, twist and torsion. Cardiovasc Ultrasound. 2017;15(1):22–12.PubMedPubMedCentral Ahn H-S, Kim Y-K, Song HC, Choi EJ, Kim G-H, Cho JS, et al. The impact of preload on 3-dimensional deformation parameters: principal strain, twist and torsion. Cardiovasc Ultrasound. 2017;15(1):22–12.PubMedPubMedCentral
47.
Zurück zum Zitat Cho EJ, Park S-J, Kim EK, Lee GY, Chang S-A, Choi J-O, et al. Effects of increased left ventricular wall thickness on the myocardium in severe aortic stenosis with normal left ventricular ejection fraction: two- and three-dimensional multilayer speckle tracking echocardiography. Echocardiogr. 2017;34(4):511–22. Cho EJ, Park S-J, Kim EK, Lee GY, Chang S-A, Choi J-O, et al. Effects of increased left ventricular wall thickness on the myocardium in severe aortic stenosis with normal left ventricular ejection fraction: two- and three-dimensional multilayer speckle tracking echocardiography. Echocardiogr. 2017;34(4):511–22.
48.
Zurück zum Zitat Howard Quijano K, Salem A, Barkulis C, Mazor E, Scovotti JC, Ho JK, et al. Preoperative three-dimensional strain imaging identifies reduction in left ventricular function and predicts outcomes after cardiac surgery. Anesth Analg. 2017;124(2):419–28.PubMed Howard Quijano K, Salem A, Barkulis C, Mazor E, Scovotti JC, Ho JK, et al. Preoperative three-dimensional strain imaging identifies reduction in left ventricular function and predicts outcomes after cardiac surgery. Anesth Analg. 2017;124(2):419–28.PubMed
49.
Zurück zum Zitat Ringle A, Dornhorst A, Rehman MB, Ruisanchez C, Nihoyannopoulos P. Evolution of subclinical myocardial dysfunction detected by two-dimensional and three-dimensional speckle tracking in asymptomatic type 1 diabetic patients: a long-term follow-up study. Echo Res Pract. 2017;4(4):73–81.PubMedPubMedCentral Ringle A, Dornhorst A, Rehman MB, Ruisanchez C, Nihoyannopoulos P. Evolution of subclinical myocardial dysfunction detected by two-dimensional and three-dimensional speckle tracking in asymptomatic type 1 diabetic patients: a long-term follow-up study. Echo Res Pract. 2017;4(4):73–81.PubMedPubMedCentral
50.
Zurück zum Zitat Sugano A, Seo Y, Ishizu T, Watabe H, Yamamoto M, Machino-Ohtsuka T, et al. Value of 3-dimensional speckle tracking echocardiography in the prediction of microvascular obstruction and left ventricular remodeling in patients with ST-elevation myocardial infarction. Circ J. 2017;81(3):353–60.PubMed Sugano A, Seo Y, Ishizu T, Watabe H, Yamamoto M, Machino-Ohtsuka T, et al. Value of 3-dimensional speckle tracking echocardiography in the prediction of microvascular obstruction and left ventricular remodeling in patients with ST-elevation myocardial infarction. Circ J. 2017;81(3):353–60.PubMed
51.
Zurück zum Zitat Szulik M, ŒLiwiñska A, Lenarczyk R, Szyma AM, Kalinowski ME, Markowicz-Pawlus E, et al. 3D and 2D left ventricular systolic function imaging – from ejection fraction to deformation. Cardiac resynchronization therapy – substudy. Acta Cardiol. 2017;70(1):21–30. Szulik M, ŒLiwiñska A, Lenarczyk R, Szyma AM, Kalinowski ME, Markowicz-Pawlus E, et al. 3D and 2D left ventricular systolic function imaging – from ejection fraction to deformation. Cardiac resynchronization therapy – substudy. Acta Cardiol. 2017;70(1):21–30.
52.
Zurück zum Zitat Tadic M, Zlatanovic M, Cuspidi C, Ivanovic B, Stevanovic A, Damjanov N, et al. The relationship between left ventricular deformation and heart rate variability in patients with systemic sclerosis: two- and three-dimensional strain analysis. Int J Cardiol. 2017;236:145–50.PubMed Tadic M, Zlatanovic M, Cuspidi C, Ivanovic B, Stevanovic A, Damjanov N, et al. The relationship between left ventricular deformation and heart rate variability in patients with systemic sclerosis: two- and three-dimensional strain analysis. Int J Cardiol. 2017;236:145–50.PubMed
53.
Zurück zum Zitat Ternacle J, Bremont C, d’Humieres T, Faivre L, Doan HL, Gallet R, et al. Left ventricular dyssynchrony and 2D and 3D global longitudinal strain for differentiating physiological and pathological left ventricular hypertrophy. Arch Cardiovasc Dis. 2017;110(6–7):403–12.PubMed Ternacle J, Bremont C, d’Humieres T, Faivre L, Doan HL, Gallet R, et al. Left ventricular dyssynchrony and 2D and 3D global longitudinal strain for differentiating physiological and pathological left ventricular hypertrophy. Arch Cardiovasc Dis. 2017;110(6–7):403–12.PubMed
54.
Zurück zum Zitat Cruz MC, Branco LM, Portugal G, Galrinho A, Timóteo AT, Rio P, et al. Three-dimensional speckle-tracking echocardiography for the global and regional assessments of left ventricle myocardial deformation in breast cancer patients treated with anthracyclines. Clin Res Cardiol. 2019;97:1–12. Cruz MC, Branco LM, Portugal G, Galrinho A, Timóteo AT, Rio P, et al. Three-dimensional speckle-tracking echocardiography for the global and regional assessments of left ventricle myocardial deformation in breast cancer patients treated with anthracyclines. Clin Res Cardiol. 2019;97:1–12.
55.
Zurück zum Zitat Pavlovic-Kleut M, Sljivic A, Celic V. Left ventricle ejection fraction and strain derived by three-dimensional echocardiography are associated with exercise capacity in the patients with heart failure. Vojnosanit Pregl. 2019;76(8):779–86. Pavlovic-Kleut M, Sljivic A, Celic V. Left ventricle ejection fraction and strain derived by three-dimensional echocardiography are associated with exercise capacity in the patients with heart failure. Vojnosanit Pregl. 2019;76(8):779–86.
56.
Zurück zum Zitat Celic V, Tadic M, Suzic-Lazic J, Andric A, Majstorovic A, Ivanovic B, et al. Two- and three-dimensional speckle tracking analysis of the relation between myocardial deformation and functional capacity in patients with systemic hypertension. Am J Cardiol. 2014;113(5):832–9.PubMed Celic V, Tadic M, Suzic-Lazic J, Andric A, Majstorovic A, Ivanovic B, et al. Two- and three-dimensional speckle tracking analysis of the relation between myocardial deformation and functional capacity in patients with systemic hypertension. Am J Cardiol. 2014;113(5):832–9.PubMed
57.
Zurück zum Zitat Perez de Isla L, Balcones DV, Fernandez-Golfin C, Marcos-Alberca P, Almeria C, Rodrigo JL, et al. Three-dimensional-wall motion tracking: a new and faster tool for myocardial strain assessment: comparison with two-dimensional-wall motion tracking. J Am Soc Echocardiogr. 2009;22(4):325–30.PubMed Perez de Isla L, Balcones DV, Fernandez-Golfin C, Marcos-Alberca P, Almeria C, Rodrigo JL, et al. Three-dimensional-wall motion tracking: a new and faster tool for myocardial strain assessment: comparison with two-dimensional-wall motion tracking. J Am Soc Echocardiogr. 2009;22(4):325–30.PubMed
58.
Zurück zum Zitat Truong VT, Phan HT, Pham KNP, Duong HNH, Ngo TNM, Palmer C, et al. Normal Ranges of Left Ventricular Strain by Three-Dimensional Speckle-Tracking Echocardiography in Adults: A Systematic Review and Meta-Analysis. J Am Soc Echocardiogr. 2019;32(12):1586–97 e5.PubMed Truong VT, Phan HT, Pham KNP, Duong HNH, Ngo TNM, Palmer C, et al. Normal Ranges of Left Ventricular Strain by Three-Dimensional Speckle-Tracking Echocardiography in Adults: A Systematic Review and Meta-Analysis. J Am Soc Echocardiogr. 2019;32(12):1586–97 e5.PubMed
59.
Zurück zum Zitat Muraru D, Cucchini U, Mihăilă S, Miglioranza MH, Aruta P, Cavalli G, et al. Left ventricular myocardial strain by three-dimensional speckle-tracking echocardiography in healthy subjects: reference values and analysis of their physiologic and technical determinants. J Am Soc Echocardiogr. 2014;27(8):858–71 e1.PubMed Muraru D, Cucchini U, Mihăilă S, Miglioranza MH, Aruta P, Cavalli G, et al. Left ventricular myocardial strain by three-dimensional speckle-tracking echocardiography in healthy subjects: reference values and analysis of their physiologic and technical determinants. J Am Soc Echocardiogr. 2014;27(8):858–71 e1.PubMed
60.
Zurück zum Zitat Kaku K, Takeuchi M, Tsang W, Takigiku K, Yasukochi S, Patel AR, et al. Age-related normal range of left ventricular strain and torsion using three-dimensional speckle-tracking echocardiography. J Am Soc Echocardiogr. 2014;27(1):55–64.PubMed Kaku K, Takeuchi M, Tsang W, Takigiku K, Yasukochi S, Patel AR, et al. Age-related normal range of left ventricular strain and torsion using three-dimensional speckle-tracking echocardiography. J Am Soc Echocardiogr. 2014;27(1):55–64.PubMed
61.
Zurück zum Zitat J-z X, J-y X, Li G, Ma W-y, Wang Q-q. Left ventricular strain examination of different aged adults with 3D speckle tracking echocardiography. Echocardiogr. 2014;31(3):335–9. J-z X, J-y X, Li G, Ma W-y, Wang Q-q. Left ventricular strain examination of different aged adults with 3D speckle tracking echocardiography. Echocardiogr. 2014;31(3):335–9.
62.
Zurück zum Zitat Kleijn SA, Pandian NG, Thomas JD, Perez de Isla L, Kamp O, Zuber M, et al. Normal reference values of left ventricular strain using three-dimensional speckle tracking echocardiography: results from a multicentre study. Eur Heart J Cardiovasc Imaging. 2015;16(4):410–6.PubMed Kleijn SA, Pandian NG, Thomas JD, Perez de Isla L, Kamp O, Zuber M, et al. Normal reference values of left ventricular strain using three-dimensional speckle tracking echocardiography: results from a multicentre study. Eur Heart J Cardiovasc Imaging. 2015;16(4):410–6.PubMed
63.
Zurück zum Zitat Bernard A, Addetia K, Dulgheru R, Caballero L, Sugimoto T, Akhaladze N, et al. 3D echocardiographic reference ranges for normal left ventricular volumes and strain: results from the EACVI NORRE study. Eur Heart J Cardiovasc Imaging. 2017;18(4):475–83.PubMed Bernard A, Addetia K, Dulgheru R, Caballero L, Sugimoto T, Akhaladze N, et al. 3D echocardiographic reference ranges for normal left ventricular volumes and strain: results from the EACVI NORRE study. Eur Heart J Cardiovasc Imaging. 2017;18(4):475–83.PubMed
64.
Zurück zum Zitat Kovács Z, Kormányos Á, Domsik P, Kalapos A, Lengyel C, Ambrus N, et al. Left ventricular longitudinal strain is associated with mitral annular fractional area change in healthy subjects—results from the three-dimensional speckle tracking echocardiographic MAGYAR-healthy study. Quant Imaging in Med Surg. 2019;9(2):304–11. Kovács Z, Kormányos Á, Domsik P, Kalapos A, Lengyel C, Ambrus N, et al. Left ventricular longitudinal strain is associated with mitral annular fractional area change in healthy subjects—results from the three-dimensional speckle tracking echocardiographic MAGYAR-healthy study. Quant Imaging in Med Surg. 2019;9(2):304–11.
65.
Zurück zum Zitat Badano LP, Cucchini U, Muraru D, Nono OA, Sarais C, Iliceto S. Use of three-dimensional speckle tracking to assess left ventricular myocardial mechanics: inter-vendor consistency and reproducibility of strain measurements. Eur Heart J Cardiovasc Imaging. 2013;14(3):285–93.PubMed Badano LP, Cucchini U, Muraru D, Nono OA, Sarais C, Iliceto S. Use of three-dimensional speckle tracking to assess left ventricular myocardial mechanics: inter-vendor consistency and reproducibility of strain measurements. Eur Heart J Cardiovasc Imaging. 2013;14(3):285–93.PubMed
66.
Zurück zum Zitat Abate E, Hoogslag GE, Antoni ML, Nucifora G, Delgado V, Holman ER, et al. Value of three-dimensional speckle-tracking longitudinal strain for predicting improvement of left ventricular function after acute myocardial infarction. Am J Cardiol. 2012;110(7):961–7.PubMed Abate E, Hoogslag GE, Antoni ML, Nucifora G, Delgado V, Holman ER, et al. Value of three-dimensional speckle-tracking longitudinal strain for predicting improvement of left ventricular function after acute myocardial infarction. Am J Cardiol. 2012;110(7):961–7.PubMed
67.
Zurück zum Zitat Li X-C, Jin F-L, Jing C, Xiao Q, Liu Y, Ran Z-S, et al. Predictive value of left ventricular remodeling by area strain based on three-dimensional wall-motion tracking after PCI in patients with recent NSTEMI. Ultrasound Med & Biol. 2012;38(9):1491–501. Li X-C, Jin F-L, Jing C, Xiao Q, Liu Y, Ran Z-S, et al. Predictive value of left ventricular remodeling by area strain based on three-dimensional wall-motion tracking after PCI in patients with recent NSTEMI. Ultrasound Med & Biol. 2012;38(9):1491–501.
68.
Zurück zum Zitat Zhu W, Liu W, Tong Y, Xiao J. Three-dimensional speckle tracking echocardiography for the evaluation of the infarct size and segmental transmural involvement in patients with acute myocardial infarction. Echocardiogr. 2014;31(1):58–66. Zhu W, Liu W, Tong Y, Xiao J. Three-dimensional speckle tracking echocardiography for the evaluation of the infarct size and segmental transmural involvement in patients with acute myocardial infarction. Echocardiogr. 2014;31(1):58–66.
69.
Zurück zum Zitat Aly MFA, Kleijn SA, Menken-Negroiu RF, Robbers LF, Beek AM, Kamp O. Three-dimensional speckle tracking echocardiography and cardiac magnetic resonance for left ventricular chamber quantification and identification of myocardial transmural scar. Neth Heart J. 2016;24(10):600–8.PubMedPubMedCentral Aly MFA, Kleijn SA, Menken-Negroiu RF, Robbers LF, Beek AM, Kamp O. Three-dimensional speckle tracking echocardiography and cardiac magnetic resonance for left ventricular chamber quantification and identification of myocardial transmural scar. Neth Heart J. 2016;24(10):600–8.PubMedPubMedCentral
70.
Zurück zum Zitat K-y D, Yang Z-g, Ma M, He Y, Zhao Q, Liu X, et al. The diagnostic value of global longitudinal strain (GLS) on myocardial infarction size by echocardiography: a systematic review and meta-analysis. Sci Rep. 2017;7(1):1–8. K-y D, Yang Z-g, Ma M, He Y, Zhao Q, Liu X, et al. The diagnostic value of global longitudinal strain (GLS) on myocardial infarction size by echocardiography: a systematic review and meta-analysis. Sci Rep. 2017;7(1):1–8.
71.
Zurück zum Zitat Plana JC, Galderisi M, Barac A, Ewer MS, Ky B, Scherrer-Crosbie M, et al. Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: a report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2014;15(10):1063–93.PubMedPubMedCentral Plana JC, Galderisi M, Barac A, Ewer MS, Ky B, Scherrer-Crosbie M, et al. Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: a report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2014;15(10):1063–93.PubMedPubMedCentral
72.
Zurück zum Zitat Thavendiranathan P, Poulin F, Lim K-D, Plana JC, Woo A, Marwick TH. Use of myocardial strain imaging by echocardiography for the early detection of cardiotoxicity in patients during and after cancer chemotherapy: a systematic review. J Am Coll Cardiol. 2014;63(25 Pt A):2751–68.PubMed Thavendiranathan P, Poulin F, Lim K-D, Plana JC, Woo A, Marwick TH. Use of myocardial strain imaging by echocardiography for the early detection of cardiotoxicity in patients during and after cancer chemotherapy: a systematic review. J Am Coll Cardiol. 2014;63(25 Pt A):2751–68.PubMed
73.
Zurück zum Zitat Mornos C, Manolis A, Cozma D, Kouremenos N, Zacharopoulou I, Ionac A. The Value of Left Ventricular Global Longitudinal Strain Assessed by Three-Dimensional Strain Imaging in the Early Detection of Anthracycline- Mediated Cardiotoxicity. Hellenic J Cardiol. 2014;55:235–44.PubMed Mornos C, Manolis A, Cozma D, Kouremenos N, Zacharopoulou I, Ionac A. The Value of Left Ventricular Global Longitudinal Strain Assessed by Three-Dimensional Strain Imaging in the Early Detection of Anthracycline- Mediated Cardiotoxicity. Hellenic J Cardiol. 2014;55:235–44.PubMed
74.
Zurück zum Zitat Song F-Y, Shi J, Zhang C-J, Xu Y-C, Zhang Q-L, Shu X-H, et al. Assessment of biventricular systolic strain derived from the two- dimensional and three-dimensional speckle tracking echocardiography in lymphoma patients after anthracycline therapy. Int J Cardiovasc Imaging. 2017;33(6):857–68.PubMed Song F-Y, Shi J, Zhang C-J, Xu Y-C, Zhang Q-L, Shu X-H, et al. Assessment of biventricular systolic strain derived from the two- dimensional and three-dimensional speckle tracking echocardiography in lymphoma patients after anthracycline therapy. Int J Cardiovasc Imaging. 2017;33(6):857–68.PubMed
75.
Zurück zum Zitat Zhang KW, Finkelman BS, Gulati G, Narayan HK, Upshaw J, Narayan V, et al. Abnormalities in 3-dimensional left ventricular mechanics with Anthracycline chemotherapy are associated with systolic and diastolic dysfunction. J Am Coll Cardiol Img. 2018;11(8):1059–68. Zhang KW, Finkelman BS, Gulati G, Narayan HK, Upshaw J, Narayan V, et al. Abnormalities in 3-dimensional left ventricular mechanics with Anthracycline chemotherapy are associated with systolic and diastolic dysfunction. J Am Coll Cardiol Img. 2018;11(8):1059–68.
76.
Zurück zum Zitat Chen J, Wang L, Wu FF, Sun G. Early detection of cardiotoxicity by 3D speckle tracking imaging of area strain in breast cancer patients receiving chemotherapy. Echocardiogr. 2019;36(9):1682–8. Chen J, Wang L, Wu FF, Sun G. Early detection of cardiotoxicity by 3D speckle tracking imaging of area strain in breast cancer patients receiving chemotherapy. Echocardiogr. 2019;36(9):1682–8.
77.
Zurück zum Zitat Enomoto M, Ishizu T, Seo Y, Kameda Y, Suzuki H, Shimano H, et al. Myocardial dysfunction identified by three-dimensional speckle tracking echocardiography in type 2 diabetes patients relates to complications of microangiopathy. J Cardiol. 2016;68(4):282–7.PubMed Enomoto M, Ishizu T, Seo Y, Kameda Y, Suzuki H, Shimano H, et al. Myocardial dysfunction identified by three-dimensional speckle tracking echocardiography in type 2 diabetes patients relates to complications of microangiopathy. J Cardiol. 2016;68(4):282–7.PubMed
78.
Zurück zum Zitat Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham heart study. N Engl J Med. 1990;322(22):1561–6.PubMed Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham heart study. N Engl J Med. 1990;322(22):1561–6.PubMed
79.
Zurück zum Zitat Baccouche H, Maunz M, Beck T, Gaa E, Banzhaf M, Knayer U, et al. Differentiating cardiac amyloidosis and hypertrophic cardiomyopathy by use of three-dimensional speckle tracking echocardiography. Echocardiogr. 2012;29(6):668–77. Baccouche H, Maunz M, Beck T, Gaa E, Banzhaf M, Knayer U, et al. Differentiating cardiac amyloidosis and hypertrophic cardiomyopathy by use of three-dimensional speckle tracking echocardiography. Echocardiogr. 2012;29(6):668–77.
80.
Zurück zum Zitat Aly MFA, Brouwer WP, Kleijn SA, van Rossum AC, Kamp O. Three-dimensional speckle tracking echocardiography for the preclinical diagnosis of hypertrophic cardiomyopathy. Int J Cardiovasc Imaging. 2014;30(3):523–33.PubMed Aly MFA, Brouwer WP, Kleijn SA, van Rossum AC, Kamp O. Three-dimensional speckle tracking echocardiography for the preclinical diagnosis of hypertrophic cardiomyopathy. Int J Cardiovasc Imaging. 2014;30(3):523–33.PubMed
81.
Zurück zum Zitat Urbano-Moral JA, Gangadharamurthy D, Comenzo RL, Pandian NG, Patel AR. Three-dimensional speckle tracking echocardiography in light chain cardiac amyloidosis: examination of left and right ventricular myocardial mechanics parameters. Rev Esp Cardiol. 2015;68(8):657–64.PubMed Urbano-Moral JA, Gangadharamurthy D, Comenzo RL, Pandian NG, Patel AR. Three-dimensional speckle tracking echocardiography in light chain cardiac amyloidosis: examination of left and right ventricular myocardial mechanics parameters. Rev Esp Cardiol. 2015;68(8):657–64.PubMed
82.
Zurück zum Zitat Voilliot D, Huttin O, Hammache N, Filippetti L, Vaugrenard T, Aliot E, et al. Impact of global and segmental hypertrophy on two-dimensional strain derived from three-dimensional echocardiography in hypertrophic cardiomyopathy: comparison with healthy subjects. J Am Soc Echocardiogr. 2015;28(9):1093–102.PubMed Voilliot D, Huttin O, Hammache N, Filippetti L, Vaugrenard T, Aliot E, et al. Impact of global and segmental hypertrophy on two-dimensional strain derived from three-dimensional echocardiography in hypertrophic cardiomyopathy: comparison with healthy subjects. J Am Soc Echocardiogr. 2015;28(9):1093–102.PubMed
83.
Zurück zum Zitat Pradel S, Magne J, Jaccard A, Fadel BM, Boulogne C, Salemi VMC, et al. Left ventricular assessment in patients with systemic light chain amyloidosis: a 3-dimensional speckle tracking transthoracic echocardiographic study. Int J Cardiovasc Imaging. 2019;35(5):845–54.PubMed Pradel S, Magne J, Jaccard A, Fadel BM, Boulogne C, Salemi VMC, et al. Left ventricular assessment in patients with systemic light chain amyloidosis: a 3-dimensional speckle tracking transthoracic echocardiographic study. Int J Cardiovasc Imaging. 2019;35(5):845–54.PubMed
84.
Zurück zum Zitat Phelan D, Collier P, Thavendiranathan P, Popovic ZB, Hanna M, Plana JC, et al. Relative apical sparing of longitudinal strain using two-dimensional speckle-tracking echocardiography is both sensitive and specific for the diagnosis of cardiac amyloidosis. Heart. 2012;98(19):1442–8.PubMed Phelan D, Collier P, Thavendiranathan P, Popovic ZB, Hanna M, Plana JC, et al. Relative apical sparing of longitudinal strain using two-dimensional speckle-tracking echocardiography is both sensitive and specific for the diagnosis of cardiac amyloidosis. Heart. 2012;98(19):1442–8.PubMed
85.
Zurück zum Zitat Schueler R, Sinning J-M, Momcilovic D, Weber M, Ghanem A, Werner N, et al. Three-dimensional speckle-tracking analysis of left ventricular function after transcatheter aortic valve implantation. J Am Soc Echocardiogr. 2012;25(8):827–34 e1.PubMed Schueler R, Sinning J-M, Momcilovic D, Weber M, Ghanem A, Werner N, et al. Three-dimensional speckle-tracking analysis of left ventricular function after transcatheter aortic valve implantation. J Am Soc Echocardiogr. 2012;25(8):827–34 e1.PubMed
86.
Zurück zum Zitat Casas-Rojo E, Fernandez-Golfin C, Moya-Mur J-L, González-Gómez A, García-Martín A, Morán-Fernández L, et al. Area strain from 3D speckle-tracking echocardiography as an independent predictor of early symptoms or ventricular dysfunction in asymptomatic severe mitral regurgitation with preserved ejection fraction. Int J Cardiovasc Imaging. 2016;32(8):1189–98.PubMed Casas-Rojo E, Fernandez-Golfin C, Moya-Mur J-L, González-Gómez A, García-Martín A, Morán-Fernández L, et al. Area strain from 3D speckle-tracking echocardiography as an independent predictor of early symptoms or ventricular dysfunction in asymptomatic severe mitral regurgitation with preserved ejection fraction. Int J Cardiovasc Imaging. 2016;32(8):1189–98.PubMed
87.
Zurück zum Zitat Scandura S, Dipasqua F, Gargiulo G, Capodanno D, Caggegi A, Grasso C, et al. Early results of MitraClip system implantation by real-time three-dimensional speckle-tracking left ventricle analysis. J Cardiovasc Med. 2016;17(11):843–9. Scandura S, Dipasqua F, Gargiulo G, Capodanno D, Caggegi A, Grasso C, et al. Early results of MitraClip system implantation by real-time three-dimensional speckle-tracking left ventricle analysis. J Cardiovasc Med. 2016;17(11):843–9.
88.
Zurück zum Zitat Broch K, de Marchi SF, Massey R, Hisdal J, Aakhus S, Gullestad L, et al. Left Ventricular Contraction Pattern in Chronic Aortic Regurgitation and Preserved Ejection Fraction: Simultaneous Stress-Strain Analysis by Three-Dimensional Echocardiography. J Am Soc Echocardiogr. 2017;30(4):422–30 e2.PubMed Broch K, de Marchi SF, Massey R, Hisdal J, Aakhus S, Gullestad L, et al. Left Ventricular Contraction Pattern in Chronic Aortic Regurgitation and Preserved Ejection Fraction: Simultaneous Stress-Strain Analysis by Three-Dimensional Echocardiography. J Am Soc Echocardiogr. 2017;30(4):422–30 e2.PubMed
89.
Zurück zum Zitat Bax JJ, Gorcsan J. Echocardiography and noninvasive imaging in cardiac resynchronization therapy: results of the PROSPECT (predictors of response to cardiac resynchronization therapy) study in perspective. J Am Coll Cardiol. 2009;53(21):1933–43.PubMed Bax JJ, Gorcsan J. Echocardiography and noninvasive imaging in cardiac resynchronization therapy: results of the PROSPECT (predictors of response to cardiac resynchronization therapy) study in perspective. J Am Coll Cardiol. 2009;53(21):1933–43.PubMed
90.
Zurück zum Zitat Tanaka H, Hara H, Adelstein EC, Schwartzman D, Saba S, Gorcsan J. Comparative mechanical activation mapping of RV pacing to LBBB by 2D and 3D speckle tracking and association with response to resynchronization therapy. J Am Coll Cardiol Img. 2010;3(5):461–71. Tanaka H, Hara H, Adelstein EC, Schwartzman D, Saba S, Gorcsan J. Comparative mechanical activation mapping of RV pacing to LBBB by 2D and 3D speckle tracking and association with response to resynchronization therapy. J Am Coll Cardiol Img. 2010;3(5):461–71.
91.
Zurück zum Zitat Tanaka H, Hara H, Saba S, Gorcsan J. Usefulness of three-dimensional speckle tracking strain to quantify dyssynchrony and the site of latest mechanical activation. Am J Cardiol. 2010;105(2):235–42.PubMed Tanaka H, Hara H, Saba S, Gorcsan J. Usefulness of three-dimensional speckle tracking strain to quantify dyssynchrony and the site of latest mechanical activation. Am J Cardiol. 2010;105(2):235–42.PubMed
92.
Zurück zum Zitat Tatsumi K, Tanaka H, Matsumoto K, Hiraishi M, Miyoshi T, Tsuji T, et al. Mechanical left ventricular dyssynchrony in heart failure patients with narrow QRS duration as assessed by three-dimensional speckle area tracking strain. Am J Cardiol. 2011;108(6):867–72.PubMed Tatsumi K, Tanaka H, Matsumoto K, Hiraishi M, Miyoshi T, Tsuji T, et al. Mechanical left ventricular dyssynchrony in heart failure patients with narrow QRS duration as assessed by three-dimensional speckle area tracking strain. Am J Cardiol. 2011;108(6):867–72.PubMed
93.
Zurück zum Zitat Tatsumi K, Tanaka H, Tsuji T, Kaneko A, Ryo K, Yamawaki K, et al. Strain dyssynchrony index determined by three-dimensional speckle area tracking can predict response to cardiac resynchronization therapy. Cardiovasc Ultrasound. 2011;9(1):11.PubMedPubMedCentral Tatsumi K, Tanaka H, Tsuji T, Kaneko A, Ryo K, Yamawaki K, et al. Strain dyssynchrony index determined by three-dimensional speckle area tracking can predict response to cardiac resynchronization therapy. Cardiovasc Ultrasound. 2011;9(1):11.PubMedPubMedCentral
94.
Zurück zum Zitat Thebault C, Donal E, Bernard A, Moreau O, Schnell F, Mabo P, et al. Real-time three-dimensional speckle tracking echocardiography: a novel technique to quantify global left ventricular mechanical dyssynchrony. Eur J Echocardiogr. 2011;12(1):26–32.PubMed Thebault C, Donal E, Bernard A, Moreau O, Schnell F, Mabo P, et al. Real-time three-dimensional speckle tracking echocardiography: a novel technique to quantify global left ventricular mechanical dyssynchrony. Eur J Echocardiogr. 2011;12(1):26–32.PubMed
95.
Zurück zum Zitat Seo Y, Yamasaki H, Kawamura R, Ishizu T, Igarashi M, Sekiguchi Y, et al. Left ventricular activation imaging by 3-dimensional speckle-tracking echocardiography. Comparison with electrical activation mapping. Circ J. 2013;77(10):2481–9.PubMed Seo Y, Yamasaki H, Kawamura R, Ishizu T, Igarashi M, Sekiguchi Y, et al. Left ventricular activation imaging by 3-dimensional speckle-tracking echocardiography. Comparison with electrical activation mapping. Circ J. 2013;77(10):2481–9.PubMed
96.
Zurück zum Zitat Seo Y, Ishizu T, Kawamura R, Yamamoto M, Kuroki K, Igarashi M, et al. Three-dimensional propagation imaging of left ventricular activation by speckle-tracking echocardiography to predict responses to cardiac resynchronization therapy. J Am Soc Echocardiogr. 2015;28(5):606–14.PubMed Seo Y, Ishizu T, Kawamura R, Yamamoto M, Kuroki K, Igarashi M, et al. Three-dimensional propagation imaging of left ventricular activation by speckle-tracking echocardiography to predict responses to cardiac resynchronization therapy. J Am Soc Echocardiogr. 2015;28(5):606–14.PubMed
97.
Zurück zum Zitat Shin SH, Suh YJ, Baek Y-S, Lee M-J, Park S-D, Kwon S-W, et al. Impact of area strain by 3D speckle tracking on clinical outcome in patients after acute myocardial infarction. Echocardiography (Mount Kisco, NY). 2016;33(12):1854–9. Shin SH, Suh YJ, Baek Y-S, Lee M-J, Park S-D, Kwon S-W, et al. Impact of area strain by 3D speckle tracking on clinical outcome in patients after acute myocardial infarction. Echocardiography (Mount Kisco, NY). 2016;33(12):1854–9.
98.
Zurück zum Zitat Sun M, Kang Y, Cheng L, Pan C, Cao X, Yao H, et al. Global longitudinal strain is an independent predictor of cardiovascular events in patients with maintenance hemodialysis: a prospective study using three-dimensional speckle tracking echocardiography. Int J Cardiovasc Imaging. 2016;32(5):757–66.PubMed Sun M, Kang Y, Cheng L, Pan C, Cao X, Yao H, et al. Global longitudinal strain is an independent predictor of cardiovascular events in patients with maintenance hemodialysis: a prospective study using three-dimensional speckle tracking echocardiography. Int J Cardiovasc Imaging. 2016;32(5):757–66.PubMed
99.
Zurück zum Zitat Medvedofsky D, Maffessanti F, Weinert L, Tehrani DM, Narang A, Addetia K, et al. 2D and 3D echocardiography-derived indices of left ventricular function and shape: relationship with mortality. J Am Coll Cardiol Img. 2018;11(11):1569–79. Medvedofsky D, Maffessanti F, Weinert L, Tehrani DM, Narang A, Addetia K, et al. 2D and 3D echocardiography-derived indices of left ventricular function and shape: relationship with mortality. J Am Coll Cardiol Img. 2018;11(11):1569–79.
100.
Zurück zum Zitat Medvedofsky D, Lang RM, Weinert L, Tehrani DM, Narang A, Mor-Avi V. 3D echocardiographic global longitudinal strain can identify patients with mildly-to-moderately reduced ejection fraction at higher cardiovascular risk. Int J Cardiovasc Imaging. 2019;35(9):1573–9.PubMed Medvedofsky D, Lang RM, Weinert L, Tehrani DM, Narang A, Mor-Avi V. 3D echocardiographic global longitudinal strain can identify patients with mildly-to-moderately reduced ejection fraction at higher cardiovascular risk. Int J Cardiovasc Imaging. 2019;35(9):1573–9.PubMed
101.
Zurück zum Zitat Weidemann F, Herrmann S, Störk S, Niemann M, Frantz S, Lange V, et al. Impact of myocardial fibrosis in patients with symptomatic severe aortic stenosis. Circulation. 2009;120(7):577–84.PubMed Weidemann F, Herrmann S, Störk S, Niemann M, Frantz S, Lange V, et al. Impact of myocardial fibrosis in patients with symptomatic severe aortic stenosis. Circulation. 2009;120(7):577–84.PubMed
102.
Zurück zum Zitat Tavard F, Simon A, Leclercq C, Donal E, Hernandez AI, Garreau M. Multimodal registration and data fusion for cardiac resynchronization therapy optimization. IEEE Trans Med Imaging. 2014;33(6):1363–72.PubMed Tavard F, Simon A, Leclercq C, Donal E, Hernandez AI, Garreau M. Multimodal registration and data fusion for cardiac resynchronization therapy optimization. IEEE Trans Med Imaging. 2014;33(6):1363–72.PubMed
103.
Zurück zum Zitat Maffessanti F, Patel AR, Patel MB, Walter JJ, Mediratta A, Medvedofsky D, et al. Non-invasive assessment of the haemodynamic significance of coronary stenosis using fusion of cardiac computed tomography and 3D echocardiography. Eur Heart J Cardiovasc Imaging. 2017;18:670–80.PubMed Maffessanti F, Patel AR, Patel MB, Walter JJ, Mediratta A, Medvedofsky D, et al. Non-invasive assessment of the haemodynamic significance of coronary stenosis using fusion of cardiac computed tomography and 3D echocardiography. Eur Heart J Cardiovasc Imaging. 2017;18:670–80.PubMed
104.
Zurück zum Zitat Mor-Avi V, Patel MB, Maffessanti F, Singh A, Medvedofsky D, Zaidi SJZ, et al. Fusion of three-dimensional echocardiographic regional myocardial strain with cardiac computed tomography for noninvasive evaluation of the hemodynamic impact of coronary stenosis in patients with chest pain. J Am Soc Echocardiogr. 2018;31(6):664–73.PubMedPubMedCentral Mor-Avi V, Patel MB, Maffessanti F, Singh A, Medvedofsky D, Zaidi SJZ, et al. Fusion of three-dimensional echocardiographic regional myocardial strain with cardiac computed tomography for noninvasive evaluation of the hemodynamic impact of coronary stenosis in patients with chest pain. J Am Soc Echocardiogr. 2018;31(6):664–73.PubMedPubMedCentral
105.
Zurück zum Zitat Farsalinos KE, Daraban AM, Ünlü S, Thomas JD, Badano LP, Voigt J-U. Head-to-Head Comparison of Global Longitudinal Strain Measurements among Nine Different Vendors: The EACVI/ASE Inter-Vendor Comparison Study. J Am Soc Echocardiogr. 2015;28(10):1171–81 e2.PubMed Farsalinos KE, Daraban AM, Ünlü S, Thomas JD, Badano LP, Voigt J-U. Head-to-Head Comparison of Global Longitudinal Strain Measurements among Nine Different Vendors: The EACVI/ASE Inter-Vendor Comparison Study. J Am Soc Echocardiogr. 2015;28(10):1171–81 e2.PubMed
106.
Zurück zum Zitat Voigt JU, Pedrizzetti G, Lysyansky P, Marwick TH, Houle H, Baumann R, et al. Definitions for a common standard for 2D speckle tracking echocardiography: consensus document of the EACVI/ASE/industry task force to standardize deformation imaging. Eur Heart J Cardiovasc Imaging. 2015;16(1):1–11.PubMed Voigt JU, Pedrizzetti G, Lysyansky P, Marwick TH, Houle H, Baumann R, et al. Definitions for a common standard for 2D speckle tracking echocardiography: consensus document of the EACVI/ASE/industry task force to standardize deformation imaging. Eur Heart J Cardiovasc Imaging. 2015;16(1):1–11.PubMed
107.
Zurück zum Zitat Mirea O, Pagourelias ED, Duchenne J, Bogaert J, Thomas JD, Badano LP, et al. Intervendor differences in the accuracy of detecting regional functional abnormalities. J Am Coll Cardiol Img. 2018;11(1):25–34. Mirea O, Pagourelias ED, Duchenne J, Bogaert J, Thomas JD, Badano LP, et al. Intervendor differences in the accuracy of detecting regional functional abnormalities. J Am Coll Cardiol Img. 2018;11(1):25–34.
108.
Zurück zum Zitat Ünlü S, Mirea O, Duchenne J, Pagourelias ED, Bézy S, Thomas JD, et al. Comparison of Feasibility, Accuracy, and Reproducibility of Layer-Specific Global Longitudinal Strain Measurements Among Five Different Vendors: A Report from the EACVI-ASE Strain Standardization Task Force. J Am Soc Echocardiogr. 2018;31(3):374–80 e1.PubMed Ünlü S, Mirea O, Duchenne J, Pagourelias ED, Bézy S, Thomas JD, et al. Comparison of Feasibility, Accuracy, and Reproducibility of Layer-Specific Global Longitudinal Strain Measurements Among Five Different Vendors: A Report from the EACVI-ASE Strain Standardization Task Force. J Am Soc Echocardiogr. 2018;31(3):374–80 e1.PubMed
109.
Zurück zum Zitat de Knegt MC, Fuchs A, Weeke P, Mogelvang R, Hassager C, Kofoed KF. Optimisation of coronary vascular territorial 3D echocardiographic strain imaging using computed tomography: a feasibility study using image fusion. Int J Cardiovasc Imaging. 2016;32(12):1715–23.PubMed de Knegt MC, Fuchs A, Weeke P, Mogelvang R, Hassager C, Kofoed KF. Optimisation of coronary vascular territorial 3D echocardiographic strain imaging using computed tomography: a feasibility study using image fusion. Int J Cardiovasc Imaging. 2016;32(12):1715–23.PubMed
110.
Zurück zum Zitat Mangual JO, De Luca A, Domenichini F, Galanti G, Pedrizzetti G. Three-dimensional reconstruction of the functional strain-line pattern in the left ventricle from 3-dimensional echocardiography. Circ Cardiovasc Imaging. 2012;5:808–9.PubMed Mangual JO, De Luca A, Domenichini F, Galanti G, Pedrizzetti G. Three-dimensional reconstruction of the functional strain-line pattern in the left ventricle from 3-dimensional echocardiography. Circ Cardiovasc Imaging. 2012;5:808–9.PubMed
Metadaten
Titel
A review of current trends in three-dimensional analysis of left ventricular myocardial strain
verfasst von
Yosuke Nabeshima
Yoshihiro Seo
Masaaki Takeuchi
Publikationsdatum
01.12.2020
Verlag
BioMed Central
Erschienen in
Cardiovascular Ultrasound / Ausgabe 1/2020
Elektronische ISSN: 1476-7120
DOI
https://doi.org/10.1186/s12947-020-00204-3

Weitere Artikel der Ausgabe 1/2020

Cardiovascular Ultrasound 1/2020 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

Nach Herzinfarkt mit Typ-1-Diabetes schlechtere Karten als mit Typ 2?

29.05.2024 Herzinfarkt Nachrichten

Bei Menschen mit Typ-2-Diabetes sind die Chancen, einen Myokardinfarkt zu überleben, in den letzten 15 Jahren deutlich gestiegen – nicht jedoch bei Betroffenen mit Typ 1.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.