Skip to main content
Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging 13/2023

15.08.2023 | Original Article

Association of protein distribution and gene expression revealed by positron emission tomography and postmortem gene expression in the dopaminergic system of the human brain

verfasst von: Yasuharu Yamamoto, Keisuke Takahata, Manabu Kubota, Hiroyoshi Takeuchi, Sho Moriguchi, Takeshi Sasaki, Chie Seki, Hironobu Endo, Kiwamu Matsuoka, Kenji Tagai, Yasuyuki Kimura, Shin Kurose, Masaru Mimura, Kazunori Kawamura, Ming-Rong Zhang, Makoto Higuchi

Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging | Ausgabe 13/2023

Einloggen, um Zugang zu erhalten

Abstract

Purpose

The topological distribution of dopamine-related proteins is determined by gene transcription and subsequent regulations. Recent research strategies integrating positron emission tomography with a transcriptome atlas have opened new opportunities to understand the influence of regulation after transcription on protein distribution. Previous studies have reported that messenger (m)-RNA expression levels spatially correlate with the density maps of serotonin receptors but not with those of transporters. This discrepancy may be due to differences in regulation after transcription between presynaptic and postsynaptic proteins, which have not been studied in the dopaminergic system. Here, we focused on dopamine D1 and D2/D3 receptors and dopamine transporters and investigated their region-wise relationship between mRNA expression and protein distribution.

Methods

We examined the region-wise correlation between regional binding potentials of the target region relative to that of non-displaceable tissue (BPND) values of 11C-SCH-23390 and mRNA expression levels of dopamine D1 receptors (D1R); regional BPND values of 11C-FLB-457 and mRNA expression levels of dopamine D2/D3 receptors (D2/D3R); and regional total distribution volume (VT) values of 18F-FE-PE2I and mRNA expression levels of dopamine transporters (DAT) using Spearman’s rank correlation.

Results

We found significant positive correlations between regional BPND values of 11C-SCH-23390 and the mRNA expression levels of D1R (r = 0.769, p = 0.0021). Similar to D1R, regional BPND values of 11C-FLB-457 positively correlated with the mRNA expression levels of D2R (r = 0.809, p = 0.0151) but not with those of D3R (r = 0.413, p = 0.3095). In contrast to D1R and D2R, no significant correlation between VT values of 18F-FE-PE2I and mRNA expression levels of DAT was observed (r = -0.5934, p = 0.140).

Conclusion

We found a region-wise correlation between the mRNA expression levels of dopamine D1 and D2 receptors and their respective protein distributions. However, we found no region-wise correlation between the mRNA expression levels of dopamine transporters and their protein distributions, indicating different regulatory mechanisms for the localization of pre- and postsynaptic proteins. These results provide a broader understanding of the application of the transcriptome atlas to neuroimaging studies of the dopaminergic nervous system.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Speranza L, di Porzio U, Viggiano D, de Donato A, Volpicelli F. Dopamine: the neuromodulator of long-term synaptic plasticity, reward and movement control. Cells. 2021;10:735.PubMedPubMedCentralCrossRef Speranza L, di Porzio U, Viggiano D, de Donato A, Volpicelli F. Dopamine: the neuromodulator of long-term synaptic plasticity, reward and movement control. Cells. 2021;10:735.PubMedPubMedCentralCrossRef
2.
Zurück zum Zitat Sillivan SE, Konradi C. Expression and function of dopamine receptors in the developing medial frontal cortex and striatum of the rat. Neuroscience. 2011;199:501–14.PubMedCrossRef Sillivan SE, Konradi C. Expression and function of dopamine receptors in the developing medial frontal cortex and striatum of the rat. Neuroscience. 2011;199:501–14.PubMedCrossRef
3.
Zurück zum Zitat Bannon MJ, Whitty CJ. Age-related and regional differences in dopamine transporter mRNA expression in human midbrain. Neurology. 1997;48:969–77.PubMedCrossRef Bannon MJ, Whitty CJ. Age-related and regional differences in dopamine transporter mRNA expression in human midbrain. Neurology. 1997;48:969–77.PubMedCrossRef
4.
Zurück zum Zitat Wallert ED, van de Giessen E, Knol RJJ, Beudel M, de Bie RMA, Booij J. Imaging dopaminergic neurotransmission in neurodegenerative disorders. J Nucl Med. 2022;63:27–32.CrossRef Wallert ED, van de Giessen E, Knol RJJ, Beudel M, de Bie RMA, Booij J. Imaging dopaminergic neurotransmission in neurodegenerative disorders. J Nucl Med. 2022;63:27–32.CrossRef
5.
Zurück zum Zitat Ito H, Takahashi H, Arakawa R, Takano H, Suhara T. Normal database of dopaminergic neurotransmission system in human brain measured by positron emission tomography. Neuroimage. 2008;39:555–65.PubMedCrossRef Ito H, Takahashi H, Arakawa R, Takano H, Suhara T. Normal database of dopaminergic neurotransmission system in human brain measured by positron emission tomography. Neuroimage. 2008;39:555–65.PubMedCrossRef
6.
Zurück zum Zitat Yamamoto Y, Takahata K, Kubota M, Takano H, Takeuchi H, Kimura Y, et al. Differential associations of dopamine synthesis capacity with the dopamine transporter and D2 receptor availability as assessed by PET in the living human brain. Neuroimage. 2021;226:117543.PubMedCrossRef Yamamoto Y, Takahata K, Kubota M, Takano H, Takeuchi H, Kimura Y, et al. Differential associations of dopamine synthesis capacity with the dopamine transporter and D2 receptor availability as assessed by PET in the living human brain. Neuroimage. 2021;226:117543.PubMedCrossRef
7.
Zurück zum Zitat Conn K-A, Burne THJ, Kesby JP. Subcortical dopamine and cognition in schizophrenia: looking beyond psychosis in preclinical models. Front Neurosci. 2020;14:542.PubMedPubMedCentralCrossRef Conn K-A, Burne THJ, Kesby JP. Subcortical dopamine and cognition in schizophrenia: looking beyond psychosis in preclinical models. Front Neurosci. 2020;14:542.PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Stenkrona P, Matheson GJ, Halldin C, Cervenka S, Farde L. D1-dopamine receptor availability in first-episode neuroleptic naive psychosis patients. Int J Neuropsychopharmacol. 2019;22:415–25.PubMedPubMedCentralCrossRef Stenkrona P, Matheson GJ, Halldin C, Cervenka S, Farde L. D1-dopamine receptor availability in first-episode neuroleptic naive psychosis patients. Int J Neuropsychopharmacol. 2019;22:415–25.PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Yasuno F, Suhara T, Okubo Y, Sudo Y, Inoue M, Ichimiya T, et al. Low dopamine d(2) receptor binding in subregions of the thalamus in schizophrenia. Am J Psychiatry. 2004;161:1016–22.PubMedCrossRef Yasuno F, Suhara T, Okubo Y, Sudo Y, Inoue M, Ichimiya T, et al. Low dopamine d(2) receptor binding in subregions of the thalamus in schizophrenia. Am J Psychiatry. 2004;161:1016–22.PubMedCrossRef
10.
Zurück zum Zitat Arakawa R, Ichimiya T, Ito H, Takano A, Okumura M, Takahashi H, et al. Increase in thalamic binding of [11C]PE2I in patients with schizophrenia: a positron emission tomography study of dopamine transporter. J Psychiatr Res. 2009;43:1219–23.PubMedCrossRef Arakawa R, Ichimiya T, Ito H, Takano A, Okumura M, Takahashi H, et al. Increase in thalamic binding of [11C]PE2I in patients with schizophrenia: a positron emission tomography study of dopamine transporter. J Psychiatr Res. 2009;43:1219–23.PubMedCrossRef
11.
Zurück zum Zitat Brugger SP, Angelescu I, Abi-Dargham A, Mizrahi R, Shahrezaei V, Howes OD. Heterogeneity of striatal dopamine function in schizophrenia: meta-analysis of Variance. Biol Psychiatry. 2020;87:215–24.PubMedCrossRef Brugger SP, Angelescu I, Abi-Dargham A, Mizrahi R, Shahrezaei V, Howes OD. Heterogeneity of striatal dopamine function in schizophrenia: meta-analysis of Variance. Biol Psychiatry. 2020;87:215–24.PubMedCrossRef
12.
Zurück zum Zitat Rogdaki M, Devroye C, Ciampoli M, Veronese M, Ashok A, McCutcheon RA, et al. Striatal dopaminergic alterations in individuals with copy number variants at the 22q11.2 genetic locus and their implications for psychosis risk: a [18F]-DOPA PET study. Mol Psychiatry. 2021;1–12. Rogdaki M, Devroye C, Ciampoli M, Veronese M, Ashok A, McCutcheon RA, et al. Striatal dopaminergic alterations in individuals with copy number variants at the 22q11.2 genetic locus and their implications for psychosis risk: a [18F]-DOPA PET study. Mol Psychiatry. 2021;1–12.
13.
Zurück zum Zitat Farde L, Nordström AL, Wiesel FA, Pauli S, Halldin C, Sedvall G. Positron emission tomographic analysis of central D1 and D2 dopamine receptor occupancy in patients treated with classical neuroleptics and clozapine. Relation to extrapyramidal side effects. Arch Gen Psychiatry. 1992;49:538–44.PubMedCrossRef Farde L, Nordström AL, Wiesel FA, Pauli S, Halldin C, Sedvall G. Positron emission tomographic analysis of central D1 and D2 dopamine receptor occupancy in patients treated with classical neuroleptics and clozapine. Relation to extrapyramidal side effects. Arch Gen Psychiatry. 1992;49:538–44.PubMedCrossRef
14.
Zurück zum Zitat Jedema HP, Narendran R, Bradberry CW. Amphetamine-induced release of dopamine in primate prefrontal cortex and striatum: Striking differences in magnitude and timecourse. J Neurochem. 2014;130:490–7.PubMedPubMedCentralCrossRef Jedema HP, Narendran R, Bradberry CW. Amphetamine-induced release of dopamine in primate prefrontal cortex and striatum: Striking differences in magnitude and timecourse. J Neurochem. 2014;130:490–7.PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Hobson BD, Kong L, Angelo MF, Lieberman OJ, Mosharov EV, Herzog E, et al. Subcellular and regional localization of mRNA translation in midbrain dopamine neurons. Cell Rep. 2022;38:110208.PubMedPubMedCentralCrossRef Hobson BD, Kong L, Angelo MF, Lieberman OJ, Mosharov EV, Herzog E, et al. Subcellular and regional localization of mRNA translation in midbrain dopamine neurons. Cell Rep. 2022;38:110208.PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat Rizzo G, Veronese M, Heckemann RA, Selvaraj S, Howes OD, Hammers A, et al. The predictive power of brain mRNA mappings for in vivo protein density: a positron emission tomography correlation study. J Cereb Blood Flow Metab. 2014;34:827–35.PubMedPubMedCentralCrossRef Rizzo G, Veronese M, Heckemann RA, Selvaraj S, Howes OD, Hammers A, et al. The predictive power of brain mRNA mappings for in vivo protein density: a positron emission tomography correlation study. J Cereb Blood Flow Metab. 2014;34:827–35.PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat Martins D, Giacomel A, Williams SCR, Turkheimer F, Dipasquale O, Veronese M, et al. Imaging transcriptomics: convergent cellular, transcriptomic, and molecular neuroimaging signatures in the healthy adult human brain. Cell Rep. 2021;37:110173.PubMedCrossRef Martins D, Giacomel A, Williams SCR, Turkheimer F, Dipasquale O, Veronese M, et al. Imaging transcriptomics: convergent cellular, transcriptomic, and molecular neuroimaging signatures in the healthy adult human brain. Cell Rep. 2021;37:110173.PubMedCrossRef
18.
Zurück zum Zitat Murgaš M, Michenthaler P, Reed MB, Gryglewski G, Lanzenberger R. Correlation of receptor density and mRNA expression patterns in the human cerebral cortex. Neuroimage. 2022;256:119214.PubMedCrossRef Murgaš M, Michenthaler P, Reed MB, Gryglewski G, Lanzenberger R. Correlation of receptor density and mRNA expression patterns in the human cerebral cortex. Neuroimage. 2022;256:119214.PubMedCrossRef
19.
Zurück zum Zitat Komorowski A, James GM, Philippe C, Gryglewski G, Bauer A, Hienert M, et al. Association of protein distribution and gene expression revealed by PET and post-mortem quantification in the serotonergic system of the human brain. Cereb Cortex. 2017;27:117–30.PubMedCrossRef Komorowski A, James GM, Philippe C, Gryglewski G, Bauer A, Hienert M, et al. Association of protein distribution and gene expression revealed by PET and post-mortem quantification in the serotonergic system of the human brain. Cereb Cortex. 2017;27:117–30.PubMedCrossRef
20.
Zurück zum Zitat Unterholzner J, Gryglewski G, Philippe C, Seiger R, Pichler V, Godbersen GM, et al. Topologically guided prioritization of candidate gene transcripts coexpressed with the 5-HT1A receptor by combining in vivo PET and Allen human brain atlas data. Cereb Cortex. 2020;30:3771–80.PubMedPubMedCentralCrossRef Unterholzner J, Gryglewski G, Philippe C, Seiger R, Pichler V, Godbersen GM, et al. Topologically guided prioritization of candidate gene transcripts coexpressed with the 5-HT1A receptor by combining in vivo PET and Allen human brain atlas data. Cereb Cortex. 2020;30:3771–80.PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Godbersen GM, Murgaš M, Gryglewski G, Klöbl M, Unterholzner J, Rischka L, et al. Coexpression of gene transcripts with monoamine oxidase a quantified by human in vivo positron emission tomography. Cereb Cortex. 2022;32:3516–24.PubMedCrossRef Godbersen GM, Murgaš M, Gryglewski G, Klöbl M, Unterholzner J, Rischka L, et al. Coexpression of gene transcripts with monoamine oxidase a quantified by human in vivo positron emission tomography. Cereb Cortex. 2022;32:3516–24.PubMedCrossRef
22.
Zurück zum Zitat Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage. 2006;31:968–80.PubMedCrossRef Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage. 2006;31:968–80.PubMedCrossRef
23.
Zurück zum Zitat Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron. 2002;33:341–55.PubMedCrossRef Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron. 2002;33:341–55.PubMedCrossRef
24.
Zurück zum Zitat Lammertsma AA, Hume SP. Simplified reference tissue model for PET receptor studies. Neuroimage. 1996;4:153–8.PubMedCrossRef Lammertsma AA, Hume SP. Simplified reference tissue model for PET receptor studies. Neuroimage. 1996;4:153–8.PubMedCrossRef
25.
Zurück zum Zitat Kubota M, Fujino J, Tei S, Takahata K, Matsuoka K, Tagai K, et al. Binding of dopamine d1 receptor and noradrenaline transporter in individuals with autism spectrum disorder: a PET study. Cereb Cortex. 2020;30:6458–68.PubMedCrossRef Kubota M, Fujino J, Tei S, Takahata K, Matsuoka K, Tagai K, et al. Binding of dopamine d1 receptor and noradrenaline transporter in individuals with autism spectrum disorder: a PET study. Cereb Cortex. 2020;30:6458–68.PubMedCrossRef
26.
Zurück zum Zitat Takahata K, Ito H, Takano H, Arakawa R, Fujiwara H, Kimura Y, et al. Striatal and extrastriatal dopamine D 2 receptor occupancy by the partial agonist antipsychotic drug aripiprazole in the human brain: A positron emission tomography study with [11C]raclopride and [11C]FLB457. Psychopharmacology. 2012;222:165–72.PubMedCrossRef Takahata K, Ito H, Takano H, Arakawa R, Fujiwara H, Kimura Y, et al. Striatal and extrastriatal dopamine D 2 receptor occupancy by the partial agonist antipsychotic drug aripiprazole in the human brain: A positron emission tomography study with [11C]raclopride and [11C]FLB457. Psychopharmacology. 2012;222:165–72.PubMedCrossRef
27.
Zurück zum Zitat Seki C, Ito H, Ichimiya T, Arakawa R, Ikoma Y, Shidahara M, et al. Quantitative analysis of dopamine transporters in human brain using [11C]PE2I and positron emission tomography: evaluation of reference tissue models. Ann Nucl Med. 2010;24:249–60.PubMedCrossRef Seki C, Ito H, Ichimiya T, Arakawa R, Ikoma Y, Shidahara M, et al. Quantitative analysis of dopamine transporters in human brain using [11C]PE2I and positron emission tomography: evaluation of reference tissue models. Ann Nucl Med. 2010;24:249–60.PubMedCrossRef
28.
Zurück zum Zitat Sasaki T, Ito H, Kimura Y, Arakawa R, Takano H, Seki C, et al. Quantification of dopamine transporter in human brain using PET with 18F-FE-PE2I. J Nucl Med. 2012;53:1065–73.PubMedCrossRef Sasaki T, Ito H, Kimura Y, Arakawa R, Takano H, Seki C, et al. Quantification of dopamine transporter in human brain using PET with 18F-FE-PE2I. J Nucl Med. 2012;53:1065–73.PubMedCrossRef
29.
Zurück zum Zitat Hawrylycz MJ, Lein ES, Guillozet-Bongaarts AL, Shen EH, Ng L, Miller JA, et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature. 2012;489:391–9.PubMedPubMedCentralCrossRef Hawrylycz MJ, Lein ES, Guillozet-Bongaarts AL, Shen EH, Ng L, Miller JA, et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature. 2012;489:391–9.PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Gryglewski G, Seiger R, James GM, Godbersen GM, Komorowski A, Unterholzner J, et al. Spatial analysis and high resolution mapping of the human whole-brain transcriptome for integrative analysis in neuroimaging. Neuroimage. 2018;176:259–67.PubMedCrossRef Gryglewski G, Seiger R, James GM, Godbersen GM, Komorowski A, Unterholzner J, et al. Spatial analysis and high resolution mapping of the human whole-brain transcriptome for integrative analysis in neuroimaging. Neuroimage. 2018;176:259–67.PubMedCrossRef
32.
Zurück zum Zitat Chou YH, Karlsson P, Halldin C, Olsson H, Farde L. A PET study of D(1)-like dopamine receptor ligand binding during altered endogenous dopamine levels in the primate brain. Psychopharmacology. 1999;146:220–7.PubMedCrossRef Chou YH, Karlsson P, Halldin C, Olsson H, Farde L. A PET study of D(1)-like dopamine receptor ligand binding during altered endogenous dopamine levels in the primate brain. Psychopharmacology. 1999;146:220–7.PubMedCrossRef
33.
Zurück zum Zitat Halldin C, Farde L, Högberg T, Mohell N, Hall H, Suhara T, et al. Carbon-11-FLB 457: a radioligand for extrastriatal D2 dopamine receptors. J Nucl Med. 1995;36:1275–81.PubMed Halldin C, Farde L, Högberg T, Mohell N, Hall H, Suhara T, et al. Carbon-11-FLB 457: a radioligand for extrastriatal D2 dopamine receptors. J Nucl Med. 1995;36:1275–81.PubMed
34.
Zurück zum Zitat Murray AM, Ryoo HL, Gurevich E, Joyce JN. Localization of dopamine D3 receptors to mesolimbic and D2 receptors to mesostriatal regions of human forebrain. Proc Natl Acad Sci U S A. 1994;91:11271–5.PubMedPubMedCentralCrossRef Murray AM, Ryoo HL, Gurevich E, Joyce JN. Localization of dopamine D3 receptors to mesolimbic and D2 receptors to mesostriatal regions of human forebrain. Proc Natl Acad Sci U S A. 1994;91:11271–5.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Gurevich EV, Joyce JN. Distribution of dopamine D3 receptor expressing neurons in the human forebrain: comparison with D2 receptor expressing neurons. Neuropsychopharmacology. 1999;20:60–80.PubMedCrossRef Gurevich EV, Joyce JN. Distribution of dopamine D3 receptor expressing neurons in the human forebrain: comparison with D2 receptor expressing neurons. Neuropsychopharmacology. 1999;20:60–80.PubMedCrossRef
36.
Zurück zum Zitat Ciliax BJ, Drash GW, Staley JK, Haber S, Mobley CJ, Miller GW, et al. Immunocytochemical localization of the dopamine transporter in human brain. J Comp Neurol. 1999;409:38–56.PubMedCrossRef Ciliax BJ, Drash GW, Staley JK, Haber S, Mobley CJ, Miller GW, et al. Immunocytochemical localization of the dopamine transporter in human brain. J Comp Neurol. 1999;409:38–56.PubMedCrossRef
37.
Zurück zum Zitat Kuhar MJ, Vaughan R, Uhl G, Cerruti C, Revay R, Freed C, et al. Localization of dopamine transporter protein by microscopic histochemistry. Adv Pharmacol. 1998;42:168–70.PubMedCrossRef Kuhar MJ, Vaughan R, Uhl G, Cerruti C, Revay R, Freed C, et al. Localization of dopamine transporter protein by microscopic histochemistry. Adv Pharmacol. 1998;42:168–70.PubMedCrossRef
38.
Zurück zum Zitat Smiley JF, Williams SM, Szigeti K, Goldman-Rakic PS. Light and electron microscopic characterization of dopamine-immunoreactive axons in human cerebral cortex. J Comp Neurol. 1992;321:325–35.PubMedCrossRef Smiley JF, Williams SM, Szigeti K, Goldman-Rakic PS. Light and electron microscopic characterization of dopamine-immunoreactive axons in human cerebral cortex. J Comp Neurol. 1992;321:325–35.PubMedCrossRef
39.
Zurück zum Zitat Komorowski A, Weidenauer A, Murgaš M, Sauerzopf U, Wadsak W, Mitterhauser M, et al. Association of dopamine D2/3 receptor binding potential measured using PET and [11C]-(+)-PHNO with post-mortem DRD2/3 gene expression in the human brain. Neuroimage. 2020;223:117270.PubMedCrossRef Komorowski A, Weidenauer A, Murgaš M, Sauerzopf U, Wadsak W, Mitterhauser M, et al. Association of dopamine D2/3 receptor binding potential measured using PET and [11C]-(+)-PHNO with post-mortem DRD2/3 gene expression in the human brain. Neuroimage. 2020;223:117270.PubMedCrossRef
40.
Zurück zum Zitat Rizzo G, Veronese M, Expert P, Turkheimer FE, Bertoldo A. Menga: a new comprehensive tool for the integration of neuroimaging data and the allen human brain transcriptome atlas. PLoS ONE. 2016;11:0148744.CrossRef Rizzo G, Veronese M, Expert P, Turkheimer FE, Bertoldo A. Menga: a new comprehensive tool for the integration of neuroimaging data and the allen human brain transcriptome atlas. PLoS ONE. 2016;11:0148744.CrossRef
41.
Zurück zum Zitat Pak K, Seo S, Lee MJ, Im HJ, Kim K, Kim IJ. Limited power of dopamine transporter mRNA mapping for predicting dopamine transporter availability. Synapse. 2022;76:22226.CrossRef Pak K, Seo S, Lee MJ, Im HJ, Kim K, Kim IJ. Limited power of dopamine transporter mRNA mapping for predicting dopamine transporter availability. Synapse. 2022;76:22226.CrossRef
42.
Zurück zum Zitat Rastedt DE, Vaughan RA, Foster JD. Palmitoylation mechanisms in dopamine transporter regulation. J Chem Neuroanat. 2017;3–9. Rastedt DE, Vaughan RA, Foster JD. Palmitoylation mechanisms in dopamine transporter regulation. J Chem Neuroanat. 2017;3–9.
43.
Zurück zum Zitat Fagan RR, Kearney PJ, Sweeney CG, Luethi D, Schoot Uiterkamp FE, Schicker K, et al. Dopamine transporter trafficking and Rit2 GTPase: mechanism of action and in vivo impact. J Biol Chem. 2020;295:5229–44.PubMedPubMedCentralCrossRef Fagan RR, Kearney PJ, Sweeney CG, Luethi D, Schoot Uiterkamp FE, Schicker K, et al. Dopamine transporter trafficking and Rit2 GTPase: mechanism of action and in vivo impact. J Biol Chem. 2020;295:5229–44.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Nirenberg MJ, Vaughan RA, Uhl GR, Kuhar MJ, Pickel VM. The dopamine transporter is localized to dendritic and axonal plasma membranes of nigrostriatal dopaminergic neurons. J Neurosci. 1996;16:436–47.PubMedPubMedCentralCrossRef Nirenberg MJ, Vaughan RA, Uhl GR, Kuhar MJ, Pickel VM. The dopamine transporter is localized to dendritic and axonal plasma membranes of nigrostriatal dopaminergic neurons. J Neurosci. 1996;16:436–47.PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Roy S. Seeing the unseen: the hidden world of slow axonal transport. Neuroscientist. 2014;20:71–81.PubMedCrossRef Roy S. Seeing the unseen: the hidden world of slow axonal transport. Neuroscientist. 2014;20:71–81.PubMedCrossRef
46.
Zurück zum Zitat Johnson VE, Stewart W, Smith DH. Axonal pathology in traumatic brain injury. Exp Neurol. 2013;246:35–43.PubMedCrossRef Johnson VE, Stewart W, Smith DH. Axonal pathology in traumatic brain injury. Exp Neurol. 2013;246:35–43.PubMedCrossRef
47.
Zurück zum Zitat Donnemiller E, Brenneis C, Wissel J, Scherfler C, Poewe W, Riccabona G, et al. Impaired dopaminergic neurotransmission in patients with traumatic brain injury: a SPET study using 123I-β-CIT and 123I-IBZM. Eur J Nucl Med. 2000;27:1410–4.PubMedCrossRef Donnemiller E, Brenneis C, Wissel J, Scherfler C, Poewe W, Riccabona G, et al. Impaired dopaminergic neurotransmission in patients with traumatic brain injury: a SPET study using 123I-β-CIT and 123I-IBZM. Eur J Nucl Med. 2000;27:1410–4.PubMedCrossRef
48.
Zurück zum Zitat Errea O, Moreno B, Gonzalez-Franquesa A, Garcia-Roves PM, Villoslada P. The disruption of mitochondrial axonal transport is an early event in neuroinflammation. J Neuroinflammation. 2015;12:152.PubMedPubMedCentralCrossRef Errea O, Moreno B, Gonzalez-Franquesa A, Garcia-Roves PM, Villoslada P. The disruption of mitochondrial axonal transport is an early event in neuroinflammation. J Neuroinflammation. 2015;12:152.PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Chu Y, Morfini GA, Langhamer LB, He Y, Brady ST, Kordower JH. Alterations in axonal transport motor proteins in sporadic and experimental Parkinson’s disease. Brain. 2012;135:2058–73.PubMedPubMedCentralCrossRef Chu Y, Morfini GA, Langhamer LB, He Y, Brady ST, Kordower JH. Alterations in axonal transport motor proteins in sporadic and experimental Parkinson’s disease. Brain. 2012;135:2058–73.PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Seaman KL, Smith CT, Juarez EJ, Dang LC, Castrellon JJ, Burgess LL, et al. Differential regional decline in dopamine receptor availability across adulthood: linear and nonlinear effects of age. Hum Brain Mapp. 2019;40:3125–38.PubMedPubMedCentralCrossRef Seaman KL, Smith CT, Juarez EJ, Dang LC, Castrellon JJ, Burgess LL, et al. Differential regional decline in dopamine receptor availability across adulthood: linear and nonlinear effects of age. Hum Brain Mapp. 2019;40:3125–38.PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Cutler J, Wittmann MK, Abdurahman A, Hargitai LD, Drew D, Husain M, et al. Ageing is associated with disrupted reinforcement learning whilst learning to help others is preserved. Nat Commun. 2021;12:4440.PubMedPubMedCentralCrossRef Cutler J, Wittmann MK, Abdurahman A, Hargitai LD, Drew D, Husain M, et al. Ageing is associated with disrupted reinforcement learning whilst learning to help others is preserved. Nat Commun. 2021;12:4440.PubMedPubMedCentralCrossRef
Metadaten
Titel
Association of protein distribution and gene expression revealed by positron emission tomography and postmortem gene expression in the dopaminergic system of the human brain
verfasst von
Yasuharu Yamamoto
Keisuke Takahata
Manabu Kubota
Hiroyoshi Takeuchi
Sho Moriguchi
Takeshi Sasaki
Chie Seki
Hironobu Endo
Kiwamu Matsuoka
Kenji Tagai
Yasuyuki Kimura
Shin Kurose
Masaru Mimura
Kazunori Kawamura
Ming-Rong Zhang
Makoto Higuchi
Publikationsdatum
15.08.2023
Verlag
Springer Berlin Heidelberg
Erschienen in
European Journal of Nuclear Medicine and Molecular Imaging / Ausgabe 13/2023
Print ISSN: 1619-7070
Elektronische ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-023-06390-2

Weitere Artikel der Ausgabe 13/2023

European Journal of Nuclear Medicine and Molecular Imaging 13/2023 Zur Ausgabe