Skip to main content

Open Access 13.04.2024 | Original Article

Age and mean platelet volume-based nomogram for predicting the therapeutic efficacy of metoprolol in Chinese pediatric patients with vasovagal syncope

verfasst von: Xiao-Juan Du, Ya-Qian Huang, Xue-Ying Li, Ying Liao, Hong-Fang Jin, Jun-Bao Du

Erschienen in: World Journal of Pediatrics

Abstract

Background

Vasovagal syncope (VVS) is the most common type of orthostatic intolerance in children. We investigated whether platelet-related factors related to treatment efficacy in children suffering from VVS treated with metoprolol.

Methods

Metoprolol-treated VVS patients were recruited. The median duration of therapy was three months. Patients were followed and divided into two groups, treament-effective group and treatment-ineffective group. Logistic and least absolute shrinkage selection operator regressions were used to examine treatment outcome variables. Receiver-operating characteristic (ROC) curves, precision–recall (PR) curves, calibration plots, and decision curve analyses were used to evaluate the nomogram model.

Results

Among the 72 patients who complete the follow-up, treatment-effective group and treatment-ineffective group included 42 (58.3%) and 30 (41.7%) cases, respectively. The patients in the treatment-effective group exhibited higher mean platelet volume (MPV) [(11.0 ± 1.0) fl vs. (9.8 ± 1.0) fl, P < 0.01] and platelet distribution width [12.7% (12.3%, 14.3%) vs. 11.3% (10.2%, 12.2%), P < 0.01] than those in the treatment-ineffective group. The sex ratio was significantly different (P = 0.046). A fit model comprising age [odds ratio (OR) = 0.766, 95% confidence interval (CI) = 0.594–0.987] and MPV (OR = 5.613, 95% CI = 2.297–13.711) might predict therapeutic efficacy. The area under the curve of the ROC and PR curves was computed to be 0.85 and 0.9, respectively. The P value of the Hosmer–Lemeshow test was 0.27. The decision curve analysis confirmed that managing children with VVS based on the predictive model led to a net advantage ranging from 0.01 to 0.58. The nomogram is convenient for clinical applications.

Conclusion

A novel nomogram based on age and MPV can predict the therapeutic benefits of metoprolol in children with VVS.
Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Introduction

Vasovagal syncope (VVS) is a common type of orthostatic intolerance in the pediatric population [1]. Although the prognosis is regarded as benign, injuries associated with syncope may occur in 33% of patients with VVS [2]. Recurrent syncope may lead to not only physical trauma but also mental disorders and poor quality of life in affected children [3, 4]. Unfortunately, no pharmacological treatment with high-quality evidence has been proven to be effective for treating pediatric VVS. Metoprolol is a widely used type of β-adrenergic receptor blocker and is commonly used for treating pediatric VVS [5]. The possible mechanisms for the action of β-blockers in treating patients with VVS include antagonizing increased sympathetic nerve activity [6] and/or the elevated levels of circulating epinephrine (EP) and norepinephrine (NE) [7]. However, the therapeutic effect of metoprolol in pediatric VVS patients is unsatisfactory [8]. This phenomenon may be explained by the fact that not all children with VVS exhibit increased sympathetic activity. Therefore, biomarkers that represent the sympathetic activation status are urgently needed to predict the therapeutic efficacy of metoprolol. According to a mechanism-based study, sympathetic stimulation may boost the binding, movement, and formation of proplatelets in megakaryocytes [9]. The mean platelet volume (MPV) has been reported to be closely associated with enhanced sympathetic nerve activity in VVS [10]. Therefore, this study aimed to determine whether platelet-related parameters could predict the outcomes of metoprolol therapy in children with VVS.

Methods

Research design and subjects

This was a retrospective study that included children aged 4–17 years with VVS. The study was approved by the Institutional Ethics Committees of Peking University First Hospital (No. 202122496), and informed consent was obtained from the patients and their parents.
We included patients based on the following criteria: patients (1) were diagnosed as VVS and were admitted to the pediatric department of Peking University First Hospital between April 2002 and September 2022 and (2) were treated with metoprolol. We excluded patients based on the following criteria: patients (1) had not experienced any syncope or presyncope attack three months before the admission; (2) had other comorbidities, including cardiogenic, neurologic, hematologic, inflammatory, or metabolic diseases; (3) received other medications, including midodrine hydrochloride and pyridostigmine; and (4) did not receive a continuous treatment, or those whose treatment duration was less than one month.
VVS was diagnosed based on the following established criteria [11, 12]: (1) syncope episodes often occur in response to various factors that increase a patient's vulnerability, including transitioning from a lying to a standing position, prolonged periods of standing, and exposure to hot and humid conditions; (2) recurrent syncope episodes; (3) a positive response during the head-up tilt test (HUTT); and (4) patients were excluded for other potential causes of fainting-like events, including epilepsy, hypoglycemia, and cardiac syncope.

Treatment protocol and follow-up

All patients were administered 0.5 mg/kg/day of metoprolol. The median treatment duration was 3 (2, 3) months [13]. After starting the treatment, the therapeutic response was followed up by trained doctors over the telephone or through outpatient visits. The patients were categorized into two groups based on their therapeutic response. Effectiveness was defined as the non-recurrence of syncope during follow-up [14].

Head-up tilt test

As previously described [11, 12, 15, 16], HUTT was performed in areas with dim lighting, warmth, and minimum noise levels. In the present study, the HUTT was performed around 9 a.m. in the morning for all participants. Patients were required to fast for at least four hours and halt the use of drugs that influenced the autonomic nervous system for a period equal to five half-lives of the respective medication. The subjects were monitored in the supine position on a tilt table for 20 minutes (SHUT-100A, Standard, Jiangsu, and ST-711, Juchi, Beijing, China). The tilt table was set at a 60-degree angle, and the test was continued until either a positive reaction occurred or 45 minutes had passed.

Data collection

Demographic data (sex, age, height, and weight), symptoms (total attacks of syncope and duration), and baseline hemodynamics [heart rate, systolic blood pressure, diastolic blood pressure, the platelet-related variables platelet count (PLT), MPV, platelet crit (PCT), and platelet distribution width (PDW)] were analyzed. Demographic data and baseline hemodynamic data were collected from electronic medical records (Donghua and Kaihua, Beijing, China). Blood samples were taken in the morning on the same day or the day before the HUTT for all the participants. After at least 12 hours of fasting, venous blood was collected in a tube containing dipotassium ethylenediaminetetraacetic acid and measured using a Sysmex XE-5000 (Sysmex Corporation, Kobe, Japan). The time interval between blood sample collection and analysis was less than 1 hour for all participants. The platelet count was analyzed by the optical method (PLT-O). MPV was calculated by dividing the total mass of the platelets (PCT) by the total number of platelets.

Data analysis

The data were analyzed using SPSS (version 26.0, IBM) and R (version 4.2.3). The normality of the distribution was tested by the Kolmogorov‒Smirnov method for continuous variables, among which normally distributed data are expressed as the mean ± standard deviation, while non-normally distributed data are expressed as the median (25th percentile, 75th percentile). The difference was computed using χ2 or Fisher's exact test for categorical variables, Student’s t test for normally distributed continuous variables, or the Mann‒Whitney U test for non-normally distributed data. Mean imputation was used to address six missing PCT data points [17, 18]. Least absolute shrinkage and selection operator (LASSO) regression (glmnet package) and logistic regression were used to construct the model. Decision curve analysis (DCA; rmda package), precision‒recall (PR; modEvA package) curves, calibration plots (MASS package), receiver-operating characteristic (ROC) curves, and nomograms (regplot package) were used to evaluate the model. The best cut-off value was established using the Youden index. P < 0.05 indicated statistical significance.

Results

Baseline characteristics

Among the 76 VVS patients included, 72 (94.7%) completed the follow-up (Fig. 1). Thirty-four (47%) patients were females, and 38 (53%) were males. The median age of patients was 12 (10, 14) years. A comparison of baseline characteristics between the treatment-effective group (42 patients, 58%) and treament-ineffective group (30 patients, 42%) is shown in Table 1. MPV [(11.0 ± 1.0) fl vs. (9.8 ± 1.0) fl, P < 0.05] and PDW [(12.7% (12.3%, 14.3%) vs. 11.3% (10.2%, 12.2%), P < 0.05] were greater in the treatment-effective group than those in the treatment-ineffective group. In addition, a statistically significant difference in the sex ratio was found between the two groups (P = 0.046). Moreover, there were no significant differences in the other indicators (all P values > 0.05).
Table 1
Comparison of baseline characteristics between the treatment-effective and treatment-ineffective groups of children with vasovagal syncope and metoprolol therapy
Items
Total
Effective
Ineffective
P
Sex, male/female
38/34
18/24
20/10
0.046
Age (y)
12 (10, 14)
12 (9, 14)
13 (11, 14)
0.220
Weight (kg)
51 ± 16
49 ± 16
53 ± 15
0.237
Height (m)
1.6 ± 0.1
1.6 ± 0.2
1.6 ± 0.1
0.266
Duration of treatment (mon)
3 (2, 3)
3 (2, 3)
3 (2, 3)
0.995
Duration of history (mon)
10 (3, 36)
10 (4, 36)
14 (2, 36)
0.828
Duration of hospitalization (d)
8 (7, 10)
8 (7, 9)
9 (7, 11)
0.413
Total attacks of syncope (time)
3 (2, 5)
3 (2, 5)
4 (2, 5)
0.963
Hemodynamic phenotypes
   
0.964
 Vasoinhibitory
53
31
22
 
 Cardioinhibitory + Mixed
19
11
8
 
HR (bpm)
80 ± 12
80 ± 13
80 ± 12
0.839
SBP (mmHg)
111 ± 12
110 ± 12
112 ± 11
0.377
DBP (mmHg)
64 ± 7
64 ± 6
65 ± 7
0.477
PLT (× 109/μL)
270 ± 60
260 ± 53
284 ± 67
0.095
MPV (fl)
10.5 ± 1.0
11.0 ± 1.0
9.8 ± 1.0
 < 0.001
PCT (%)
0.28 (0.25, 0.31)
0.28 (0.25, 0.31)
0.28 (0.25, 0.32)
0.752
PDW (%)
12.4 (11.2, 12.9)
12.7 (12.3, 14.3)
11.3 (10.2, 12.2)
 < 0.001
Data are presented as mean ± standard deviation or median (25th percentile, 75th percentile). HR heart rate, SBP systolic blood pressure, DBP diastolic blood pressure, PLT platelet, MPV mean platelet volume, PCT platelet crit, PDW platelet distribution width, bpm beat per minute, fl femtoliter.

Construction of the predictive model

All factors included in the study were subjected to LASSO regression for dimensional reduction processing. As shown in Fig. 2, five variables were chosen as potential candidates, namely, age, duration of hospitalization, sex, MPV, and PDW, while the coefficients of the other non-selected factors were reduced to zero with stringent penalization.
Variance inflation factors (VIFs) were calculated to detect multicollinearity among the candidates (Table 2). The aforementioned parameters were subjected to multivariate logical regression, as their VIFs were not more than 5. Finally, as shown in Table 3, age [odds ratio (OR) = 0.766, 95% confidence interval (CI) = 0.594–0.987] and MPV (OR = 5.613, 95% CI = 2.297–13.711) were found to be independent factors associated with metoprolol therapeutic efficacy.
Table 2
Results of multicollinearity analysis
Items
Tolerance
VIF
Age (y)
0.982
1.018
Duration of hospitalization (d)
0.881
1.135
Gender
0.958
1.044
MPV (fl)
0.244
4.104
PDW (%)
0.256
3.907
VIF variance inflation factor, MPV mean platelet volume, PDW platelet distribution width, fl femtoliter
Table 3
Results of multivariate logistic regression analysis
Items
B
SE
Wald
P
OR
95% CI
Lower
Upper
Age (y)
− 0.267
0.129
4.239
0.040
0.766
0.594
0.987
MPV (fl)
1.725
0.456
14.328
 < 0.001
5.613
2.297
13.711
Constant
− 14.511
4.313
11.318
0.001
0.000
  
MPV mean platelet volume, SE standard error, OR odds ratio, CI confidence interval, fl femtoliter

Nomogram of the model

Based on logistic regression analysis, the regression equation was as follows: logit(p) = − 14.511 − 0.267 × age + 1.725 × MPV. A model containing age and the MPV was constructed to predict the therapeutic efficacy of metoprolol. The nomogram was used to visualize the findings of the model (Fig. 3).

Evaluation of the model

The power of the predictive model was assessed using the following methods. According to the ROC curve displayed in Fig. 4a, the area under the curve (AUC) was 0.85, and the best cut-off value was 0.5, resulting in a sensitivity of 88.1% and a specificity of 73.3%. The positive predictive value was 80.4%, and the negative predictive value was 80.8%. The AUC of the PR curve was 0.9, indicating promising predictive results (Fig. 4b). The Hosmer–Lemeshow test was used to evaluate consistency, which showed that the model fit well (P = 0.27). The calibration plot showed that the actual and predicted probabilities were similar (Fig. 4c). DCA revealed that the net benefit changed from 0.01 to 0.58 (Fig. 4d).

Discussion

Our study focused on developing a therapeutic prediction model for metoprolol in pediatric patients with VVS. We found that the MPV and PDW in the treatment-effective group were greater than those in the treatment-ineffective group. Based on multivariate logistic regression, age and the MPV were used to predict therapeutic efficacy. According to the ROC analysis, PR curve, calibration plot, and Hosmer–Lemeshow test, the model demonstrated moderate predictive accuracy and a strong fit between its predictions and the observed data. According to the DCA, the predictive model could lead to improved clinical outcomes.
By comparing the baseline characteristics of the children suffering from VVS treated with metoprolol, we found that the baseline MPV and PDW in the treatment-effective group were greater than those in the treatment-ineffective group. Although there is currently no unified standard reference range for PDW in children, Hu's research pointed out that the range for PDW in a healthy control group with a median age of 12 years was 12.1% (10.8%, 13.1%) [19]. The median age of the children included in our study was also 12 years, and the PDW range was 12.4% (11.2%, 12.9%), which was similar to that in Hu’s research [19]. In our research, there was no significant difference in heart rate between the treatment-effective and treatment-ineffective groups, which was in accordance with the previous studies by Yuan et al. [20] and Kong et al. [21]. There are different phenotypes of VVS, including vasoinhibitory, cardioinhibitory, and mixed VVS. Our results showed that there was no relationship between the different phenotypes of VVS and the metoprolol efficacy. We speculated that the reason that the effective rate was similar among the patients with three phenotypes of VVS might be associated with the resting catecholamine levels. No difference in 24-hour urine NE levels was found between the vasoinhibitory and mixed subtypes of VVS in children [21], which supported our speculation.
The MPV represents the average platelet size of a blood sample. Newly generated platelets are larger than older platelets; therefore, a high MPV may imply that the bone marrow produces new platelets at an increased speed under different stimuli. The PDW reflects the variability in platelet size and is considered as a marker of platelet activation. A high PDW indicates that platelet size varies greatly, usually resulting from platelet activation and an increased number of newly generated platelets. Therefore, a high MPV and PDW are related to platelet activation and increased platelet production. VVS is known as the most common type of neurally mediated syncope [22], and increased sympathetic activity has been found in some patients with neurally mediated syncope [23], while enhanced sympathetic activity is directly related to platelet production according to several previous studies [10].
The mechanisms by which sympathetic excitation promotes platelet production and activation may be explained as follows: (1) two primary sympathetic transmitters, NE and EP, can drive platelet activation. An increase in arterial plasma EP concentrations significantly stimulates blood platelet parameters [24]. In vitro, NE mediated platelet activation in a concentration- and time-dependent manner [25]; (2) NE and EP can boost megakaryocyte attachment, movement, and proplatelet formation via adrenoceptor-mediated extracellular signal-regulated kinase stimulation, which causes a noticeable increase in platelet production [9]; (3) activation of adrenergic receptors may stimulate circulating platelets by boosting surface levels of P-selectin, enhancing conformational modifications of the glycoprotein IIb/IIIa receptor [26, 27]. These studies support the hypothesis that the increased MPV and PDW may indicate increased sympathetic activity among patients in the treatment-effective group. Furthermore, these findings partially explain the favorable response to the β-adrenergic receptor blocker metoprolol observed in our study. However, the PDW was not included in the prediction model after logistic regression, which might imply that the influence of the PDW on therapeutic outcomes was not sufficiently weighted.
Furthermore, in a recent study, proteomic analysis revealed that the expression of platelet-related proteins was upregulated in patients with postural orthostatic tachycardia syndrome (POTS), another type of orthostatic intolerance characterized by an increase in sympathetic activity [28]. Although no similar studies have been conducted in patients with VVS, the results observed in the context of POTS are consistent with our findings.
Univariate analysis also revealed that the proportion of females in the treatment-effective group was greater than that in the treatment-ineffective group. Age was included in the prediction model, which indicated that younger children with VVS may respond better to metoprolol treatment. These results suggest age- and sex-related differences in the efficacy of metoprolol. A study based on the influence of sex on heart rate variability in children revealed that female children presented significantly greater values than male children did in terms of the standard deviation of the RR intervals and absolute high frequency [29]. A large multicohort study on the development of the cardiac autonomic nervous system in children revealed that sympathetic activity decreased linearly with age, whereas parasympathetic activity increased from infancy to childhood, plateaued during middle childhood, and then decreased slightly throughout adolescence [30]. These results indicate that the development of autonomic nervous system activity varies with age and sex, which may account for the distinct responses to adrenergic receptor blockers. However, further research is needed to confirm this phenomenon and its underlying mechanisms to provide information for the treatment and management of autonomic nervous system diseases, including VVS.
All factors were included in an LASSO regression, a notable feature of which is the incorporation of the penalty term λ for variable selection in the model. It is widely used in the medical field for model construction [31, 32]. Based on the non-zero values, five variables, namely, age, duration of hospitalization, sex, MPV, and PDW, were included in the logistic regression. Based on logistic regression, the prediction model was constructed with the following equation: logit(p) = − 14.511 − 0.267 × age + 1.725 × MPV. This study demonstrated the feasibility and importance of nomograms for therapeutic prediction [33]. We successfully developed a nomogram based on this model. The nomogram showed satisfactory predictive ability and clinical applicability.
In numerous studies, traditional methods, including ROC curves [34], PR curves [35], calibration curves [36], and the Hosmer–Lemeshow test [37], have been used to evaluate the efficacy of prediction models. As an alternative assessment method, DCA has been widely adopted in recent research studies [38, 39]. This approach allows the calculation of the “net benefit” in clinical practice concerning prediction models [40], thereby integrating the preferences of decision-makers into the analysis. As a predictive tool, our model showed satisfactory performance at a threshold value of 0.5, with AUCs of 0.85 and 0.9 for the ROC and PR curves, respectively. According to the calibration plot and Hosmer–Lemeshow test, the model demonstrated moderate predictive accuracy and a strong fit between the predictions and observations. According to the DCA, our predictive model could lead to improved clinical outcomes, with a net improvement ranging from 0.01 to 0.58. In addition to a limited threshold probability range, treatment based on the prediction model could yield substantial benefits in comparison to treating all or none of the patients.
Although prior studies have used several factors, such as 24-hour urine NE [21], the Poincaré plot [20], baroreflex sensitivity [13], and the left-ventricular ejection fraction [41], to predict the therapeutic efficacy of metoprolol, each has restrictions in terms of cost, operability, or exponential stability. Our study provides the first nomogram based on this model to enhance its clinical applicability. A prediction model comprising age and the MPV is convenient to apply, because all the included factors are easy to collect in clinical practice. For practical reasons, we hope that this study will not only serve as a conclusion but also as a new beginning for future well-designed studies that include larger cohorts and investigate the therapeutic efficacy of metoprolol in children with VVS.
Nonetheless, our study is subject to certain limitations. Firstly, the study was limited by the use of a single hospital with an insufficient number of patients, which could introduce a potential bias that may understate the influence of factors on therapeutic efficacy. Secondly, the biomarkers were measured only at baseline; however, it may be worthwhile to continue monitoring them and examining their dynamic changes over time. Thirdly, the follow-up period was considerably short. Long-term follow-up helps gain a deeper understanding of the progress and prognosis of the disease. Furthermore, due to dysfunction of the autonomic nervous system, another limitation could be the lack of analysis of heart rate variability and NE-level measurements. We concur that further research encompassing large-scale investigations with multiple factors and robust designs is warranted to validate or refute our findings.

Acknowledgements

The authors are grateful to those who contributed to this study.

Declarations

Ethical approval

This study was authorized by the Ethics Committees of Peking University First Hospital (No. 2022496) and informed consent was obtained from participants and their parents or legal guardians.

Conflict of interest

No financial or non-financial benefits have been received or will be received from any party related directly or indirectly to the subject of this article. Author Jun-Bao Du is a member of the Editorial Board for World Journal of Pediatrics. The paper was handled by the other editor and has undergone a rigorous peer-review process. Author Jun-Bao Du was not involved in the journal's review or decisions related to this manuscript. The authors have no conflict of interest to declare.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Jetzt e.Med zum Sonderpreis bestellen!

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

Jetzt bestellen und 100 € sparen!

e.Med Pädiatrie

Kombi-Abonnement

Mit e.Med Pädiatrie erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Pädiatrie, den Premium-Inhalten der pädiatrischen Fachzeitschriften, inklusive einer gedruckten Pädiatrie-Zeitschrift Ihrer Wahl.

Literatur
1.
Zurück zum Zitat Cui YX, Du JB, Jin HF. Baroreflex sensitivity and its implication in neurally mediated syncope in children. World J Pediatr. 2023;19:1023–9.CrossRefPubMed Cui YX, Du JB, Jin HF. Baroreflex sensitivity and its implication in neurally mediated syncope in children. World J Pediatr. 2023;19:1023–9.CrossRefPubMed
2.
Zurück zum Zitat Jorge JG, Raj SR, Teixeira PS, Teixeira JAC, Sheldon RS. Likelihood of injury due to vasovagal syncope: a systematic review and meta-analysis. Europace. 2021;23:1092–9.CrossRefPubMed Jorge JG, Raj SR, Teixeira PS, Teixeira JAC, Sheldon RS. Likelihood of injury due to vasovagal syncope: a systematic review and meta-analysis. Europace. 2021;23:1092–9.CrossRefPubMed
3.
Zurück zum Zitat Atici A, Asoglu R, Demirkiran A, Serbest NG, Emektas B, Sarikaya R, et al. The relationship between clinical characteristics and psychological status and quality of life in patients with vasovagal syncope. North Clin Istanb. 2020;7:237–45.PubMedPubMedCentral Atici A, Asoglu R, Demirkiran A, Serbest NG, Emektas B, Sarikaya R, et al. The relationship between clinical characteristics and psychological status and quality of life in patients with vasovagal syncope. North Clin Istanb. 2020;7:237–45.PubMedPubMedCentral
4.
Zurück zum Zitat Ng J, Sheldon RS, Ritchie D, Raj V, Raj SR. Reduced quality of life and greater psychological distress in vasovagal syncope patients compared to healthy individuals. Pacing Clin Electrophysiol. 2019;42:180–8.CrossRefPubMed Ng J, Sheldon RS, Ritchie D, Raj V, Raj SR. Reduced quality of life and greater psychological distress in vasovagal syncope patients compared to healthy individuals. Pacing Clin Electrophysiol. 2019;42:180–8.CrossRefPubMed
5.
Zurück zum Zitat Sheldon R, Rose S, Connolly S. Prevention of Syncope Trial (POST): a randomized clinical trial of beta blockers in the prevention of vasovagal syncope; rationale and study design. Europace. 2003;5:71–5.CrossRefPubMed Sheldon R, Rose S, Connolly S. Prevention of Syncope Trial (POST): a randomized clinical trial of beta blockers in the prevention of vasovagal syncope; rationale and study design. Europace. 2003;5:71–5.CrossRefPubMed
6.
Zurück zum Zitat Béchir M, Binggeli C, Corti R, Chenevard R, Spieker L, Ruschitzka F, et al. Dysfunctional baroreflex regulation of sympathetic nerve activity in patients with vasovagal syncope. Circulation. 2003;107:1620–5.CrossRefPubMed Béchir M, Binggeli C, Corti R, Chenevard R, Spieker L, Ruschitzka F, et al. Dysfunctional baroreflex regulation of sympathetic nerve activity in patients with vasovagal syncope. Circulation. 2003;107:1620–5.CrossRefPubMed
7.
Zurück zum Zitat Benditt DG, Detloff BL, Adkisson WO, Lu F, Sakaguchi S, Schussler S, et al. Age-dependence of relative change in circulating epinephrine and norepinephrine concentrations during tilt-induced vasovagal syncope. Heart Rhythm. 2012;9:1847–52.CrossRefPubMed Benditt DG, Detloff BL, Adkisson WO, Lu F, Sakaguchi S, Schussler S, et al. Age-dependence of relative change in circulating epinephrine and norepinephrine concentrations during tilt-induced vasovagal syncope. Heart Rhythm. 2012;9:1847–52.CrossRefPubMed
8.
Zurück zum Zitat Tao C, Cui Y, Zhang C, Liu X, Zhang Q, Liu P, et al. Clinical efficacy of empirical therapy in children with vasovagal syncope. Children (Basel). 2022;9:1065.PubMed Tao C, Cui Y, Zhang C, Liu X, Zhang Q, Liu P, et al. Clinical efficacy of empirical therapy in children with vasovagal syncope. Children (Basel). 2022;9:1065.PubMed
9.
Zurück zum Zitat Chen S, Du C, Shen M, Zhao G, Xu Y, Yang K, et al. Sympathetic stimulation facilitates thrombopoiesis by promoting megakaryocyte adhesion, migration, and proplatelet formation. Blood. 2016;127:1024–35.CrossRefPubMed Chen S, Du C, Shen M, Zhao G, Xu Y, Yang K, et al. Sympathetic stimulation facilitates thrombopoiesis by promoting megakaryocyte adhesion, migration, and proplatelet formation. Blood. 2016;127:1024–35.CrossRefPubMed
10.
Zurück zum Zitat Kabul HK, Celik M, Yuksel U, Yalcinkaya E, Gokoglan Y, Bugan B, et al. Increased sympathetic activation in patients with vasovagal syncope is associated with higher mean platelet volume levels. Eur Rev Med Pharmacol Sci. 2014;18:235–41.PubMed Kabul HK, Celik M, Yuksel U, Yalcinkaya E, Gokoglan Y, Bugan B, et al. Increased sympathetic activation in patients with vasovagal syncope is associated with higher mean platelet volume levels. Eur Rev Med Pharmacol Sci. 2014;18:235–41.PubMed
11.
Zurück zum Zitat Zou R, Wang S, Li F, Lin P, Zhang J, Wang Y, et al. The application of head-up tilt test to diagnose hemodynamic type of orthostatic intolerance in children aged between 3 and 5 years. Front Pediatr. 2021;9:623880.CrossRefPubMedPubMedCentral Zou R, Wang S, Li F, Lin P, Zhang J, Wang Y, et al. The application of head-up tilt test to diagnose hemodynamic type of orthostatic intolerance in children aged between 3 and 5 years. Front Pediatr. 2021;9:623880.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Wang C, Li Y, Liao Y, Tian H, Huang M, Dong X, et al. 2018 Chinese Pediatric Cardiology Society (CPCS) guideline for diagnosis and treatment of syncope in children and adolescents. Sci Bull (Beijing). 2018;63:1558–64.CrossRef Wang C, Li Y, Liao Y, Tian H, Huang M, Dong X, et al. 2018 Chinese Pediatric Cardiology Society (CPCS) guideline for diagnosis and treatment of syncope in children and adolescents. Sci Bull (Beijing). 2018;63:1558–64.CrossRef
13.
Zurück zum Zitat Tao C, Li X, Tang C, Jin H, Du J. Baroreflex sensitivity predicts response to metoprolol in children with vasovagal syncope: a pilot study. Front Neurosci. 2019;13:1329.CrossRefPubMedPubMedCentral Tao C, Li X, Tang C, Jin H, Du J. Baroreflex sensitivity predicts response to metoprolol in children with vasovagal syncope: a pilot study. Front Neurosci. 2019;13:1329.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Tao C, Li X, Tang C, Jin H, Du J. Acceleration index predicts efficacy of orthostatic training on vasovagal syncope in children. J Pediatr. 2019;207:54–8.CrossRefPubMed Tao C, Li X, Tang C, Jin H, Du J. Acceleration index predicts efficacy of orthostatic training on vasovagal syncope in children. J Pediatr. 2019;207:54–8.CrossRefPubMed
15.
Zurück zum Zitat The Subspecialty Group of Cardiology, The Society of Pediatrics, Chinese Medical Association, the Editorial Board of Chinese Journal of Pediatrics. Guidelines for diagnosis of syncope in children. Zhonghua Er Ke Za Zhi. 2009;47:99–101 (in Chinese). The Subspecialty Group of Cardiology, The Society of Pediatrics, Chinese Medical Association, the Editorial Board of Chinese Journal of Pediatrics. Guidelines for diagnosis of syncope in children. Zhonghua Er Ke Za Zhi. 2009;47:99–101 (in Chinese).
16.
Zurück zum Zitat Du J, Li W, Chen J. A study on head-up tilt test for the diagnosis of unexplained syncope. Zhonghua Er Ke Za Zhi. 1997;35:30–3 (in Chinese). Du J, Li W, Chen J. A study on head-up tilt test for the diagnosis of unexplained syncope. Zhonghua Er Ke Za Zhi. 1997;35:30–3 (in Chinese).
17.
Zurück zum Zitat Nijman SWJ, Groenhof TKJ, Hoogland J, Bots ML, Brandjes M, Jacobs JJL, et al. Real-time imputation of missing predictor values improved the application of prediction models in daily practice. J Clin Epidemiol. 2021;134:22–34.CrossRefPubMed Nijman SWJ, Groenhof TKJ, Hoogland J, Bots ML, Brandjes M, Jacobs JJL, et al. Real-time imputation of missing predictor values improved the application of prediction models in daily practice. J Clin Epidemiol. 2021;134:22–34.CrossRefPubMed
18.
Zurück zum Zitat Hadeed SJ, O’Rourke MK, Burgess JL, Harris RB, Canales RA. Imputation methods for addressing missing data in short-term monitoring of air pollutants. Sci Total Environ. 2020;730:139140.CrossRefPubMedPubMedCentral Hadeed SJ, O’Rourke MK, Burgess JL, Harris RB, Canales RA. Imputation methods for addressing missing data in short-term monitoring of air pollutants. Sci Total Environ. 2020;730:139140.CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Hu Y, He B, Han Z, Wang Y, Tao C, Wang Y, et al. Risk factors for orthostatic hypertension in children. J Pediatr. 2020;227:212–7.e1.CrossRefPubMed Hu Y, He B, Han Z, Wang Y, Tao C, Wang Y, et al. Risk factors for orthostatic hypertension in children. J Pediatr. 2020;227:212–7.e1.CrossRefPubMed
20.
Zurück zum Zitat Yuan P, Li X, Tao C, Du X, Zhang C, Du J, et al. Poincaré plot can be a useful tool to select potential responders to metoprolol therapy in children with vasovagal syncope. Int J Gen Med. 2022;15:2681–93.CrossRefPubMedPubMedCentral Yuan P, Li X, Tao C, Du X, Zhang C, Du J, et al. Poincaré plot can be a useful tool to select potential responders to metoprolol therapy in children with vasovagal syncope. Int J Gen Med. 2022;15:2681–93.CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Kong Q, Yang X, Cai Z, Pan Y, Wang M, Liu M, et al. Twenty-four-hour urine NE level as a predictor of the therapeutic response to metoprolol in children with recurrent vasovagal syncope. Ir J Med Sci. 2019;188:1279–87.CrossRefPubMed Kong Q, Yang X, Cai Z, Pan Y, Wang M, Liu M, et al. Twenty-four-hour urine NE level as a predictor of the therapeutic response to metoprolol in children with recurrent vasovagal syncope. Ir J Med Sci. 2019;188:1279–87.CrossRefPubMed
22.
Zurück zum Zitat Cui Y, Liao Y, Zhang Q, Yan H, Liu P, Wang Y, et al. Spectrum of underlying diseases in syncope and treatment of neurally mediated syncope in children and adolescents over the past 30 years: a single center study. Front Cardiovasc Med. 2022;9:1017505.CrossRefPubMedPubMedCentral Cui Y, Liao Y, Zhang Q, Yan H, Liu P, Wang Y, et al. Spectrum of underlying diseases in syncope and treatment of neurally mediated syncope in children and adolescents over the past 30 years: a single center study. Front Cardiovasc Med. 2022;9:1017505.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Kula S, Olgunturk R, Tunaoglu FS, Canter B. Circadian variation of QTc dispersion in children with vasovagal syncope. Int J Cardiol. 2004;97:407–10.CrossRefPubMed Kula S, Olgunturk R, Tunaoglu FS, Canter B. Circadian variation of QTc dispersion in children with vasovagal syncope. Int J Cardiol. 2004;97:407–10.CrossRefPubMed
24.
Zurück zum Zitat Lande K, Gjesdal K, Fønstelien E, Kjeldsen SE, Eide I. Effects of adrenaline infusion on platelet number, volume and release reaction. Thromb Haemost. 1985;54:450–3.CrossRefPubMed Lande K, Gjesdal K, Fønstelien E, Kjeldsen SE, Eide I. Effects of adrenaline infusion on platelet number, volume and release reaction. Thromb Haemost. 1985;54:450–3.CrossRefPubMed
25.
Zurück zum Zitat Tschuor C, Asmis LM, Lenzlinger PM, Tanner M, Härter L, Keel M, et al. In vitro norepinephrine significantly activates isolated platelets from healthy volunteers and critically ill patients following severe traumatic brain injury. Crit Care. 2008;12:R80.CrossRefPubMedPubMedCentral Tschuor C, Asmis LM, Lenzlinger PM, Tanner M, Härter L, Keel M, et al. In vitro norepinephrine significantly activates isolated platelets from healthy volunteers and critically ill patients following severe traumatic brain injury. Crit Care. 2008;12:R80.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Holme PA, Orvim U, Hamers MJ, Solum NO, Brosstad FR, Barstad RM, et al. Shear-induced platelet activation and platelet microparticle formation at blood flow conditions as in arteries with a severe stenosis. Arterioscler Thromb Vasc Biol. 1997;17:646–53.CrossRefPubMed Holme PA, Orvim U, Hamers MJ, Solum NO, Brosstad FR, Barstad RM, et al. Shear-induced platelet activation and platelet microparticle formation at blood flow conditions as in arteries with a severe stenosis. Arterioscler Thromb Vasc Biol. 1997;17:646–53.CrossRefPubMed
27.
Zurück zum Zitat Wiedmer T, Shattil SJ, Cunningham M, Sims PJ. Role of calcium and calpain in complement-induced vesiculation of the platelet plasma membrane and in the exposure of the platelet factor Va receptor. Biochemistry. 1990;29:623–32.CrossRefPubMed Wiedmer T, Shattil SJ, Cunningham M, Sims PJ. Role of calcium and calpain in complement-induced vesiculation of the platelet plasma membrane and in the exposure of the platelet factor Va receptor. Biochemistry. 1990;29:623–32.CrossRefPubMed
28.
Zurück zum Zitat Johansson M, Yan H, Welinder C, Végvári Á, Hamrefors V, Bäck M, et al. Plasma proteomic profiling in postural orthostatic tachycardia syndrome (POTS) reveals new disease pathways. Sci Rep. 2022;12:20051.CrossRefPubMedPubMedCentral Johansson M, Yan H, Welinder C, Végvári Á, Hamrefors V, Bäck M, et al. Plasma proteomic profiling in postural orthostatic tachycardia syndrome (POTS) reveals new disease pathways. Sci Rep. 2022;12:20051.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Silva CC, Bertollo M, Reichert FF, Boullosa DA, Nakamura FY. Reliability of heart rate variability in children: influence of sex and body position during data collection. Pediatr Exerc Sci. 2017;29:228–36.CrossRefPubMed Silva CC, Bertollo M, Reichert FF, Boullosa DA, Nakamura FY. Reliability of heart rate variability in children: influence of sex and body position during data collection. Pediatr Exerc Sci. 2017;29:228–36.CrossRefPubMed
30.
Zurück zum Zitat Harteveld LM, Nederend I, Ten Harkel ADJ, Schutte NM, de Rooij SR, Vrijkotte TGM, et al. Maturation of the cardiac autonomic nervous system activity in children and adolescents. J Am Heart Assoc. 2021;10:e017405.CrossRefPubMedPubMedCentral Harteveld LM, Nederend I, Ten Harkel ADJ, Schutte NM, de Rooij SR, Vrijkotte TGM, et al. Maturation of the cardiac autonomic nervous system activity in children and adolescents. J Am Heart Assoc. 2021;10:e017405.CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Tang G, Qi L, Sun Z, Liu J, Lv Z, Chen L, et al. Evaluation and analysis of incidence and risk factors of lower extremity venous thrombosis after urologic surgeries: a prospective two-center cohort study using lasso-logistic regression. Int J Surg. 2021;89:105948.CrossRefPubMed Tang G, Qi L, Sun Z, Liu J, Lv Z, Chen L, et al. Evaluation and analysis of incidence and risk factors of lower extremity venous thrombosis after urologic surgeries: a prospective two-center cohort study using lasso-logistic regression. Int J Surg. 2021;89:105948.CrossRefPubMed
33.
Zurück zum Zitat Xu B, Zhang Q, Li X, Tang C, Du J, Liu X, et al. A predictive model of response to metoprolol in children and adolescents with postural tachycardia syndrome. World J Pediatr. 2023;19:390–400.CrossRefPubMedPubMedCentral Xu B, Zhang Q, Li X, Tang C, Du J, Liu X, et al. A predictive model of response to metoprolol in children and adolescents with postural tachycardia syndrome. World J Pediatr. 2023;19:390–400.CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Jia W, Shi W, Yao Q, Mao Z, Chen C, Fan A, et al. Identifying immune infiltration by deep learning to assess the prognosis of patients with hepatocellular carcinoma. J Cancer Res Clin Oncol. 2023;149:12621–35.CrossRefPubMed Jia W, Shi W, Yao Q, Mao Z, Chen C, Fan A, et al. Identifying immune infiltration by deep learning to assess the prognosis of patients with hepatocellular carcinoma. J Cancer Res Clin Oncol. 2023;149:12621–35.CrossRefPubMed
35.
Zurück zum Zitat Timilsina M, Fey D, Buosi S, Janik A, Costabello L, Carcereny E, et al. Synergy between imputed genetic pathway and clinical information for predicting recurrence in early stage non-small cell lung cancer. J Biomed Inform. 2023;144:104424.CrossRefPubMed Timilsina M, Fey D, Buosi S, Janik A, Costabello L, Carcereny E, et al. Synergy between imputed genetic pathway and clinical information for predicting recurrence in early stage non-small cell lung cancer. J Biomed Inform. 2023;144:104424.CrossRefPubMed
36.
Zurück zum Zitat Steyerberg EW, Vergouwe Y. Towards better clinical prediction models: seven steps for development and an ABCD for validation. Eur Heart J. 2014;35:1925–31.CrossRefPubMedPubMedCentral Steyerberg EW, Vergouwe Y. Towards better clinical prediction models: seven steps for development and an ABCD for validation. Eur Heart J. 2014;35:1925–31.CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Oomen L, de Jong H, Bouts AHM, Keijzer-Veen MG, Cornelissen EAM, de Wall LL, et al. A pre-transplantation risk assessment tool for graft survival in Dutch pediatric kidney recipients. Clin Kidney J. 2023;16:1122–31.CrossRefPubMedPubMedCentral Oomen L, de Jong H, Bouts AHM, Keijzer-Veen MG, Cornelissen EAM, de Wall LL, et al. A pre-transplantation risk assessment tool for graft survival in Dutch pediatric kidney recipients. Clin Kidney J. 2023;16:1122–31.CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Yang B, Zhang W, Qiu J, Yu Y, Li J, Zheng B. The development and validation of a nomogram for predicting brain metastases after chemotherapy and radiotherapy in male small cell lung cancer patients with stage III. Aging (Albany NY). 2023;15:6487–502.CrossRefPubMed Yang B, Zhang W, Qiu J, Yu Y, Li J, Zheng B. The development and validation of a nomogram for predicting brain metastases after chemotherapy and radiotherapy in male small cell lung cancer patients with stage III. Aging (Albany NY). 2023;15:6487–502.CrossRefPubMed
39.
Zurück zum Zitat Gao Y, Yu Q, Li X, Xia C, Zhou J, Xia T, et al. An imaging-based machine learning model outperforms clinical risk scores for prognosis of cirrhotic variceal bleeding. Eur Radiol. 2023;33:8965–73.CrossRefPubMed Gao Y, Yu Q, Li X, Xia C, Zhou J, Xia T, et al. An imaging-based machine learning model outperforms clinical risk scores for prognosis of cirrhotic variceal bleeding. Eur Radiol. 2023;33:8965–73.CrossRefPubMed
40.
41.
Zurück zum Zitat Song J, Li H, Wang Y, Liu P, Li X, Tang C, et al. Left ventricular ejection fraction and fractional shortening are useful for the prediction of the therapeutic response to metoprolol in children with vasovagal syncope. Pediatr Cardiol. 2018;39:1366–72.CrossRefPubMed Song J, Li H, Wang Y, Liu P, Li X, Tang C, et al. Left ventricular ejection fraction and fractional shortening are useful for the prediction of the therapeutic response to metoprolol in children with vasovagal syncope. Pediatr Cardiol. 2018;39:1366–72.CrossRefPubMed
Metadaten
Titel
Age and mean platelet volume-based nomogram for predicting the therapeutic efficacy of metoprolol in Chinese pediatric patients with vasovagal syncope
verfasst von
Xiao-Juan Du
Ya-Qian Huang
Xue-Ying Li
Ying Liao
Hong-Fang Jin
Jun-Bao Du
Publikationsdatum
13.04.2024
Verlag
Springer Nature Singapore
Erschienen in
World Journal of Pediatrics
Print ISSN: 1708-8569
Elektronische ISSN: 1867-0687
DOI
https://doi.org/10.1007/s12519-024-00802-5

Ähnliche Überlebensraten nach Reanimation während des Transports bzw. vor Ort

29.05.2024 Reanimation im Kindesalter Nachrichten

Laut einer Studie aus den USA und Kanada scheint es bei der Reanimation von Kindern außerhalb einer Klinik keinen Unterschied für das Überleben zu machen, ob die Wiederbelebungsmaßnahmen während des Transports in die Klinik stattfinden oder vor Ort ausgeführt werden. Jedoch gibt es dabei einige Einschränkungen und eine wichtige Ausnahme.

Alter der Mutter beeinflusst Risiko für kongenitale Anomalie

28.05.2024 Kinder- und Jugendgynäkologie Nachrichten

Welchen Einfluss das Alter ihrer Mutter auf das Risiko hat, dass Kinder mit nicht chromosomal bedingter Malformation zur Welt kommen, hat eine ungarische Studie untersucht. Sie zeigt: Nicht nur fortgeschrittenes Alter ist riskant.

Begünstigt Bettruhe der Mutter doch das fetale Wachstum?

Ob ungeborene Kinder, die kleiner als die meisten Gleichaltrigen sind, schneller wachsen, wenn die Mutter sich mehr ausruht, wird diskutiert. Die Ergebnisse einer US-Studie sprechen dafür.

Bei Amblyopie früher abkleben als bisher empfohlen?

22.05.2024 Fehlsichtigkeit Nachrichten

Bei Amblyopie ist das frühzeitige Abkleben des kontralateralen Auges in den meisten Fällen wohl effektiver als der Therapiestandard mit zunächst mehrmonatigem Brilletragen.

Update Pädiatrie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.