Skip to main content

Open Access 26.04.2024 | Original Article

Association of Imaging-based Predictors with Outcome in Different Treatment Options for Intracerebral Hemorrhage

verfasst von: Roger M. Krzyżewski, Borys M. Kwinta, Krzysztof Stachura, Tadeusz J. Popiela, Roman Pułyk, Agnieszka Słowik, Jerzy Gąsowski, Kornelia M. Kliś

Erschienen in: Clinical Neuroradiology

Abstract

Purpose

Intracerebral hemorrhage is the deadliest form of stroke. This study aimed to enhance the prediction of 30-day mortality in intracerebral hemorrhage patients by integrating computational parameters.

Methods

This study retrospectively analyzed 435 patients with spontaneous intracerebral hemorrhage (ICH). Utilizing the acquired computed tomography (CT) images, we extracted the contour and visual representation of ICH. For the extracted contour, the analysis encompassed factors including compactness, fractal dimension, Fourier factor, and circle factor. For the images depicting ICH, we calculated various factors related to density distribution including mean, coefficient of variance, skewness and kurtosis, as well as texture parameters, such as energy, entropy, contrast and homogeneity. To assess the impact of surgical treatment on 30-day mortality, logistic regression analysis was used.

Results

A total of 126 patients (29.09%) died within 30 days. A total of 62 (14.25%) patients underwent surgical treatment. Multivariate logistic regression analysis revealed that surgical treatment was independently associated with a lower risk of 30-day mortality (odds ratio, OR 0.226, 95% confidence interval, CI 0.049–0.85; p = 0.039). Based on the moderated analysis, we found that the volume of ICH (OR 0.905, 95% CI 0.902–0.908; p < 0.001) and ICH energy (OR 1.389, 95%CI 0.884–0.988; p = 0.010) had positive moderating effect on such associations while the presence of intraventricular blood had negative moderating effect (OR 1.154, 95% CI 1.034–1.628; p = 0.010).

Conclusion

Patients exhibiting a higher volume and energy of ICH might benefit from surgical treatment; however, this efficacy was found to be diminished in cases involving the presence of intraventricular blood.
Hinweise

Supplementary Information

The online version of this article (https://​doi.​org/​10.​1007/​s00062-024-01406-2) contains supplementary material, which is available to authorized users.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Introduction

Spontaneous intracerebral hemorrhage (ICH) accounts for 10–30% of all acute strokes [1] and is characterized by the highest mortality rate compared to all other subtypes [2]. Additionally, it is associated with a high percentage of functional dependence [3]. Therefore, the exploration of potential treatment strategies is currently the subject of extensive research. Particular attention has been given to investigating the potential advantages of surgical interventions in the treatment of ICH. The choice of surgical management in ICH is understood to be associated with several benefits, such as reduction of the mass effect of ICH and minimizing the impact of toxic blood components on brain tissue [4]. Although meta-analyses and reviews suggested a positive impact of surgical treatment on mortality [5], the results of clinical trials in this matter remain inconclusive. The first randomized, controlled trial, surgical treatment for intracerebral hemorrhage (STICH), failed to demonstrate the benefits of surgically removing ICH; however, a subsequent study STICH II, suggested that surgical treatment of lobar hematomas might improve outcomes [7]. Further trials focusing on minimally invasive techniques for ICH removal have also suggested the potential benefit of such procedures [8, 9]. The American Heart Association guidelines state that the efficacy of surgical treatment for ICH is inconclusive and recommended surgical intervention for patients with cerebellar hemorrhage and neurological deterioration or for those suffering from brainstem compression [10]. Predictors of poor outcome following ICH have also been extensively studied. Radiomics analysis of ICH imaging has shown potential correlations with mortality and risk of hemorrhage enlargement [1113]; however, there is a lack of research exploring the potential association between radiomics analysis and outcomes following surgical treatment of ICH. Consequently, our study aims to re-examine potential predictors of 30-day mortality post-ICH with particular emphasis on the implications of surgical treatment and ICH appearance on computed tomography (CT) imaging.

Methods

Study Group

We retrospectively analyzed patients hospitalized in the Department of Neurology or in the Department of Neurosurgery of the University Hospital in Krakow between January 2013 and October 2020, who met the following criteria: (1) had first spontaneous ICH diagnosed based on head CT, (2) presence of intracranial aneurysm or other vascular abnormalities was excluded based on angio-CT or digital subtraction angiography, (3) had no other intracranial pathologies including tumors, (4) had no previous neurosurgical or endovascular procedures and (5) had no history of spontaneous ICH. From the medical records we obtained data such as current diseases and medications, blood tests results taken < 4 h following admission and Glasgow coma scale (GCS) score taken on admission. We also obtained the CT images taken < 4 h after admission. Based on these images we assessed parameters such as ICH location, volume and presence of intraventricular hemorrhage (IVH). For study group we assessed 30-day mortality.

Computational Analysis of ICH Appearance

The authors developed a software written in Python and performed a series of transformations on CT images obtained from each patient. Each image was represented as a two-dimensional pixel array with density values between 0 and 255. Then we semiautomatically extracted the images containing ICH, image of 4 mm thickness brain tissue surrounding ICH, defined as the perihemorrhage area (PHA) and 20 × 20 pixel image of healthy brain tissue for reference (Fig. 1). Additionally, we extracted a curve representing contours of the ICH. For the extracted images of ICH and PHA we analyzed the distribution of density values by calculating its mean, coefficient of variance (mean/standard deviation), skewness and kurtosis. Additionally, we computed these parameters for the brain tissue sample. The presented ICH and PHA density distribution values are normalized to healthy brain tissue. Furthermore, we conducted texture analysis by constructing a gray level co-occurrence matrix (matrix with distribution of co-occurring pixel values at a given offset) [14]:
$$\begin{aligned} &M_{\Updelta x,\Updelta y}\left(i,j\right)=\\&\quad \sum\limits_{x=1}^{n}\sum\limits_{y=1}^{m}\begin{cases} 1,\ \textit{if}\ I\left(x,y\right)=i\ \textit{and}\ I\left(x+\Updelta x,y+\Updelta y\right)=j\\ 0,\ \textit{otherwise} \end{cases}\end{aligned}$$
where i and j are pixel values, x and y are the spatial positions in the n × m size image I and (∆x, ∆y) is the given offset. For each image we constructed four matrices with offset d = (2.2) in directions of 0°, 45°, 90° and 135°. Based on matrices we calculated the following descriptors:
$$\text{Energy}=\sqrt{\sum\limits_{i,j=0}^{V-1}\left(M\left(i,j\right)\right)^{2}}$$
$$\text{Homogeneity}=\sum\limits_{i,j=0}^{V-1}\frac{M\left(i,j\right)}{1+\left(i+j\right)^{2}}$$
$$\text{Correlation}=\sum\limits_{i,j=0}^{V-1}M\left(i,j\right)\left[\frac{\left(i-\overline{i}\right)\left(j-\overline{j}\right)}{\sqrt{\left({\sigma }_{i}^{2}\right)\left({\sigma }_{j}^{2}\right)}}\right]$$
$$\text{Contrast}=\sum\limits_{i,j=0}^{V-1}\left(i-j\right)^{2}M\left(i,j\right)$$
For extracted contours we calculated the following parameters: fractal dimension, Fourier factor, circle factor and compactness. Details about contour parameters and used software were presented in our previous research [15].
We used the Shapiro-Wilk test to assess normality. For continuous variables that followed a normal distribution, we utilized the t‑test and for those variables which were not normally distributed, we performed the Mann-Whitney U-test. We used the χ2 test for proportional variables. We expressed continuous variables as mean ± standard deviation. To analyze independent predictors of 30-day mortality after ICH we used multivariate logistic regression analysis. Additionally, we employed logistic regression analysis to assess the factors moderating effect of surgical treatment on 30-day mortality. To identify the cut-off points for moderating the effects of ICH energy and volume, Receiver Operating Characteristic (ROC) curve analysis was utilized. P‑values < 0.05 were considered statistically significant. All statistical analyses and the preparation of figures were conducted using RStudio version 8.5 for Windows (Posit, Boston, MA, USA).

Results

Univariate and Multivariate Analyses

A total of 435 patients met the inclusion criteria. Detailed characteristics of studied groups are presented in Table 1. Of the patients 126 (29.09%) died within the first 30 days and 62 patients (14.25%) underwent surgical treatment. Patients who underwent surgical treatment had significantly lower GCS score upon admission (9.11 ± 4.84 vs. 10.81 ± 4.24; p < 0.01), significantly less often had hypertension (30.65% vs. 52.02%; p < 0.01) and diabetes mellitus (4.84% vs. 17.52%; p = 0.01). Patients receiving surgical treatment were also significantly more likely to have ICH in the temporal lobe (22.58% vs. 12.94%; p = 0.045) or cerebellum (24.19% vs. 9.97%; p < 0.01) and significantly less frequently in the basal ganglia (22.58% vs. 36.93%; p = 0.03). Regarding the CT appearance of ICH, these patients exhibited significantly higher compactness (0.66 ± 0.22 vs. 0.58 ± 0.2; p < 0.01), energy (0.23 ± 1.31 vs. 0.04 ± 0.93; p = 0.048), Contrast (0.31 ± 1.21 vs. 0.05 ± 0.95; p < 0.01), and Homogeneity (0.32 ± 1.09 vs. 0.05 ± 0.97; p < 0.01), but significantly lower Fourier Factor (0.82 ± 0.09 vs. 0.86 ± 0.07; p < 0.01) and Circle Factor (0.35 ± 0.15 vs. 0.41 ± 0.15; p < 0.01) (Table 1). Multivariate analysis of possible predictors of 30-day mortality (Table 2), performed for entire study group, revealed that surgical treatment was independently associated with lower 30-day mortality (OR:0.226; 95%CI:0.049–0.85; p = 0.039).
Table 1
Comparison of analyzed factors between patients who underwent surgical and conservative treatment
Variable
Surgical treatment
(n = 62)
Conservative treatment
(n = 373)
p-value
Female gender [%, (n)]
3.23 (2)
40.16 (149)
< 0.001
Age (years) ± SD
73.02 ± 17.25
71.79 ± 15.99
0.582
Glasgow Coma Scale ± SD
9.11 ± 4.84
10.81 ± 4.24
0.004
Volume (ml) ± SD
36.86 ± 22.72
32.77 ± 23.70
0.207
Intraventricular hemorrhage [%, (n)]
43.55 (27)
46.63 (173)
0.652
ICH growth [%, (n)]
16.13 (10)
20.49 (76)
0.426
Comorbidities
Hypertension [%, (n)]
30.65 (19)
52.02 (193)
0.002
Diabetes mellitus [%, (n)]
4.84 (3)
17.52 (65)
0.011
Smoking [%, (n)]
3.23 (2)
7.55 (28)
0.215
Location
Frontal lobe [%, (n)]
27.42 (17)
19.95 (74)
0.181
Parietal lobe [%, (n)]
32.26 (20)
21.83 (81)
0.072
Occipital lobe [%, (n)]
3.23 (2)
8.09 (30)
0.176
Temporal lobe [%, (n)]
22.58 (14)
12.94 (48)
0.045
Insular lobe [%, (n)]
0 (0)
0.81 (3)
0.477
Brain stem [%, (n)]
0 (0)
4.04 (15)
0.107
Cerebellum [%, (n)]
24.19 (15)
9.97 (37)
0.001
Basal ganglia [%, (n)]
22.58 (14)
36.93 (137)
0.028
Shape descriptors
Compactness ± SD
0.66 ± 0.22
0.58 ± 0.2
0.005
Circle factor ± SD
0.35 ± 0.15
0.41 ± 0.15
0.002
Fourier factor ± SD
0.82 ± 0.09
0.86 ± 0.07
< 0.001
Fractal dimension ± SD
0.38 ± 0.19
0.42 ± 0.26
0.301
Histogram analysis
Mean ± SD
1.54 ± 0.4
1.68 ± 0.32
0.001
Coefficient of variance ± SD
1.53 ± 0.98
1.47 ± 0.53
0.52
Skewness ± SD
2.53 ± 20.59
−0.92 ± 9.85
0.036
Kurtosis ± SD
1.66 ± 24.56
1.17 ± 22.46
0.875
Texture analysis
Energy ± SD
0.23 ± 1.31
0.04 ± 0.93
0.048
Entropy ± SD
0.18 ± 1.05
0.03 ± 0.99
0.120
Contrast ± SD
0.31 ± 1.21
0.05 ± 0.95
0.008
Homogeneity ± SD
0.32 ± 1.09
0.05 ± 0.97
0.006
SD standard deviation, ICH intracerebral hemorrhage
Table 2
Multivariate logistic regression model of factors associated with 30-day mortality among surgically and conservatively treated patients
Variable
OR
95% CI
p‑value
Logistic regression analysis
(n=435)
Glasgow Coma Scale
0.693
0.613–0.773
< 0.001
Volume
1.029
1.007–1.054
0.012
Glucose level
1.188
1.058–1.353
0.005
Subtentorial location
0.101
0.016–0.511
0.009
Intraventricular hemorrhage
2.597
1.217–5.677
0.015
Fractal dimension
1.179
1.013–1.453
0.102
Energy
1.389
1.19–1.821
0.002
Entropy
0.763
0.598–0.88
0.005
Surgical treatment
0.226
0.049–0.85
0.039
Moderated logistic regression analysis
(n=435)
Surgical treatment × Glasgow Coma Scale
1.082
0.859–1.294
0.433
Surgical treatment × volume
0.905
0.902–0.908
< 0.001
Surgical treatment × subtentorial location
N/A
N/A
N/A
Surgical treatment × intraventricular hemorrhage
1.154
1.034–1.628
0.010
Surgical treatment × energy
0.932
0.884–0.988
0.010
Surgical treatment × entropy
0.927
0.846–0.991
0.051
Surgical treatment × glucose
1.003
0.663–1.572
0.988
CI confidence interval, OR odds ratio, N/A not-applicable

Moderation Effect of ICH Energy

Our findings indicate a significant positive moderation by ICH energy on the reduction of 30-day mortality following surgical treatment (OR: 0.932; 95% CI: 0.884–0.988; p = 0.01) (Table 2). To distinguish between patients with low and high nergye, we established the cut-off point for such moderation at 27.92 (p < 0.01). Examples of ICH with high and low energy are presented in Fig. 2. Among patients above this threshold (54.50%) surgical treatment was independently associated with a lower risk of 30-day mortality (OR: 0.113; 95% CI: 0.015–0.593; p = 0.02). Additionally, a lower GCS score upon admission (OR: 0.731; 95% CI: 0.632–0.83; p < 0.01), a larger volume of ICH (OR: 1.26; 95% CI: 1.021–1.53; p = 0.043), higher glucose levels at admission (OR: 1.246; 95% CI: 1.091–1.476; p < 0.01), and the presence of IVH (OR: 3.177; 95% CI: 1.366–7.769) were independently associated with an increased risk of 30-day mortality. Below determined threshold (45.50%) only older age (OR: 1.068; 95% CI: 1.025–1.120; p < 0.01) and the subtentorial location (OR: 1.020; 95% CI: 1.003–1.041; p = 0.031) were independently associated with higher risk of 30-day mortality (Table 3, Fig. 3).
Table 3
Multivariate logistic regression analysis models of factors associated with 30-day mortality for patients with high and low intracerebral hemorrhage energy
Variable
OR
95% CI
p‑value
High energy
(n=236)
Glasgow Coma Scale
0.731
0.632–0.83
< 0.001
Age
1.012
0.987–1.039
0.342
Volume
1.26
1.021–1.53
0.043
Subtentorial location
0.447
0.082–2.174
0.328
Entropy
0.999
0.998–1.001
0.38
Fractal dimension
1.461
1.123–1.945
0.006
Intraventricular hemorrhage
3.177
1.366–7.769
0.009
Glucose
1.246
1.091–1.476
0.004
Surgical treatment
0.113
0.015–0.593
0.018
Low Energy
(n=197)
Glasgow Coma Scale
0.995
0.949–1.046
0.852
Age
1.068
1.025–1.120
0.003
Volume
0.080
0.002–1.121
0.100
Subtentorial location
1.020
1.003–1.041
0.031
Entropy
0.947
0.673–1.332
0.744
Fractal dimension
1.689
0.355–7.832
0.497
Intraventricular hemorrhage
0.997
0.709–1.305
0.983
Glucose
0.121
0.007–1.241
0.099
Surgical treatment
0.995
0.949–1.046
0.852
CI confidence interval, OR odds ration

Moderation Effect of ICH Volume

Furthermore, we found a significant positive moderation by ICH volume on the reduction of 30-day mortality following surgical treatment (OR: 0.905; 95% CI: 0.902–0.908; p < 0.01). To distinguish between patients with low and high volumes, we established cut-off point for volume moderation at 29.47 ml (p < 0.01). Among patients above that threshold (49.19%), surgical treatment was associated with lower risk of 30-day mortality (OR: 0.037; 95% CI: 0.001–0.414; p = 0.03), a higher GCS score upon admission (OR: 0.764; 95% CI: 0.657–0.872; p < 0.01) and a higher entropy (OR: 0.994; 95% CI: 0.986–0.998; p = 0.04). A higher glucose level upon admission (OR: 1.22; 95% CI: 1.063–1.443; p < 0.01), presence of IVH (OR: 3.979; 95% CI: 1.495–11.401; p < 0.01) and a higher fractal dimension (OR: 1.489; 95% CI: 1.114–2.091; p = 0.01) were independently associated with a higher risk of 30-day mortality among those patients. In terms of patients with lower ICH volume (50.81%) higher GCS score (OR: 0.570; 9%% CI: 0.435–0.695; p < 0.01) and subtentorial location (OR: 0.035; 95% CI: 0.001–0.442; p = 0.02) were independently associated with lower risk of 30-day mortality and higher energy was associated with higher risk of 30-day mortality (OR: 1.419; 95% CI: 1.175–2.302; p = 0.03) (Table 4, Fig. 4).
Table 4
Multivariate logistic regression analysis models of factors associated with 30-day mortality for patients with high and low intracerebral hemorrhage volume
Variable
OR
95% CI
p‑value
High volume
(n=213)
Glasgow Coma Scale
0.764
0.657–0.872
< 0.001
Age
0.993
0.961–1.025
0.643
Energy
1.376
1.148–1.909
0.010
Subtentorial location
0.185
0.017–1.5
0.135
Entropy
0.994
0.986–0.998
0.037
Fractal dimension
1.489
1.114–2.091
0.013
Intraventricular hemorrhage
3.979
1.495–11.401
0.007
Glucose
1.22
1.063–1.443
0.008
Surgical treatment
0.037
0.001–0.414
0.029
Low volume
(n=220)
Glasgow Coma Scale
0.570
0.435–0.695
< 0.001
Age
1.028
0.984–1.08
0.240
Energy
1.419
1.175–2.302
0.025
Subtentorial location
0.035
0.001–0.442
0.018
Entropy
0.994
0.982–0.999
0.091
Fractal dimension
0.914
0.587–1.357
0.668
Intraventricular hemorrhage
1.443
0.316–6.634
0.630
Glucose
1.310
0.967–1.781
0.073
Surgical treatment
0.768
0.086–5.588
0.800
CI confidence interval, OR odds ratio

Discussion

Our study revealed that the majority of patients received conservative treatment, which is consistent with the commonly adopted management approach [10]. Surgically treated patients exhibited significantly fewer comorbidities, despite being in a worse neurological state. Moreover, surgical treatment independently contributed to a reduction in 30-day mortality. As previously mentioned, although the STICH trial failed to demonstrate the benefits of surgical treatment for of ICH [6], further analysis revealed that this approach may enhance outcomes for certain patient groups [7, 9]. Similarly, our study identified factors that could moderate the impact of ICH removal on mortality, which should be considered in management planning.
We uncovered significant differences in the CT appearance of surgically treated ICH. Based on existing literature, ICH radiomics have not been analyzed for surgical treatment indications; however, it’s association with outcomes and the risk of ICH growth has been demonstrated [1113]. This aligns with our findings that energy and entropy were independently linked to an increased risk of 30-day mortality in our study group. Another interesting finding in our study was the moderating influence of energy levels on 30-day morality postsurgical treatment. Patients with higher ICH energy levels may benefit more from surgical intervention, which likely stems from an increased risk of ICH expansion [16]. Consequently, early surgical intervention and the application of hemostatic materials could be crucial in prevention of further rebleeding. Interestingly, another study with comparable number of patients found that in both high and low energy groups, well-known outcome predictors like GCS score, glucose level, ICH volume, or presence of IVH [10] were significantly correlated with mortality only in patients exhibiting high ICH energy. This finding might indicate a divergent natural progression of the disease between these two patient groups. Therefore, further research into radiomics in ICH management could aid in clarifying the role of surgical treatment, including the identification of patient subgroups which might distinctly benefit from it.
Our research also identified a significant moderating role of volume in the connection between 30-day mortality and surgical intervention. Following an ICH removal, a significant reduction in 30-day mortality was observed only in patients with larger ICH volumes. As previously documented in the literature, ICH size is one of the most important predictors of outcome [17]. Larger ICHs are associated with a mass effect, potentially leading to brain herniation. Additionally, a greater volume of blood can amplify its toxic impact on brain tissue [18] and is linked to an increased risk of ICH growth and early deterioration [19]. Our findings are consistent with other researchers who have also proposed that larger ICHs are an indication for surgical intervention [4, 5]. Other research groups also found that patients with such ICHs are more frequently candidates for surgery [20]. In contrast to ICH energy, common risk factors had similar impacts on mortality both in groups with larger and smaller ICH.
Moreover, we identified a moderating negative impact of IVH on mortality after surgical treatment. This is consistent with previous studies, indicating that patients with IVH did not benefit from surgical interventions [6, 21]. Presence of IVH has been previously established as independent factor for increased mortality after ICH [22]. Furthermore, it has been observed that patients with IVH are less likely to undergo surgery [20].
Our study highlights the value of radiomics analysis in aiding clinical decision-making for the treatment of patients with spontaneous ICH. We found that patients with higher volume and energy of ICH might benefit from surgical treatment, although its effectiveness could be diminished in cases with intraventricular blood; however, our study encountered certain limitations. Firstly, it was nonrandomized, and due to the absence of definitive guidelines for surgical treatment, decisions were based on clinical experience, potentially introducing bias. Another limitation is its single-center, retrospective nature. Hence, a larger multicenter randomized control trial is warranted to establish comprehensive ICH management guidelines that incorporate radiomic analysis. Despite these constraints, our study is pioneering in demonstrating the role of radiomics in influencing the outcomes of surgical treatment.

Conflict of interest

R.M. Krzyżewski, B.M. Kwinta, K. Stachura, T.J. Popiela, R. Pułyk, A. Słowik, J. Gąsowski and K.M. Kliś declare that they have no competing interests.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Neurologie & Psychiatrie

Kombi-Abonnement

Mit e.Med Neurologie & Psychiatrie erhalten Sie Zugang zu CME-Fortbildungen der Fachgebiete, den Premium-Inhalten der dazugehörigen Fachzeitschriften, inklusive einer gedruckten Zeitschrift Ihrer Wahl.

e.Med Neurologie

Kombi-Abonnement

Mit e.Med Neurologie erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes, den Premium-Inhalten der neurologischen Fachzeitschriften, inklusive einer gedruckten Neurologie-Zeitschrift Ihrer Wahl.

Weitere Produktempfehlungen anzeigen
Literatur
1.
Zurück zum Zitat Feigin VL, Forouzanfar MH, Krishnamurthi R, et al. Global and regional burden of stroke during 1990–2010: findings from the Global Burden of Disease Study 2010. Lancet. 2014;383:245.CrossRefPubMedPubMedCentral Feigin VL, Forouzanfar MH, Krishnamurthi R, et al. Global and regional burden of stroke during 1990–2010: findings from the Global Burden of Disease Study 2010. Lancet. 2014;383:245.CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Pinho J, Costa AS, Araújo JM, Amorim JM, Ferreira C. Intracerebral hemorrhage outcome: A comprehensive update. J Neurol Sci. 2019;398:54–66.CrossRefPubMed Pinho J, Costa AS, Araújo JM, Amorim JM, Ferreira C. Intracerebral hemorrhage outcome: A comprehensive update. J Neurol Sci. 2019;398:54–66.CrossRefPubMed
3.
Zurück zum Zitat van Asch CJ, Luitse MJ, Rinkel GJ, van der Tweel I, Algra A, Klijn CJ. Incidence, case fatality, and functional outcome of intracerebral haemorrhage over time, according to age, sex, and ethnic origin: a systematic review and meta-analysis. Lancet Neurol. 2010;9:167–76.CrossRefPubMed van Asch CJ, Luitse MJ, Rinkel GJ, van der Tweel I, Algra A, Klijn CJ. Incidence, case fatality, and functional outcome of intracerebral haemorrhage over time, according to age, sex, and ethnic origin: a systematic review and meta-analysis. Lancet Neurol. 2010;9:167–76.CrossRefPubMed
4.
Zurück zum Zitat Veltkamp R, Purrucker J. Management of Spontaneous Intracerebral Hemorrhage. Curr Neurol Neurosci Rep. 2017;17. Veltkamp R, Purrucker J. Management of Spontaneous Intracerebral Hemorrhage. Curr Neurol Neurosci Rep. 2017;17.
5.
Zurück zum Zitat Gregson BA, Broderick JP, Auer LM, et al. Individual patient data subgroup meta-analysis of surgery for Spontaneous Supratentorial Intracerebral Haemorrhage. Stroke. 2012;43:1496.CrossRefPubMedPubMedCentral Gregson BA, Broderick JP, Auer LM, et al. Individual patient data subgroup meta-analysis of surgery for Spontaneous Supratentorial Intracerebral Haemorrhage. Stroke. 2012;43:1496.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Mendelow AD, Gregson BA, Fernandes HM, et al. Early surgery versus initial conservative treatment in patients with spontaneous supratentorial intracerebral haematomas in the International Surgical Trial in Intracerebral Haemorrhage (STICH): a randomised trial. Lancet. 2005;365:387–97.CrossRefPubMed Mendelow AD, Gregson BA, Fernandes HM, et al. Early surgery versus initial conservative treatment in patients with spontaneous supratentorial intracerebral haematomas in the International Surgical Trial in Intracerebral Haemorrhage (STICH): a randomised trial. Lancet. 2005;365:387–97.CrossRefPubMed
7.
Zurück zum Zitat Vidale S, Bellocchi S, Taborelli A. Surgery for cerebral haemor-rhage—STICH II trial. Lancet. 2013;382:1401–2.CrossRefPubMed Vidale S, Bellocchi S, Taborelli A. Surgery for cerebral haemor-rhage—STICH II trial. Lancet. 2013;382:1401–2.CrossRefPubMed
8.
Zurück zum Zitat Fiorella D, Arthur AS, Mocco JD. 305 The INVEST Trial. Neurosurgery. 63:187. 2016. Fiorella D, Arthur AS, Mocco JD. 305 The INVEST Trial. Neurosurgery. 63:187. 2016.
9.
Zurück zum Zitat Hanley DF, Thompson RE, Muschelli J, et al. Safety and efficacy of minimally invasive surgery plus alteplase in intracerebral haemorrhage evacuation (MISTIE): a randomised, controlled, open-label, phase 2 trial. Lancet Neurol. 2016;15:1228–37.CrossRefPubMedPubMedCentral Hanley DF, Thompson RE, Muschelli J, et al. Safety and efficacy of minimally invasive surgery plus alteplase in intracerebral haemorrhage evacuation (MISTIE): a randomised, controlled, open-label, phase 2 trial. Lancet Neurol. 2016;15:1228–37.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Greenberg SM, Ziai WC, Cordonnier C, et al. 2022 Guideline for the Management of Patients With Spontaneous Intracerebral Hemorrhage: A Guideline From the American Heart Association/American Stroke Association. Stroke. 2022;53:282–361.CrossRef Greenberg SM, Ziai WC, Cordonnier C, et al. 2022 Guideline for the Management of Patients With Spontaneous Intracerebral Hemorrhage: A Guideline From the American Heart Association/American Stroke Association. Stroke. 2022;53:282–361.CrossRef
11.
Zurück zum Zitat Haider SP, Qureshi AI, Jain A, et al. Admission computed tomography radiomic signatures outperform hematoma volume in predicting baseline clinical severity and functional outcome in the ATACH-2 trial intracerebral hemorrhage population. Eur J Neurol. 2021;28:2989–3000.CrossRefPubMedPubMedCentral Haider SP, Qureshi AI, Jain A, et al. Admission computed tomography radiomic signatures outperform hematoma volume in predicting baseline clinical severity and functional outcome in the ATACH-2 trial intracerebral hemorrhage population. Eur J Neurol. 2021;28:2989–3000.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Chen Q, Zhu D, Liu J, et al. Clinical-radiomics Nomogram for Risk Estimation of Early Hematoma Expansion after Acute Intracerebral Hemorrhage. Acad Radiol. 2021;28:307–17.CrossRefPubMed Chen Q, Zhu D, Liu J, et al. Clinical-radiomics Nomogram for Risk Estimation of Early Hematoma Expansion after Acute Intracerebral Hemorrhage. Acad Radiol. 2021;28:307–17.CrossRefPubMed
13.
Zurück zum Zitat Zhan C, Chen Q, Zhang M, et al. Radiomics for intracerebral hemorrhage: are all small hematomas benign? Br J Radiol. 2021;94. Zhan C, Chen Q, Zhang M, et al. Radiomics for intracerebral hemorrhage: are all small hematomas benign? Br J Radiol. 2021;94.
14.
Zurück zum Zitat Gadelmawla ES. A vision system for surface roughness characterization using the gray level co-occurrence matrix. NDT E Int. 2004;37:577–88.CrossRef Gadelmawla ES. A vision system for surface roughness characterization using the gray level co-occurrence matrix. NDT E Int. 2004;37:577–88.CrossRef
15.
Zurück zum Zitat Kliś KM, Krzyżewski RM, Kwinta BM, Stachura K, Gąsowski J. Computer-Assisted Analysis of Intracerebral Hemorrhage Shape and Density. World Neurosurg. 2018;120:e863–9.CrossRefPubMed Kliś KM, Krzyżewski RM, Kwinta BM, Stachura K, Gąsowski J. Computer-Assisted Analysis of Intracerebral Hemorrhage Shape and Density. World Neurosurg. 2018;120:e863–9.CrossRefPubMed
16.
Zurück zum Zitat Shen Q, Shan Y, Hu Z, et al. Quantitative parameters of CT texture analysis as potential markersfor early prediction of spontaneous intracranial hemorrhage enlargement. Eur Radiol. 2018;28:4389–96.CrossRefPubMed Shen Q, Shan Y, Hu Z, et al. Quantitative parameters of CT texture analysis as potential markersfor early prediction of spontaneous intracranial hemorrhage enlargement. Eur Radiol. 2018;28:4389–96.CrossRefPubMed
17.
Zurück zum Zitat Panchal HN, Shah MS, Shah DS. Intracerebral Hemorrhage Score and Volume as an Independent Predictor of Mortality in Primary Intracerebral Hemorrhage Patients. Indian J Surg. 2015;77:302.CrossRefPubMed Panchal HN, Shah MS, Shah DS. Intracerebral Hemorrhage Score and Volume as an Independent Predictor of Mortality in Primary Intracerebral Hemorrhage Patients. Indian J Surg. 2015;77:302.CrossRefPubMed
18.
Zurück zum Zitat De Oliveira MAL. Surgery for spontaneous intracerebral hemorrhage. Crit Care. 2020;24. De Oliveira MAL. Surgery for spontaneous intracerebral hemorrhage. Crit Care. 2020;24.
19.
Zurück zum Zitat Lv XN, Li Q. Imaging predictors for hematoma expansion in patients with intracerebral hemorrhage: A current review. Brain Hemorrhages. 2020;1:133–9.CrossRef Lv XN, Li Q. Imaging predictors for hematoma expansion in patients with intracerebral hemorrhage: A current review. Brain Hemorrhages. 2020;1:133–9.CrossRef
20.
Zurück zum Zitat Chen CJ, Ding D, Ironside N, et al. Predictors of Surgical Intervention in Patients with Spontaneous Intracerebral Hemorrhage. World Neurosurg. 2019;123:e700.CrossRefPubMedPubMedCentral Chen CJ, Ding D, Ironside N, et al. Predictors of Surgical Intervention in Patients with Spontaneous Intracerebral Hemorrhage. World Neurosurg. 2019;123:e700.CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Wang WZ, Jiang B, Liu HM, et al. Minimally invasive craniopuncture therapy vs. conservative treatment for spontaneous intracerebral hemorrhage: results from a randomized clinical trial in China. Int J Stroke. 2009;4:11–6.CrossRefPubMed Wang WZ, Jiang B, Liu HM, et al. Minimally invasive craniopuncture therapy vs. conservative treatment for spontaneous intracerebral hemorrhage: results from a randomized clinical trial in China. Int J Stroke. 2009;4:11–6.CrossRefPubMed
22.
Zurück zum Zitat Al-Mufti F, Thabet AM, Singh T, El-Ghanem M, Amuluru K, Gandhi CD. Clinical and Radiographic Predictors of Intracerebral Hemorrhage Outcome. Interv Neurol. 2018;7:118.CrossRefPubMedPubMedCentral Al-Mufti F, Thabet AM, Singh T, El-Ghanem M, Amuluru K, Gandhi CD. Clinical and Radiographic Predictors of Intracerebral Hemorrhage Outcome. Interv Neurol. 2018;7:118.CrossRefPubMedPubMedCentral
Metadaten
Titel
Association of Imaging-based Predictors with Outcome in Different Treatment Options for Intracerebral Hemorrhage
verfasst von
Roger M. Krzyżewski
Borys M. Kwinta
Krzysztof Stachura
Tadeusz J. Popiela
Roman Pułyk
Agnieszka Słowik
Jerzy Gąsowski
Kornelia M. Kliś
Publikationsdatum
26.04.2024
Verlag
Springer Berlin Heidelberg
Erschienen in
Clinical Neuroradiology
Print ISSN: 1869-1439
Elektronische ISSN: 1869-1447
DOI
https://doi.org/10.1007/s00062-024-01406-2

Darf man die Behandlung eines Neonazis ablehnen?

08.05.2024 Gesellschaft Nachrichten

In einer Leseranfrage in der Zeitschrift Journal of the American Academy of Dermatology möchte ein anonymer Dermatologe bzw. eine anonyme Dermatologin wissen, ob er oder sie einen Patienten behandeln muss, der eine rassistische Tätowierung trägt.

Ein Drittel der jungen Ärztinnen und Ärzte erwägt abzuwandern

07.05.2024 Klinik aktuell Nachrichten

Extreme Arbeitsverdichtung und kaum Supervision: Dr. Andrea Martini, Sprecherin des Bündnisses Junge Ärztinnen und Ärzte (BJÄ) über den Frust des ärztlichen Nachwuchses und die Vorteile des Rucksack-Modells.

Endlich: Zi zeigt, mit welchen PVS Praxen zufrieden sind

IT für Ärzte Nachrichten

Darauf haben viele Praxen gewartet: Das Zi hat eine Liste von Praxisverwaltungssystemen veröffentlicht, die von Nutzern positiv bewertet werden. Eine gute Grundlage für wechselwillige Ärztinnen und Psychotherapeuten.

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.