Skip to main content
Erschienen in: Advances in Gerontology 3/2023

01.09.2023 | REVIEWS

Age-Related Changes and Loss of Damage Resistance of Kidney Tissue: The Role of a Decrease in the Number of Kidney Resident Progenitor Cells

verfasst von: M. I. Buyan, N. V. Andrianova, E. Yu. Plotnikov

Erschienen in: Advances in Gerontology | Ausgabe 3/2023

Einloggen, um Zugang zu erhalten

Abstract

Many organs undergo negative changes during aging that affect their functions and ability to regenerate. In particular, the kidneys become more susceptible to acute injury and are more likely to develop chronic kidney disease with age. One of the reasons for this may be a decrease in the number of resident renal progenitor cells. This review addresses age-related changes that occur in the kidneys at the histological and molecular levels, including those related to the cell cycle, mitochondrial function, oxidative stress, and chronic inflammation. We described the available studies on resident renal stem cells, their niches, morphology, possible markers, and the dynamics of their numbers during the aging process. The reasons for the age-related decline in renal regenerative potential are considered based on molecular and cellular mechanisms.
Literatur
1.
Zurück zum Zitat Ferenbach, D.A. and Bonventre, J.V., Mechanisms of maladaptive repair after AKI leading to accelerated kidney ageing and CKD, Nat. Rev. Nephrol., 2015, vol. 11, no. 5, pp. 264–276.PubMedPubMedCentralCrossRef Ferenbach, D.A. and Bonventre, J.V., Mechanisms of maladaptive repair after AKI leading to accelerated kidney ageing and CKD, Nat. Rev. Nephrol., 2015, vol. 11, no. 5, pp. 264–276.PubMedPubMedCentralCrossRef
2.
Zurück zum Zitat Gros, J. et al., A common somitic origin for embryonic muscle progenitors and satellite cells, Nature, 2005, vol. 435, no. 7044, pp. 954–958.PubMedCrossRef Gros, J. et al., A common somitic origin for embryonic muscle progenitors and satellite cells, Nature, 2005, vol. 435, no. 7044, pp. 954–958.PubMedCrossRef
3.
Zurück zum Zitat Apple, D.M., Solano-Fonseca, R., and Kokovay, E., Neurogenesis in the aging brain, Biochem. Pharmacol., 2017, vol. 141, pp. 77–85.PubMedCrossRef Apple, D.M., Solano-Fonseca, R., and Kokovay, E., Neurogenesis in the aging brain, Biochem. Pharmacol., 2017, vol. 141, pp. 77–85.PubMedCrossRef
4.
Zurück zum Zitat Jasper, H., Intestinal stem cell aging: Origins and interventions, Annu. Rev. Physiol., 2020, vol. 82, pp. 203–226.PubMedCrossRef Jasper, H., Intestinal stem cell aging: Origins and interventions, Annu. Rev. Physiol., 2020, vol. 82, pp. 203–226.PubMedCrossRef
5.
Zurück zum Zitat Nyengaard, J.R. and Bendtsen, T.F., Glomerular number and size in relation to age, kidney weight, and body surface in normal man, Anat. Rec., 1992, vol. 232, no. 2, pp. 194–201.PubMedCrossRef Nyengaard, J.R. and Bendtsen, T.F., Glomerular number and size in relation to age, kidney weight, and body surface in normal man, Anat. Rec., 1992, vol. 232, no. 2, pp. 194–201.PubMedCrossRef
6.
Zurück zum Zitat Rule, A.D. et al., The association between age and nephrosclerosis on renal biopsy among healthy adults, Ann. Intern. Med., 2010, vol. 152, no. 9, pp. 561–567.PubMedPubMedCentralCrossRef Rule, A.D. et al., The association between age and nephrosclerosis on renal biopsy among healthy adults, Ann. Intern. Med., 2010, vol. 152, no. 9, pp. 561–567.PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Rule, A.D., Cornell, L.D., and Poggio, E.D., Senile nephrosclerosis—does it explain the decline in glomerular filtration rate with aging?, Nephron Physiol., 2011, vol. 119, Suppl. 1, pp. 6–11. Rule, A.D., Cornell, L.D., and Poggio, E.D., Senile nephrosclerosis—does it explain the decline in glomerular filtration rate with aging?, Nephron Physiol., 2011, vol. 119, Suppl. 1, pp. 6–11.
8.
Zurück zum Zitat Wang, X., Bonventre, J.V., and Parrish, A.R., The aging kidney: Increased susceptibility to nephrotoxicity, Int. J. Mol. Sci., 2014, vol. 15, no. 9, pp. 15358–15376.PubMedPubMedCentralCrossRef Wang, X., Bonventre, J.V., and Parrish, A.R., The aging kidney: Increased susceptibility to nephrotoxicity, Int. J. Mol. Sci., 2014, vol. 15, no. 9, pp. 15358–15376.PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Yang, H. and Fogo, A.B., Cell senescence in the aging kidney, J. Am. Soc. Nephrol., 2010, vol. 21, no. 9, pp. 1436–1439.PubMedCrossRef Yang, H. and Fogo, A.B., Cell senescence in the aging kidney, J. Am. Soc. Nephrol., 2010, vol. 21, no. 9, pp. 1436–1439.PubMedCrossRef
10.
Zurück zum Zitat Braun, H. et al., Cellular senescence limits regenerative capacity and allograft survival, J. Am. Soc. Nephrol., 2012, vol. 23, no. 9, pp. 1467–1473.PubMedPubMedCentralCrossRef Braun, H. et al., Cellular senescence limits regenerative capacity and allograft survival, J. Am. Soc. Nephrol., 2012, vol. 23, no. 9, pp. 1467–1473.PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Yang, L. et al., Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury, Nat. Med., 2010, vol. 16, no. 5, pp. 535–543. Yang, L. et al., Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury, Nat. Med., 2010, vol. 16, no. 5, pp. 535–543.
13.
Zurück zum Zitat Kang, D.H. et al., Impaired angiogenesis in the aging kidney: Vascular endothelial growth factor and thrombospondin-1 in renal disease, Am. J. Kidney Dis., 2001, vol. 37, no. 3, pp. 601–611.PubMedCrossRef Kang, D.H. et al., Impaired angiogenesis in the aging kidney: Vascular endothelial growth factor and thrombospondin-1 in renal disease, Am. J. Kidney Dis., 2001, vol. 37, no. 3, pp. 601–611.PubMedCrossRef
14.
Zurück zum Zitat Ruiz-Torres, M.P. et al., Age-related increase in expression of TGF-β1 in the rat kidney: Relationship to morphologic changes, J. Am. Soc. Nephrol., 1998, vol. 9, no. 5, pp. 782–791.PubMedCrossRef Ruiz-Torres, M.P. et al., Age-related increase in expression of TGF-β1 in the rat kidney: Relationship to morphologic changes, J. Am. Soc. Nephrol., 1998, vol. 9, no. 5, pp. 782–791.PubMedCrossRef
15.
Zurück zum Zitat Thakar, C.V., et al., Identification of thrombospondin 1 (TSP-1) as a novel mediator of cell injury in kidney ischemia, J. Clin. Invest., 2005, vol. 115, no. 12, pp. 3451–3459.PubMedPubMedCentralCrossRef Thakar, C.V., et al., Identification of thrombospondin 1 (TSP-1) as a novel mediator of cell injury in kidney ischemia, J. Clin. Invest., 2005, vol. 115, no. 12, pp. 3451–3459.PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat Locatelli, F. et al., Oxidative stress in end-stage renal disease: An emerging threat to patient outcome, Nephrol. Dial. Transplant., 2003, vol. 18, no. 7, pp. 1272–1280.PubMedCrossRef Locatelli, F. et al., Oxidative stress in end-stage renal disease: An emerging threat to patient outcome, Nephrol. Dial. Transplant., 2003, vol. 18, no. 7, pp. 1272–1280.PubMedCrossRef
19.
Zurück zum Zitat Himmelfarb, J., Relevance of oxidative pathways in the pathophysiology of chronic kidney disease, Cardiol. Clin., 2005, vol. 23, no. 3, pp. 319–330.PubMedCrossRef Himmelfarb, J., Relevance of oxidative pathways in the pathophysiology of chronic kidney disease, Cardiol. Clin., 2005, vol. 23, no. 3, pp. 319–330.PubMedCrossRef
20.
Zurück zum Zitat Nistala, R., Whaley-Connell, A., and Sowers, J.R., Redox control of renal function and hypertension, Antioxid. Redox Signal., 2008, vol. 10, no. 12, pp. 2047–2089.PubMedPubMedCentralCrossRef Nistala, R., Whaley-Connell, A., and Sowers, J.R., Redox control of renal function and hypertension, Antioxid. Redox Signal., 2008, vol. 10, no. 12, pp. 2047–2089.PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Tbahriti, H.F. et al., Effect of different stages of chronic kidney disease and renal replacement therapies on oxidant–antioxidant balance in uremic patients, Biochem. Res. Int., 2013, vol. 2013, p. 358985.PubMedPubMedCentralCrossRef Tbahriti, H.F. et al., Effect of different stages of chronic kidney disease and renal replacement therapies on oxidant–antioxidant balance in uremic patients, Biochem. Res. Int., 2013, vol. 2013, p. 358985.PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Jankauskas, S.S. et al., The age-associated loss of ischemic preconditioning in the kidney is accompanied by mitochondrial dysfunction, increased protein acetylation and decreased autophagy, Sci. Rep., 2017, vol. 7, p. 44430.PubMedPubMedCentralCrossRef Jankauskas, S.S. et al., The age-associated loss of ischemic preconditioning in the kidney is accompanied by mitochondrial dysfunction, increased protein acetylation and decreased autophagy, Sci. Rep., 2017, vol. 7, p. 44430.PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Choksi, K.B. et al. Age-related increases in oxidatively damaged proteins of mouse kidney mitochondrial electron transport chain complexes, Free Radic. Biol. Med., 2007, vol. 43, no. 10, pp. 1423–1438.PubMedPubMedCentralCrossRef Choksi, K.B. et al. Age-related increases in oxidatively damaged proteins of mouse kidney mitochondrial electron transport chain complexes, Free Radic. Biol. Med., 2007, vol. 43, no. 10, pp. 1423–1438.PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Qiao, X. et al., Mitochondrial pathway is responsible for aging-related increase of tubular cell apoptosis in renal ischemia/reperfusion injury, J. Gerontol. A Biol. Sci. Med. Sci., 2005, vol. 60, no. 7, pp. 830–839.PubMedCrossRef Qiao, X. et al., Mitochondrial pathway is responsible for aging-related increase of tubular cell apoptosis in renal ischemia/reperfusion injury, J. Gerontol. A Biol. Sci. Med. Sci., 2005, vol. 60, no. 7, pp. 830–839.PubMedCrossRef
25.
Zurück zum Zitat Serviddio, G. et al., Bioenergetics in aging: Mitochondrial proton leak in aging rat liver, kidney and heart, Redox Rep., 2007, vol. 12, no. 1, pp. 91–95.PubMedCrossRef Serviddio, G. et al., Bioenergetics in aging: Mitochondrial proton leak in aging rat liver, kidney and heart, Redox Rep., 2007, vol. 12, no. 1, pp. 91–95.PubMedCrossRef
26.
Zurück zum Zitat Ferrucci, L. and Fabbri, E., Inflammageing: Chronic inflammation in ageing, cardiovascular disease, and frailty, Nat. Rev. Cardiol., 2018, vol. 15, no. 9, pp. 505–522.PubMedPubMedCentralCrossRef Ferrucci, L. and Fabbri, E., Inflammageing: Chronic inflammation in ageing, cardiovascular disease, and frailty, Nat. Rev. Cardiol., 2018, vol. 15, no. 9, pp. 505–522.PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Shlipak, M.G. et al., Elevations of inflammatory and procoagulant biomarkers in elderly persons with renal insufficiency, Circulation, 2003, vol. 107, no. 1, pp. 87–92.PubMedCrossRef Shlipak, M.G. et al., Elevations of inflammatory and procoagulant biomarkers in elderly persons with renal insufficiency, Circulation, 2003, vol. 107, no. 1, pp. 87–92.PubMedCrossRef
28.
Zurück zum Zitat Kolios, G. and Moodley, Y., Introduction to stem cells and regenerative medicine, Respiration, 2013, vol. 85, no. 1, pp. 3–10.PubMedCrossRef Kolios, G. and Moodley, Y., Introduction to stem cells and regenerative medicine, Respiration, 2013, vol. 85, no. 1, pp. 3–10.PubMedCrossRef
29.
30.
Zurück zum Zitat Andrianova, N.V. et al., Kidney cells regeneration: Dedifferentiation of tubular epithelium, resident stem cells and possible niches for renal progenitors, Int. J. Mol. Sci., 2019, vol. 20, no. 24, 6326. Andrianova, N.V. et al., Kidney cells regeneration: Dedifferentiation of tubular epithelium, resident stem cells and possible niches for renal progenitors, Int. J. Mol. Sci., 2019, vol. 20, no. 24, 6326.
31.
32.
Zurück zum Zitat Patschan, D. et al., Normal distribution and medullary-to-cortical shift of Nestin-expressing cells in acute renal ischemia, Kidney Int., 2007, vol. 71, no. 8, pp. 744–754.PubMedCrossRef Patschan, D. et al., Normal distribution and medullary-to-cortical shift of Nestin-expressing cells in acute renal ischemia, Kidney Int., 2007, vol. 71, no. 8, pp. 744–754.PubMedCrossRef
33.
Zurück zum Zitat Mohyeldin, A., Garzón-Muvdi, T., and Quiñones-Hinojosa, A., Oxygen in stem cell biology: A critical component of the stem cell niche, Cell Stem Cell, 2010, vol. 7, no. 2, pp. 150–161.PubMedCrossRef Mohyeldin, A., Garzón-Muvdi, T., and Quiñones-Hinojosa, A., Oxygen in stem cell biology: A critical component of the stem cell niche, Cell Stem Cell, 2010, vol. 7, no. 2, pp. 150–161.PubMedCrossRef
34.
Zurück zum Zitat Pannabecker, T.L. and Layton, A.T., Targeted delivery of solutes and oxygen in the renal medulla: Role of microvessel architecture, Am. J. Physiol. Renal Physiol., 2014, vol. 307, no. 6, pp. F649–F655.PubMedPubMedCentralCrossRef Pannabecker, T.L. and Layton, A.T., Targeted delivery of solutes and oxygen in the renal medulla: Role of microvessel architecture, Am. J. Physiol. Renal Physiol., 2014, vol. 307, no. 6, pp. F649–F655.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Huling, J. and Yoo, J.J., Comparing adult renal stem cell identification, characterization and applications, J. Biomed. Sci., 2017, vol. 24, no. 1, p. 32.PubMedPubMedCentralCrossRef Huling, J. and Yoo, J.J., Comparing adult renal stem cell identification, characterization and applications, J. Biomed. Sci., 2017, vol. 24, no. 1, p. 32.PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Grange, C. et al., Protective effect and localization by optical imaging of human renal CD133+ progenitor cells in an acute kidney injury model, Physiol. Rep., 2014, vol. 2, no. 5, р. e12009. Grange, C. et al., Protective effect and localization by optical imaging of human renal CD133+ progenitor cells in an acute kidney injury model, Physiol. Rep., 2014, vol. 2, no. 5, р. e12009.
37.
Zurück zum Zitat Smeets, B. et al., Proximal tubular cells contain a phenotypically distinct, scattered cell population involved in tubular regeneration, J. Pathol., 2013, vol. 229, no. 5, pp. 645–659.PubMedPubMedCentralCrossRef Smeets, B. et al., Proximal tubular cells contain a phenotypically distinct, scattered cell population involved in tubular regeneration, J. Pathol., 2013, vol. 229, no. 5, pp. 645–659.PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Gupta, S. et al., Isolation and characterization of kidney-derived stem cells, J. Am. Soc. Nephrol., 2006, vol. 17, no. 11, pp. 3028–3040.PubMedCrossRef Gupta, S. et al., Isolation and characterization of kidney-derived stem cells, J. Am. Soc. Nephrol., 2006, vol. 17, no. 11, pp. 3028–3040.PubMedCrossRef
39.
Zurück zum Zitat Kitamura, S., Sakurai, H., and Makino, H., Single adult kidney stem/progenitor cells reconstitute three-dimensional nephron structures in vitro, Stem Cells, 2015, vol. 33, no. 3, pp. 774–784.PubMedCrossRef Kitamura, S., Sakurai, H., and Makino, H., Single adult kidney stem/progenitor cells reconstitute three-dimensional nephron structures in vitro, Stem Cells, 2015, vol. 33, no. 3, pp. 774–784.PubMedCrossRef
40.
Zurück zum Zitat Abedin, M.J. et al., Identification and characterization of Sall1-expressing cells present in the adult mouse kidney, Nephron Exp. Nephrol., 2011, vol. 119, no. 4, pp. e75–e82. Abedin, M.J. et al., Identification and characterization of Sall1-expressing cells present in the adult mouse kidney, Nephron Exp. Nephrol., 2011, vol. 119, no. 4, pp. e75–e82.
41.
Zurück zum Zitat Lazzeri, E. et al., Endocycle-related tubular cell hypertrophy and progenitor proliferation recover renal function after acute kidney injury, Nat. Commun., 2018, vol. 9, no. 1, p. 1344.PubMedPubMedCentralCrossRef Lazzeri, E. et al., Endocycle-related tubular cell hypertrophy and progenitor proliferation recover renal function after acute kidney injury, Nat. Commun., 2018, vol. 9, no. 1, p. 1344.PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Ward, H.H. et al., Adult human CD133/1(+) kidney cells isolated from papilla integrate into developing kidney tubules, Biochim. Biophys. Acta, 2011, vol. 1812, no. 10, pp. 1344–1357.PubMedPubMedCentralCrossRef Ward, H.H. et al., Adult human CD133/1(+) kidney cells isolated from papilla integrate into developing kidney tubules, Biochim. Biophys. Acta, 2011, vol. 1812, no. 10, pp. 1344–1357.PubMedPubMedCentralCrossRef
43.
44.
Zurück zum Zitat Takubo, K. et al., Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells, Cell Stem Cell, 2013, vol. 12, no. 1, pp. 49–61.PubMedPubMedCentralCrossRef Takubo, K. et al., Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells, Cell Stem Cell, 2013, vol. 12, no. 1, pp. 49–61.PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Piccoli, C. et al., Characterization of mitochondrial and extra-mitochondrial oxygen consuming reactions in human hematopoietic stem cells. Novel evidence of the occurrence of NAD(P)H oxidase activity, J. Biol. Chem., 2005, vol. 280, no. 28, pp. 26 467–26 476.CrossRef Piccoli, C. et al., Characterization of mitochondrial and extra-mitochondrial oxygen consuming reactions in human hematopoietic stem cells. Novel evidence of the occurrence of NAD(P)H oxidase activity, J. Biol. Chem., 2005, vol. 280, no. 28, pp. 26 467–26 476.CrossRef
46.
Zurück zum Zitat Sahin, E. and Depinho, R.A., Linking functional decline of telomeres, mitochondria and stem cells during ageing, Nature, 2010, vol. 464, no. 7288, pp. 520–528.PubMedPubMedCentralCrossRef Sahin, E. and Depinho, R.A., Linking functional decline of telomeres, mitochondria and stem cells during ageing, Nature, 2010, vol. 464, no. 7288, pp. 520–528.PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Ahlqvist, K.J. et al., Somatic progenitor cell vulnerability to mitochondrial DNA mutagenesis underlies progeroid phenotypes in Polg mutator mice, Cell Metab., 2012, vol. 15, no. 1, pp. 100–109.PubMedCrossRef Ahlqvist, K.J. et al., Somatic progenitor cell vulnerability to mitochondrial DNA mutagenesis underlies progeroid phenotypes in Polg mutator mice, Cell Metab., 2012, vol. 15, no. 1, pp. 100–109.PubMedCrossRef
48.
Zurück zum Zitat Morganti, C. et al., Electron transport chain complex II sustains high mitochondrial membrane potential in hematopoietic stem and progenitor cells, Stem Cell Res., 2019, vol. 40, p. 101573.PubMedPubMedCentralCrossRef Morganti, C. et al., Electron transport chain complex II sustains high mitochondrial membrane potential in hematopoietic stem and progenitor cells, Stem Cell Res., 2019, vol. 40, p. 101573.PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Sukumar, M. et al., Mitochondrial membrane potential identifies cells with enhanced stemness for cellular therapy, Cell Metab., 2016, vol. 23, no. 1, pp. 63–76.PubMedCrossRef Sukumar, M. et al., Mitochondrial membrane potential identifies cells with enhanced stemness for cellular therapy, Cell Metab., 2016, vol. 23, no. 1, pp. 63–76.PubMedCrossRef
50.
Zurück zum Zitat Prigione, A. et al., Mitochondrial-associated cell death mechanisms are reset to an embryonic-like state in aged donor-derived iPS cells harboring chromosomal aberrations, PLoS One, 2011, vol. 6, no. 11, p. e27352.PubMedPubMedCentralCrossRef Prigione, A. et al., Mitochondrial-associated cell death mechanisms are reset to an embryonic-like state in aged donor-derived iPS cells harboring chromosomal aberrations, PLoS One, 2011, vol. 6, no. 11, p. e27352.PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Ito, K. et al., Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells, Nature, 2004, vol. 431, no. 7011, pp. 997–1002.PubMedCrossRef Ito, K. et al., Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells, Nature, 2004, vol. 431, no. 7011, pp. 997–1002.PubMedCrossRef
52.
Zurück zum Zitat García-Prat, L. et al., FoxO maintains a genuine muscle stem-cell quiescent state until geriatric age, Nat. Cell Biol., 2020, vol. 22, no. 11, pp. 1307–1318.PubMedCrossRef García-Prat, L. et al., FoxO maintains a genuine muscle stem-cell quiescent state until geriatric age, Nat. Cell Biol., 2020, vol. 22, no. 11, pp. 1307–1318.PubMedCrossRef
53.
54.
Zurück zum Zitat García-Prat, L. and Muñoz-Cánoves, P., Aging, metabolism and stem cells: Spotlight on muscle stem cells, Mol. Cell. Endocrinol. 2017, vol. 445, pp. 109–117.PubMedCrossRef García-Prat, L. and Muñoz-Cánoves, P., Aging, metabolism and stem cells: Spotlight on muscle stem cells, Mol. Cell. Endocrinol. 2017, vol. 445, pp. 109–117.PubMedCrossRef
55.
Zurück zum Zitat Sousa-Victor, P. et al., Geriatric muscle stem cells switch reversible quiescence into senescence, Nature, 2014, vol. 506, no. 7488, pp. 316–321.PubMedCrossRef Sousa-Victor, P. et al., Geriatric muscle stem cells switch reversible quiescence into senescence, Nature, 2014, vol. 506, no. 7488, pp. 316–321.PubMedCrossRef
56.
Zurück zum Zitat Hwang, A.B. and Brack, A.S., Muscle stem cells and aging, Curr. Top. Dev. Biol., 2018, vol. 126, pp. 299–322.PubMedCrossRef Hwang, A.B. and Brack, A.S., Muscle stem cells and aging, Curr. Top. Dev. Biol., 2018, vol. 126, pp. 299–322.PubMedCrossRef
58.
Zurück zum Zitat Katsimpardi, L. and Lledo, P.-M., Regulation of neurogenesis in the adult and aging brain, Curr. Opin. Neurobiol., 2018, vol. 53, pp. 131–138.PubMedCrossRef Katsimpardi, L. and Lledo, P.-M., Regulation of neurogenesis in the adult and aging brain, Curr. Opin. Neurobiol., 2018, vol. 53, pp. 131–138.PubMedCrossRef
59.
Zurück zum Zitat Isaev, N.K., Stelmashook, E.V., and Genrikhs, E.E., Neurogenesis and brain aging, Rev. Neurosci., 2019, vol. 30, no. 6, pp. 573–580.PubMedCrossRef Isaev, N.K., Stelmashook, E.V., and Genrikhs, E.E., Neurogenesis and brain aging, Rev. Neurosci., 2019, vol. 30, no. 6, pp. 573–580.PubMedCrossRef
60.
61.
62.
Zurück zum Zitat Kozar, S. et al., Continuous clonal labeling reveals small numbers of functional stem cells in intestinal crypts and adenomas, Cell Stem Cell, 2013, vol. 13, no. 5, pp. 626–633.PubMedCrossRef Kozar, S. et al., Continuous clonal labeling reveals small numbers of functional stem cells in intestinal crypts and adenomas, Cell Stem Cell, 2013, vol. 13, no. 5, pp. 626–633.PubMedCrossRef
63.
64.
Zurück zum Zitat Schmitt, R. and Cantley, L.G., The impact of aging on kidney repair, Am. J. Physiol. Renal Physiol., 2008, vol. 294, no. 6, pp. F1265–F1272.PubMedCrossRef Schmitt, R. and Cantley, L.G., The impact of aging on kidney repair, Am. J. Physiol. Renal Physiol., 2008, vol. 294, no. 6, pp. F1265–F1272.PubMedCrossRef
65.
Zurück zum Zitat Miya, M. et al., Age-related decline in label-retaining tubular cells: Implication for reduced regenerative capacity after injury in the aging kidney, Am. J. Physiol. Renal Physiol., 2012, vol. 302, no. 6, pp. F694–F702.PubMedCrossRef Miya, M. et al., Age-related decline in label-retaining tubular cells: Implication for reduced regenerative capacity after injury in the aging kidney, Am. J. Physiol. Renal Physiol., 2012, vol. 302, no. 6, pp. F694–F702.PubMedCrossRef
66.
67.
Zurück zum Zitat Wiese, C. et al., Nestin expression—A property of multi-lineage progenitor cells?, Cell. Mol. Life Sci., 2004, vol. 61, nos. 19–20, pp. 2510–2522.PubMedCrossRef Wiese, C. et al., Nestin expression—A property of multi-lineage progenitor cells?, Cell. Mol. Life Sci., 2004, vol. 61, nos. 19–20, pp. 2510–2522.PubMedCrossRef
69.
Zurück zum Zitat Jankauskas, S.S. et al., Aged kidney: Can we protect it? Autophagy, mitochondria and mechanisms of ischemic preconditioning, Cell Cycle, 2018, vol. 17, no. 11, pp. 1291–1309.PubMedPubMedCentralCrossRef Jankauskas, S.S. et al., Aged kidney: Can we protect it? Autophagy, mitochondria and mechanisms of ischemic preconditioning, Cell Cycle, 2018, vol. 17, no. 11, pp. 1291–1309.PubMedPubMedCentralCrossRef
Metadaten
Titel
Age-Related Changes and Loss of Damage Resistance of Kidney Tissue: The Role of a Decrease in the Number of Kidney Resident Progenitor Cells
verfasst von
M. I. Buyan
N. V. Andrianova
E. Yu. Plotnikov
Publikationsdatum
01.09.2023
Verlag
Pleiades Publishing
Erschienen in
Advances in Gerontology / Ausgabe 3/2023
Print ISSN: 2079-0570
Elektronische ISSN: 2079-0589
DOI
https://doi.org/10.1134/S2079057024600344

Weitere Artikel der Ausgabe 3/2023

Advances in Gerontology 3/2023 Zur Ausgabe

Leitlinien kompakt für die Allgemeinmedizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Facharzt-Training Allgemeinmedizin

Die ideale Vorbereitung zur anstehenden Prüfung mit den ersten 49 von 100 klinischen Fallbeispielen verschiedener Themenfelder

Mehr erfahren

Nach Herzinfarkt mit Typ-1-Diabetes schlechtere Karten als mit Typ 2?

29.05.2024 Herzinfarkt Nachrichten

Bei Menschen mit Typ-2-Diabetes sind die Chancen, einen Myokardinfarkt zu überleben, in den letzten 15 Jahren deutlich gestiegen – nicht jedoch bei Betroffenen mit Typ 1.

Wie der Klimawandel gefährliche Pilzinfektionen begünstigt

24.05.2024 Candida-Mykosen Nachrichten

Dass sich invasive Pilzinfektionen in letzter Zeit weltweit häufen, liegt wahrscheinlich auch am Klimawandel. Ausbrüche mit dem Hefepilz Candida auris stellen eine zunehmende Gefahr für Immungeschwächte dar – auch in Deutschland.

So wirken verschiedene Alkoholika auf den Blutdruck

23.05.2024 Störungen durch Alkohol Nachrichten

Je mehr Alkohol Menschen pro Woche trinken, desto mehr steigt ihr Blutdruck, legen Daten aus Dänemark nahe. Ob es dabei auch auf die Art des Alkohols ankommt, wurde ebenfalls untersucht.

Das sind die führenden Symptome junger Darmkrebspatienten

Darmkrebserkrankungen in jüngeren Jahren sind ein zunehmendes Problem, das häufig längere Zeit übersehen wird, gerade weil die Patienten noch nicht alt sind. Welche Anzeichen Ärzte stutzig machen sollten, hat eine Metaanalyse herausgearbeitet.

Update Allgemeinmedizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.