Skip to main content
Erschienen in: Cancer and Metastasis Reviews 1/2023

01.02.2023

Autophagy, molecular chaperones, and unfolded protein response as promoters of tumor recurrence

verfasst von: Bashar Alhasan, Marina Mikeladze, Irina Guzhova, Boris Margulis

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 1/2023

Einloggen, um Zugang zu erhalten

Abstract

Tumor recurrence is a paradoxical function of a machinery, whereby a small proportion of the cancer cell population enters a resistant, dormant state, persists long-term in this condition, and then transitions to proliferation. The dormant phenotype is typical of cancer stem cells, tumor-initiating cells, disseminated tumor cells, and drug-tolerant persisters, which all demonstrate similar or even equivalent properties. Cancer cell dormancy and its conversion to repopulation are regulated by several protein signaling systems that inhibit or induce cell proliferation and provide optimal interrelations between cancer cells and their special niche; these systems act in close connection with tumor microenvironment and immune response mechanisms. During dormancy and reawakening periods, cell proteostasis machineries, autophagy, molecular chaperones, and the unfolded protein response are recruited to protect refractory tumor cells from a wide variety of stressors and therapeutic insults. Proteostasis mechanisms functionally or even physically interfere with the main regulators of tumor relapse, and the significance of these interactions and implications in the tumor recurrence phases are discussed in this review.
Literatur
10.
Zurück zum Zitat Vera-Ramirez, L. (2020). Cell-intrinsic survival signals. The role of autophagy in metastatic dissemination and tumor cell dormancy. In Seminars in Cancer Biology (Vol. 60, pp. 28–40). Elsevier. Vera-Ramirez, L. (2020). Cell-intrinsic survival signals. The role of autophagy in metastatic dissemination and tumor cell dormancy. In Seminars in Cancer Biology (Vol. 60, pp. 28–40). Elsevier.
14.
Zurück zum Zitat Racila, E., Scheuermann, R. H., Picker, L. J., Yefenof, E., Tucker, T., Chang, W., Marches, R., Street, N. E., & E. S. V. and J. W. hr. (1995). Tumor dormancy and cell signaling. II. Antibody as an agonist in inducing dormancy of a B cell lymphoma in SCID mice. J. Exp. Med., 181(April), 1539–1550. https://doi.org/10.1084/jem.181.4.1539CrossRefPubMed Racila, E., Scheuermann, R. H., Picker, L. J., Yefenof, E., Tucker, T., Chang, W., Marches, R., Street, N. E., & E. S. V. and J. W. hr. (1995). Tumor dormancy and cell signaling. II. Antibody as an agonist in inducing dormancy of a B cell lymphoma in SCID mice. J. Exp. Med., 181(April), 1539–1550. https://​doi.​org/​10.​1084/​jem.​181.​4.​1539CrossRefPubMed
16.
Zurück zum Zitat Carcereri de Prati, A., Butturini, E., Rigo, A., Oppici, E., Rossin, M., Boriero, D., & Mariotto, S. (2017). Metastatic breast cancer cells enter into dormant state and express cancer stem cells phenotype under chronic hypoxia. J. Cell. Biochem., 118(10), 3237–3248. https://doi.org/10.1002/jcb.25972CrossRefPubMed Carcereri de Prati, A., Butturini, E., Rigo, A., Oppici, E., Rossin, M., Boriero, D., & Mariotto, S. (2017). Metastatic breast cancer cells enter into dormant state and express cancer stem cells phenotype under chronic hypoxia. J. Cell. Biochem., 118(10), 3237–3248. https://​doi.​org/​10.​1002/​jcb.​25972CrossRefPubMed
18.
Zurück zum Zitat Pommier, A., Anaparthy, N., Memos, N., Kelley, Z. L., Gouronnec, A., Yan, R., et al. (2018). Unresolved endoplasmic reticulum stress engenders immune-resistant, latent pancreatic cancer metastases. Science, 360(6394), eaao4908.PubMedPubMedCentralCrossRef Pommier, A., Anaparthy, N., Memos, N., Kelley, Z. L., Gouronnec, A., Yan, R., et al. (2018). Unresolved endoplasmic reticulum stress engenders immune-resistant, latent pancreatic cancer metastases. Science, 360(6394), eaao4908.PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Rehman, S. K., Haynes, J., Collignon, E., Brown, K. R., Wang, Y., Nixon, A. M. L., & Lo, E. B. L. (2021). Colorectal cancer cells enter a diapause-like DTP state to survive chemotherapy. Cell, 184(1), 226–242.PubMedCrossRef Rehman, S. K., Haynes, J., Collignon, E., Brown, K. R., Wang, Y., Nixon, A. M. L., & Lo, E. B. L. (2021). Colorectal cancer cells enter a diapause-like DTP state to survive chemotherapy. Cell, 184(1), 226–242.PubMedCrossRef
28.
30.
Zurück zum Zitat Russo, M., Pompei, S., Sogari, A., Corigliano, M., Crisafulli, G., Puliafito, A., & Cosentino Lagomarsino, M. (2022). A modified fluctuation-test framework characterizes the population dynamics and mutation rate of colorectal cancer persister cells. Nat. Gen., 54(7), 976–984. https://doi.org/10.1038/s41588-022-01105-zCrossRef Russo, M., Pompei, S., Sogari, A., Corigliano, M., Crisafulli, G., Puliafito, A., & Cosentino Lagomarsino, M. (2022). A modified fluctuation-test framework characterizes the population dynamics and mutation rate of colorectal cancer persister cells. Nat. Gen., 54(7), 976–984. https://​doi.​org/​10.​1038/​s41588-022-01105-zCrossRef
35.
Zurück zum Zitat Sauer, S., Reed, D. R., Ihnat, M., Hurst, R. E., Warshawsky, D., & Barkan, D. (2021). Innovative approaches in the battle against cancer recurrence: novel strategies to combat dormant disseminated tumor cells. Front in Onc., 11, 659963.CrossRef Sauer, S., Reed, D. R., Ihnat, M., Hurst, R. E., Warshawsky, D., & Barkan, D. (2021). Innovative approaches in the battle against cancer recurrence: novel strategies to combat dormant disseminated tumor cells. Front in Onc., 11, 659963.CrossRef
37.
Zurück zum Zitat Li, X., Sun, Z., Peng, G., Xiao, Y., Guo, J., Wu, B., et al. (2022). Single-cell RNA sequencing reveals a pro-invasive cancer-associated fibroblast subgroup associated with poor clinical outcomes in patients with gastric cancer. Theranostics, 12(2), 620.PubMedPubMedCentralCrossRef Li, X., Sun, Z., Peng, G., Xiao, Y., Guo, J., Wu, B., et al. (2022). Single-cell RNA sequencing reveals a pro-invasive cancer-associated fibroblast subgroup associated with poor clinical outcomes in patients with gastric cancer. Theranostics, 12(2), 620.PubMedPubMedCentralCrossRef
40.
41.
Zurück zum Zitat Aguirre-Ghiso, J. A., Estrada, Y., Liu, D., & O. L. (2003). ERK(MAPK) activity as a determinant of tumor growth and dormancy; regulation by p38(SAPK). Urol. Oncol.: Semin. Orig., 63(1), 1684–1695. Aguirre-Ghiso, J. A., Estrada, Y., Liu, D., & O. L. (2003). ERK(MAPK) activity as a determinant of tumor growth and dormancy; regulation by p38(SAPK). Urol. Oncol.: Semin. Orig., 63(1), 1684–1695.
42.
Zurück zum Zitat Aguirre-Ghiso, J. A., Ossowski, L., & Rosenbaum, S. K. (2004). Green fluorescent protein tagging of extracellular signal-regulated kinase and p38 pathways reveals novel dynamics of pathwCancer Res.ay activation during primary and metastatic growth., 64(20), 7336–7345. Aguirre-Ghiso, J. A., Ossowski, L., & Rosenbaum, S. K. (2004). Green fluorescent protein tagging of extracellular signal-regulated kinase and p38 pathways reveals novel dynamics of pathwCancer Res.ay activation during primary and metastatic growth., 64(20), 7336–7345.
44.
Zurück zum Zitat Aguirre-Ghiso, J. A., & Sosa, M. S. (2018). Emerging topics on disseminated cancer cell dormancy and the paradigm of metastasis. Annu. Rev. Cancer Biol., 2, 377–393.CrossRef Aguirre-Ghiso, J. A., & Sosa, M. S. (2018). Emerging topics on disseminated cancer cell dormancy and the paradigm of metastasis. Annu. Rev. Cancer Biol., 2, 377–393.CrossRef
53.
Zurück zum Zitat Sandiford, O. A., Donnelly, R. J., El-Far, M. H., Burgmeyer, L. M., Sinha, G., Pamarthi, S. H., et al. (2021). Mesenchymal stem cell–secreted extracellular vesicles instruct stepwise dedifferentiation of breast cancer cells into dormancy at the bone marrow perivascular region. Cancer Res., 81(6), 1567–1582. https://doi.org/10.1158/0008-5472.CAN-20-2434CrossRefPubMed Sandiford, O. A., Donnelly, R. J., El-Far, M. H., Burgmeyer, L. M., Sinha, G., Pamarthi, S. H., et al. (2021). Mesenchymal stem cell–secreted extracellular vesicles instruct stepwise dedifferentiation of breast cancer cells into dormancy at the bone marrow perivascular region. Cancer Res., 81(6), 1567–1582. https://​doi.​org/​10.​1158/​0008-5472.​CAN-20-2434CrossRefPubMed
54.
Zurück zum Zitat Bragado, P., Estrada, Y., Parikh, F., Krause, S., Capobianco, C., Farina, H. G., & Aguirre-Ghiso, J. A. (2013). TGF-β2 dictates disseminated tumour cell fate in target organs through TGF-β-RIII and p38α/β signalling. Nat. Cell Bio., 15(11), 1351–1361. https://doi.org/10.1038/ncb2861CrossRef Bragado, P., Estrada, Y., Parikh, F., Krause, S., Capobianco, C., Farina, H. G., & Aguirre-Ghiso, J. A. (2013). TGF-β2 dictates disseminated tumour cell fate in target organs through TGF-β-RIII and p38α/β signalling. Nat. Cell Bio., 15(11), 1351–1361. https://​doi.​org/​10.​1038/​ncb2861CrossRef
56.
Zurück zum Zitat Yu-Lee, L.-Y., Guoyu, Y., Lee, Y.-C., Lin, S.-C., Pan, J., Pan, T., Kai-Jie, Y., Liu, B., Creighton, C. J., Rodriguez-Canales, J., Villalobos, P. A., Wistuba, I. I., de Nadal, E., Posas, F., Gallick, G. E., & S.-H. L. (2018). Osteoblast-secreted factors mediate dormancy of metastatic prostate cancer in the bone via activation of the TGFβRIII- p38MAPK-pS249/T252RB pathway. Cancer Res., 78(11), 2911–2924. https://doi.org/10.1158/0008-5472.CAN-17-1051CrossRefPubMedPubMedCentral Yu-Lee, L.-Y., Guoyu, Y., Lee, Y.-C., Lin, S.-C., Pan, J., Pan, T., Kai-Jie, Y., Liu, B., Creighton, C. J., Rodriguez-Canales, J., Villalobos, P. A., Wistuba, I. I., de Nadal, E., Posas, F., Gallick, G. E., & S.-H. L. (2018). Osteoblast-secreted factors mediate dormancy of metastatic prostate cancer in the bone via activation of the TGFβRIII- p38MAPK-pS249/T252RB pathway. Cancer Res., 78(11), 2911–2924. https://​doi.​org/​10.​1158/​0008-5472.​CAN-17-1051CrossRefPubMedPubMedCentral
60.
Zurück zum Zitat Aguirre-Ghiso, J. A., Liu, D., Mignatti, A., Kovalski, K., & Ossowski, L. (2001). Urokinase receptor and fibronectin regulate the ERKMAPK to p38MAPK activity ratios that determine carcinoma cell proliferation or dormancy in vivo. Mol Bio of the Cell, 12(4), 863–879. https://doi.org/10.1091/mbc.12.4.863CrossRef Aguirre-Ghiso, J. A., Liu, D., Mignatti, A., Kovalski, K., & Ossowski, L. (2001). Urokinase receptor and fibronectin regulate the ERKMAPK to p38MAPK activity ratios that determine carcinoma cell proliferation or dormancy in vivo. Mol Bio of the Cell, 12(4), 863–879. https://​doi.​org/​10.​1091/​mbc.​12.​4.​863CrossRef
63.
Zurück zum Zitat Lee, L. H., Davis, L., Ylagan, L., Omilian, A. R., Attwood, K., Firat, C., et al. (2022). Identification of a subset of stage I colorectal cancer patients with high recurrence risk. J. Natl. Cancer Inst., 114(5), 732–739.PubMedPubMedCentralCrossRef Lee, L. H., Davis, L., Ylagan, L., Omilian, A. R., Attwood, K., Firat, C., et al. (2022). Identification of a subset of stage I colorectal cancer patients with high recurrence risk. J. Natl. Cancer Inst., 114(5), 732–739.PubMedPubMedCentralCrossRef
65.
Zurück zum Zitat Kurppa, K. J., Liu, Y., To C, Zhang, T., Fan, M., Vajdi, A., Knelson, E. H., Xie, Y., Lim, K., Cejas, P., & Portell, A. (2020). Treatment-induced tumor dormancy through YAP-mediated transcriptional reprogramming of the apoptotic pathway. Cancer cell, 37(1), 104–122.PubMedPubMedCentralCrossRef Kurppa, K. J., Liu, Y., To C, Zhang, T., Fan, M., Vajdi, A., Knelson, E. H., Xie, Y., Lim, K., Cejas, P., & Portell, A. (2020). Treatment-induced tumor dormancy through YAP-mediated transcriptional reprogramming of the apoptotic pathway. Cancer cell, 37(1), 104–122.PubMedPubMedCentralCrossRef
69.
71.
Zurück zum Zitat Nielsen, S. R., Quaranta, V., Linford, A., Emeagi, P., Rainer, C., Santos, A., et al. (2016). Macrophage-secreted granulin supports pancreatic cancer metastasis by inducing liver fibrosis. Nat. Cell Bio., 18(5), 549–560. https://doi.org/10.1038/ncb3340CrossRef Nielsen, S. R., Quaranta, V., Linford, A., Emeagi, P., Rainer, C., Santos, A., et al. (2016). Macrophage-secreted granulin supports pancreatic cancer metastasis by inducing liver fibrosis. Nat. Cell Bio., 18(5), 549–560. https://​doi.​org/​10.​1038/​ncb3340CrossRef
74.
Zurück zum Zitat Cackowski, F. C., Eber, M. R., Rhee, J., Decker, A. M., Yumoto, K., Berry, J. E., et al. (2017). Mer tyrosine kinase regulates disseminated prostate cancer cellular dormancy. J of cellular biochem., 118(4), 891–902.CrossRef Cackowski, F. C., Eber, M. R., Rhee, J., Decker, A. M., Yumoto, K., Berry, J. E., et al. (2017). Mer tyrosine kinase regulates disseminated prostate cancer cellular dormancy. J of cellular biochem., 118(4), 891–902.CrossRef
94.
Zurück zum Zitat Heft Neal, M. E., Brenner, J. C., Prince, M. E. P., & Chinn, S. B. (2022). Advancement in cancer stem cell biology and precision medicine—review article head and neck cancer stem cell plasticity and the tumor microenvironment. Front. Cell Dev. Biol., 9. https://doi.org/10.3389/fcell.2021.660210 Heft Neal, M. E., Brenner, J. C., Prince, M. E. P., & Chinn, S. B. (2022). Advancement in cancer stem cell biology and precision medicine—review article head and neck cancer stem cell plasticity and the tumor microenvironment. Front. Cell Dev. Biol., 9. https://​doi.​org/​10.​3389/​fcell.​2021.​660210
98.
Zurück zum Zitat Ghajar, C. M., Peinado, H., Mori, H., Matei, I. R., Evason, K. J., Brazier, H., & Stainier, D. Y. R. (2013). The perivascular niche regulates breast tumour dormancy. Nat. Cell Biol., 15(7), 807–817.PubMedPubMedCentralCrossRef Ghajar, C. M., Peinado, H., Mori, H., Matei, I. R., Evason, K. J., Brazier, H., & Stainier, D. Y. R. (2013). The perivascular niche regulates breast tumour dormancy. Nat. Cell Biol., 15(7), 807–817.PubMedPubMedCentralCrossRef
101.
Zurück zum Zitat Mao, W., Peters, H. L., Sutton, M. N., Orozco, A. F., Pang, L., Yang, H., et al. (2019). The role of vascular endothelial growth factor, interleukin 8, and insulinlike growth factor in sustaining autophagic DIRAS3-induced dormant ovarian cancer xenografts. Cancer, 125(8), 1267–1280.PubMedCrossRef Mao, W., Peters, H. L., Sutton, M. N., Orozco, A. F., Pang, L., Yang, H., et al. (2019). The role of vascular endothelial growth factor, interleukin 8, and insulinlike growth factor in sustaining autophagic DIRAS3-induced dormant ovarian cancer xenografts. Cancer, 125(8), 1267–1280.PubMedCrossRef
102.
Zurück zum Zitat Sutton, M. N., Lu, Z., Li, Y.-C., Zhou, Y., Huang, T., Reger, A. S., et al. (2019). DIRAS3 (ARHI) blocks RAS/MAPK signaling by binding directly to RAS and disrupting RAS clusters. Cell rep, 29(11), 3448–3459.PubMedPubMedCentralCrossRef Sutton, M. N., Lu, Z., Li, Y.-C., Zhou, Y., Huang, T., Reger, A. S., et al. (2019). DIRAS3 (ARHI) blocks RAS/MAPK signaling by binding directly to RAS and disrupting RAS clusters. Cell rep, 29(11), 3448–3459.PubMedPubMedCentralCrossRef
103.
Zurück zum Zitat Barkan, D., El Touny, L. H., Michalowski, A. M., Smith, J. A., Chu, I., Davis, A. S., & Gauldie, J. (2010). Metastatic growth from dormant cells induced by a Col-I–enriched fibrotic environmentmetastatic outgrowth from dormant tumor cells. Cancer res., 70(14), 5706–5716.PubMedPubMedCentralCrossRef Barkan, D., El Touny, L. H., Michalowski, A. M., Smith, J. A., Chu, I., Davis, A. S., & Gauldie, J. (2010). Metastatic growth from dormant cells induced by a Col-I–enriched fibrotic environmentmetastatic outgrowth from dormant tumor cells. Cancer res., 70(14), 5706–5716.PubMedPubMedCentralCrossRef
104.
Zurück zum Zitat Du, C., Zheng, Z., Li, D., Chen, L., Li, N., Yi, X., & Xie, X. (2016). BKCa promotes growth and metastasis of prostate cancer through facilitating the coupling between αvβ3 integrin and FAK. Oncotarget, 7(26), 40174.PubMedPubMedCentralCrossRef Du, C., Zheng, Z., Li, D., Chen, L., Li, N., Yi, X., & Xie, X. (2016). BKCa promotes growth and metastasis of prostate cancer through facilitating the coupling between αvβ3 integrin and FAK. Oncotarget, 7(26), 40174.PubMedPubMedCentralCrossRef
105.
Zurück zum Zitat Aguirre-Ghiso, J. A., Estrada, Y., Liu, D., & Ossowski, L. (2003). ERKMAPK activity as a determinant of tumor growth and dormancy; regulation by p38SAPK. Cancer res., 63(7), 1684–1695.PubMed Aguirre-Ghiso, J. A., Estrada, Y., Liu, D., & Ossowski, L. (2003). ERKMAPK activity as a determinant of tumor growth and dormancy; regulation by p38SAPK. Cancer res., 63(7), 1684–1695.PubMed
108.
Zurück zum Zitat Yang, L., He, C., Chen, X., Su, L., Liu, B., & Zhang, H. (2016). Aurora kinase A revives dormant laryngeal squamous cell carcinoma cells via FAK/PI3K/Akt pathway activation. Oncotarget, 7(30), 48346.PubMedPubMedCentralCrossRef Yang, L., He, C., Chen, X., Su, L., Liu, B., & Zhang, H. (2016). Aurora kinase A revives dormant laryngeal squamous cell carcinoma cells via FAK/PI3K/Akt pathway activation. Oncotarget, 7(30), 48346.PubMedPubMedCentralCrossRef
112.
Zurück zum Zitat Coto-Llerena, M., Tosti, N., Taha-Mehlitz, S., Kancherla, V., Paradiso, V., Gallon, J., et al. (2021). Transcriptional enhancer factor domain family member 4 exerts an oncogenic role in hepatocellular carcinoma by hippo-independent regulation of heat shock protein 70 family members. Hepatol. Commun., 5(4), 661–674. https://doi.org/10.1002/hep4.1656CrossRefPubMedPubMedCentral Coto-Llerena, M., Tosti, N., Taha-Mehlitz, S., Kancherla, V., Paradiso, V., Gallon, J., et al. (2021). Transcriptional enhancer factor domain family member 4 exerts an oncogenic role in hepatocellular carcinoma by hippo-independent regulation of heat shock protein 70 family members. Hepatol. Commun., 5(4), 661–674. https://​doi.​org/​10.​1002/​hep4.​1656CrossRefPubMedPubMedCentral
113.
Zurück zum Zitat Takamura, A., Komatsu, M., Hara, T., Sakamoto, A., Kishi, C., Waguri, S., et al. (2011). Autophagy-deficient mice develop multiple liver tumors. Genes & dev., 25(8), 795–800.CrossRef Takamura, A., Komatsu, M., Hara, T., Sakamoto, A., Kishi, C., Waguri, S., et al. (2011). Autophagy-deficient mice develop multiple liver tumors. Genes & dev., 25(8), 795–800.CrossRef
114.
Zurück zum Zitat Wei, H., Wei, S., Gan, B., Peng, X., Zou, W., & Guan, J.-L. (2011). Suppression of autophagy by FIP200 deletion inhibits mammary tumorigenesis. Genes & dev., 25(14), 1510–1527.CrossRef Wei, H., Wei, S., Gan, B., Peng, X., Zou, W., & Guan, J.-L. (2011). Suppression of autophagy by FIP200 deletion inhibits mammary tumorigenesis. Genes & dev., 25(14), 1510–1527.CrossRef
115.
Zurück zum Zitat Ye, C., Yu, X., Liu, X., Zhan, P., Nie, T., Guo, R., et al. (2018). Beclin-1 knockdown decreases proliferation, invasion and migration of Ewing sarcoma SK-ES-1 cells via inhibition of MMP-9 Corrigendum in/10.3892/ol. 2020.12372. Onco. Lett., 15(3), 3221–3225. Ye, C., Yu, X., Liu, X., Zhan, P., Nie, T., Guo, R., et al. (2018). Beclin-1 knockdown decreases proliferation, invasion and migration of Ewing sarcoma SK-ES-1 cells via inhibition of MMP-9 Corrigendum in/10.3892/ol. 2020.12372. Onco. Lett., 15(3), 3221–3225.
116.
Zurück zum Zitat Liu, M., Jiang, L., Fu, X., Wang, W., Ma, J., Tian, T., et al. (2018). Cytoplasmic liver kinase B1 promotes the growth of human lung adenocarcinoma by enhancing autophagy. Cancer sci., 109(10), 3055–3067.PubMedPubMedCentralCrossRef Liu, M., Jiang, L., Fu, X., Wang, W., Ma, J., Tian, T., et al. (2018). Cytoplasmic liver kinase B1 promotes the growth of human lung adenocarcinoma by enhancing autophagy. Cancer sci., 109(10), 3055–3067.PubMedPubMedCentralCrossRef
118.
Zurück zum Zitat Guo, J. Y., Teng, X., Laddha, S. V., Ma, S., Van Nostrand, S. C., Yang, Y., et al. (2016). Autophagy provides metabolic substrates to maintain energy charge and nucleotide pools in Ras-driven lung cancer cells. Genes & dev., 30(15), 1704–1717.CrossRef Guo, J. Y., Teng, X., Laddha, S. V., Ma, S., Van Nostrand, S. C., Yang, Y., et al. (2016). Autophagy provides metabolic substrates to maintain energy charge and nucleotide pools in Ras-driven lung cancer cells. Genes & dev., 30(15), 1704–1717.CrossRef
119.
Zurück zum Zitat Xie, X., Koh, J. Y., Price, S., White, E., & Mehnert, J. M. (2015). Atg7 overcomes senescence and promotes growth of Braf V600E-driven melanoma. Cancer disc., 5(4), 410–423.CrossRef Xie, X., Koh, J. Y., Price, S., White, E., & Mehnert, J. M. (2015). Atg7 overcomes senescence and promotes growth of Braf V600E-driven melanoma. Cancer disc., 5(4), 410–423.CrossRef
120.
Zurück zum Zitat Strohecker, A. M., Guo, J. Y., Karsli-Uzunbas, G., Price, S. M., Chen, G. J., Mathew, R., et al. (2013). Autophagy sustains mitochondrial glutamine metabolism and growth of BrafV600E–driven lung tumorsautophagy promotes BrafV600E-driven lung tumor growth. Cancer disc., 3(11), 1272–1285.CrossRef Strohecker, A. M., Guo, J. Y., Karsli-Uzunbas, G., Price, S. M., Chen, G. J., Mathew, R., et al. (2013). Autophagy sustains mitochondrial glutamine metabolism and growth of BrafV600E–driven lung tumorsautophagy promotes BrafV600E-driven lung tumor growth. Cancer disc., 3(11), 1272–1285.CrossRef
121.
Zurück zum Zitat Lopiccolo, J., Kawabata, S., Gills, J. J., & Dennis, P. A. (2021). Combining nelfinavir with chloroquine inhibits in vivo growth of human lung cancer xenograft tumors. in vivo, 35(1), 141–145.PubMedPubMedCentralCrossRef Lopiccolo, J., Kawabata, S., Gills, J. J., & Dennis, P. A. (2021). Combining nelfinavir with chloroquine inhibits in vivo growth of human lung cancer xenograft tumors. in vivo, 35(1), 141–145.PubMedPubMedCentralCrossRef
123.
Zurück zum Zitat Wang, F.-T., Wang, H., Wang, Q.-W., Pan, M.-S., Li, X.-P., Sun, W., & Fan, Y.-Z. (2020). Inhibition of autophagy by chloroquine enhances the antitumor activity of gemcitabine for gallbladder cancer. Cancer Chemother Pharmacol, 86(2), 221–232.PubMedCrossRef Wang, F.-T., Wang, H., Wang, Q.-W., Pan, M.-S., Li, X.-P., Sun, W., & Fan, Y.-Z. (2020). Inhibition of autophagy by chloroquine enhances the antitumor activity of gemcitabine for gallbladder cancer. Cancer Chemother Pharmacol, 86(2), 221–232.PubMedCrossRef
127.
Zurück zum Zitat Bortnik, S., Tessier-Cloutier, B., Leung, S., Xu, J., Asleh, K., Burugu, S., et al. (2020). Differential expression and prognostic relevance of autophagy-related markers ATG4B, GABARAP, and LC3B in breast cancer. Breast Cancer Res. Treat., 183(3), 525–547.PubMedCrossRef Bortnik, S., Tessier-Cloutier, B., Leung, S., Xu, J., Asleh, K., Burugu, S., et al. (2020). Differential expression and prognostic relevance of autophagy-related markers ATG4B, GABARAP, and LC3B in breast cancer. Breast Cancer Res. Treat., 183(3), 525–547.PubMedCrossRef
128.
Zurück zum Zitat Chen, J. L., David, J., Cook-Spaeth, D., Casey, S., Cohen, D., Selvendiran, K., et al. (2017). Autophagy induction results in enhanced anoikis resistance in models of peritoneal disease. Mol. Cancer Res., 15(1), 26–34.PubMedCrossRef Chen, J. L., David, J., Cook-Spaeth, D., Casey, S., Cohen, D., Selvendiran, K., et al. (2017). Autophagy induction results in enhanced anoikis resistance in models of peritoneal disease. Mol. Cancer Res., 15(1), 26–34.PubMedCrossRef
135.
Zurück zum Zitat Bellot, G., Garcia-Medina, R., Gounon, P., Chiche, J., Roux, D., Pouysségur, J., & Mazure, N. M. (2009). Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol. Cell. Biol., 29(10), 2570–2581.PubMedPubMedCentralCrossRef Bellot, G., Garcia-Medina, R., Gounon, P., Chiche, J., Roux, D., Pouysségur, J., & Mazure, N. M. (2009). Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol. Cell. Biol., 29(10), 2570–2581.PubMedPubMedCentralCrossRef
136.
Zurück zum Zitat Hu, Y.-L., DeLay, M., Jahangiri, A., Molinaro, A. M., Rose, S. D., Carbonell, W. S., & Aghi, M. K. (2012). Hypoxia-induced autophagy promotes tumor cell survival and adaptation to antiangiogenic treatment in glioblastomaautophagy mediates resistance to antiangiogenic therapy. Cancer res., 72(7), 1773–1783.PubMedPubMedCentralCrossRef Hu, Y.-L., DeLay, M., Jahangiri, A., Molinaro, A. M., Rose, S. D., Carbonell, W. S., & Aghi, M. K. (2012). Hypoxia-induced autophagy promotes tumor cell survival and adaptation to antiangiogenic treatment in glioblastomaautophagy mediates resistance to antiangiogenic therapy. Cancer res., 72(7), 1773–1783.PubMedPubMedCentralCrossRef
137.
Zurück zum Zitat Yu, Y., Liu, B., Li, X., Lu, D., Yang, L., Chen, L., et al. (2022). ATF4/CEMIP/PKCα promotes anoikis resistance by enhancing protective autophagy in prostate cancer cells. Cell death & dis., 13(1), 1–13.CrossRef Yu, Y., Liu, B., Li, X., Lu, D., Yang, L., Chen, L., et al. (2022). ATF4/CEMIP/PKCα promotes anoikis resistance by enhancing protective autophagy in prostate cancer cells. Cell death & dis., 13(1), 1–13.CrossRef
138.
Zurück zum Zitat Avivar-Valderas, A., Salas, E., Bobrovnikova-Marjon, E., Diehl, J. A., Nagi, C., Debnath, J., & Aguirre-Ghiso, J. A. (2011). PERK integrates autophagy and oxidative stress responses to promote survival during extracellular matrix detachment. Mol. Cell. Biol., 31(17), 3616–3629.PubMedPubMedCentralCrossRef Avivar-Valderas, A., Salas, E., Bobrovnikova-Marjon, E., Diehl, J. A., Nagi, C., Debnath, J., & Aguirre-Ghiso, J. A. (2011). PERK integrates autophagy and oxidative stress responses to promote survival during extracellular matrix detachment. Mol. Cell. Biol., 31(17), 3616–3629.PubMedPubMedCentralCrossRef
139.
Zurück zum Zitat Avivar-Valderas, A., Bobrovnikova-Marjon, E., Alan Diehl, J., Bardeesy, N., Debnath, J., & Aguirre-Ghiso, J. A. (2013). Regulation of autophagy during ECM detachment is linked to a selective inhibition of mTORC1 by PERK. Oncogene, 32(41), 4932–4940.PubMedCrossRef Avivar-Valderas, A., Bobrovnikova-Marjon, E., Alan Diehl, J., Bardeesy, N., Debnath, J., & Aguirre-Ghiso, J. A. (2013). Regulation of autophagy during ECM detachment is linked to a selective inhibition of mTORC1 by PERK. Oncogene, 32(41), 4932–4940.PubMedCrossRef
140.
Zurück zum Zitat Fu, X.-T., Shi, Y.-H., Zhou, J., Peng, Y.-F., Liu, W.-R., Shi, G.-M., et al. (2018). MicroRNA-30a suppresses autophagy-mediated anoikis resistance and metastasis in hepatocellular carcinoma. Cancer lett., 412, 108–117.PubMedCrossRef Fu, X.-T., Shi, Y.-H., Zhou, J., Peng, Y.-F., Liu, W.-R., Shi, G.-M., et al. (2018). MicroRNA-30a suppresses autophagy-mediated anoikis resistance and metastasis in hepatocellular carcinoma. Cancer lett., 412, 108–117.PubMedCrossRef
141.
Zurück zum Zitat Peng, Y.-F., Shi, Y.-H., Ding, Z.-B., Ke, A.-W., Gu, C.-Y., Hui, B., et al. (2013). Autophagy inhibition suppresses pulmonary metastasis of HCC in mice via impairing anoikis resistance and colonization of HCC cells. Autophagy, 9(12), 2056–2068.PubMedCrossRef Peng, Y.-F., Shi, Y.-H., Ding, Z.-B., Ke, A.-W., Gu, C.-Y., Hui, B., et al. (2013). Autophagy inhibition suppresses pulmonary metastasis of HCC in mice via impairing anoikis resistance and colonization of HCC cells. Autophagy, 9(12), 2056–2068.PubMedCrossRef
142.
Zurück zum Zitat Sandilands, E., Schoenherr, C., & Frame, M. C. (2015). p70S6K is regulated by focal adhesion kinase and is required for Src-selective autophagy. Cellular sig., 27(9), 1816–1823.CrossRef Sandilands, E., Schoenherr, C., & Frame, M. C. (2015). p70S6K is regulated by focal adhesion kinase and is required for Src-selective autophagy. Cellular sig., 27(9), 1816–1823.CrossRef
147.
Zurück zum Zitat Sandilands, E., Serrels, B., McEwan, D. G., Morton, J. P., Macagno, J. P., McLeod, K., et al. (2012). Autophagic targeting of Src promotes cancer cell survival following reduced FAK signalling. Nat. Cell Biol., 14(1), 51–60. https://doi.org/10.1038/ncb2386CrossRef Sandilands, E., Serrels, B., McEwan, D. G., Morton, J. P., Macagno, J. P., McLeod, K., et al. (2012). Autophagic targeting of Src promotes cancer cell survival following reduced FAK signalling. Nat. Cell Biol., 14(1), 51–60. https://​doi.​org/​10.​1038/​ncb2386CrossRef
149.
Zurück zum Zitat Song, Q., Mao, B., Cheng, J., Gao, Y., Jiang, K., Chen, J., et al. (2015). YAP enhances autophagic flux to promote breast cancer cell survival in response to nutrient deprivation. PLOS ONE, 10(3), e0120790.PubMedPubMedCentralCrossRef Song, Q., Mao, B., Cheng, J., Gao, Y., Jiang, K., Chen, J., et al. (2015). YAP enhances autophagic flux to promote breast cancer cell survival in response to nutrient deprivation. PLOS ONE, 10(3), e0120790.PubMedPubMedCentralCrossRef
153.
Zurück zum Zitat Xiao, L., Shi, X.-Y., Zhang, Y., Zhu, Y., Zhu, L., Tian, W., et al. (2016). YAP induces cisplatin resistance through activation of autophagy in human ovarian carcinoma cells. OncoTargets Ther., 9, 1105. Xiao, L., Shi, X.-Y., Zhang, Y., Zhu, Y., Zhu, L., Tian, W., et al. (2016). YAP induces cisplatin resistance through activation of autophagy in human ovarian carcinoma cells. OncoTargets Ther., 9, 1105.
157.
Zurück zum Zitat Tong, H., Yin, H., Hossain, M. A., Wang, Y., Wu, F., Dong, X., et al. (2019). Starvation-induced autophagy promotes the invasion and migration of human bladder cancer cells via TGF-β1/Smad3-mediated epithelial-mesenchymal transition activation. J. Cell. Biochem., 120(4), 5118–5127. https://doi.org/10.1002/jcb.27788CrossRefPubMed Tong, H., Yin, H., Hossain, M. A., Wang, Y., Wu, F., Dong, X., et al. (2019). Starvation-induced autophagy promotes the invasion and migration of human bladder cancer cells via TGF-β1/Smad3-mediated epithelial-mesenchymal transition activation. J. Cell. Biochem., 120(4), 5118–5127. https://​doi.​org/​10.​1002/​jcb.​27788CrossRefPubMed
160.
Zurück zum Zitat Sosa, M. S., Bragado, P., Debnath, J., & Aguirre-Ghiso, J. A. (2013). In H. Enderling, N. Almog, & L. Hlatky (Eds.), Regulation of tumor cell dormancy by tissue microenvironments and autophagy BT - systems biology of tumor dormancy (pp. 73–89). New York, NY, Springer New York. Sosa, M. S., Bragado, P., Debnath, J., & Aguirre-Ghiso, J. A. (2013). In H. Enderling, N. Almog, & L. Hlatky (Eds.), Regulation of tumor cell dormancy by tissue microenvironments and autophagy BT - systems biology of tumor dormancy (pp. 73–89). New York, NY, Springer New York.
161.
Zurück zum Zitat Dash, S., Sarashetti, P. M., Rajashekar, B., Chowdhury, R., & Mukherjee, S. (2018). TGF-β2-induced EMT is dampened by inhibition of autophagy and TNF-α treatment. Oncotarget, 9(5), 6433.PubMedPubMedCentralCrossRef Dash, S., Sarashetti, P. M., Rajashekar, B., Chowdhury, R., & Mukherjee, S. (2018). TGF-β2-induced EMT is dampened by inhibition of autophagy and TNF-α treatment. Oncotarget, 9(5), 6433.PubMedPubMedCentralCrossRef
162.
Zurück zum Zitat Alizadeh, J., Glogowska, A., Thliveris, J., Kalantari, F., Shojaei, S., Hombach-Klonisch, S., et al. (2018). Autophagy modulates transforming growth factor beta 1 induced epithelial to mesenchymal transition in non-small cell lung cancer cells. Biochimica et Biophysica Acta (BBA) - Molecular. Cell Res., 1865(5), 749–768. https://doi.org/10.1016/j.bbamcr.2018.02.007CrossRef Alizadeh, J., Glogowska, A., Thliveris, J., Kalantari, F., Shojaei, S., Hombach-Klonisch, S., et al. (2018). Autophagy modulates transforming growth factor beta 1 induced epithelial to mesenchymal transition in non-small cell lung cancer cells. Biochimica et Biophysica Acta (BBA) - Molecular. Cell Res., 1865(5), 749–768. https://​doi.​org/​10.​1016/​j.​bbamcr.​2018.​02.​007CrossRef
164.
Zurück zum Zitat Yeo, S. K., Wen, J., Chen, S., & Guan, J.-L. (2016). Autophagy differentially regulates distinct breast cancer stem-like cells in murine models via EGFR/Stat3 and Tgfβ/Smad signalingregulation of distinct breast cancer stem cells by autophagy. Cancer res., 76(11), 3397–3410.PubMedPubMedCentralCrossRef Yeo, S. K., Wen, J., Chen, S., & Guan, J.-L. (2016). Autophagy differentially regulates distinct breast cancer stem-like cells in murine models via EGFR/Stat3 and Tgfβ/Smad signalingregulation of distinct breast cancer stem cells by autophagy. Cancer res., 76(11), 3397–3410.PubMedPubMedCentralCrossRef
167.
Zurück zum Zitat Gupta, A., Roy, S., Lazar, A. J. F., Wang, W.-L., McAuliffe, J. C., Reynoso, D., et al. (2010). Autophagy inhibition and antimalarials promote cell death in gastrointestinal stromal tumor (GIST). Proc. Natl. Acad. Sci. U.S.A., 201000248. https://doi.org/10.1073/pnas.1000248107 Gupta, A., Roy, S., Lazar, A. J. F., Wang, W.-L., McAuliffe, J. C., Reynoso, D., et al. (2010). Autophagy inhibition and antimalarials promote cell death in gastrointestinal stromal tumor (GIST). Proc. Natl. Acad. Sci. U.S.A., 201000248. https://​doi.​org/​10.​1073/​pnas.​1000248107
170.
Zurück zum Zitat Shimizu, T., Sugihara, E., Yamaguchi-Iwai, S., Tamaki, S., Koyama, Y., Kamel, W., et al. (2014). IGF2 preserves osteosarcoma cell survival by creating an autophagic state of Dormancy That Protects Cells against Chemotherapeutic StressIGF/insulin signaling induces dormancy in osteosarcoma. Cancer res., 74(22), 6531–6541.PubMedCrossRef Shimizu, T., Sugihara, E., Yamaguchi-Iwai, S., Tamaki, S., Koyama, Y., Kamel, W., et al. (2014). IGF2 preserves osteosarcoma cell survival by creating an autophagic state of Dormancy That Protects Cells against Chemotherapeutic StressIGF/insulin signaling induces dormancy in osteosarcoma. Cancer res., 74(22), 6531–6541.PubMedCrossRef
173.
Zurück zum Zitat Lu, Z., Yang, H., Sutton, M. N., Yang, M., Clarke, C. H., Liao, W. S. L., & Bast, R. C. (2014). ARHI (DIRAS3) induces autophagy in ovarian cancer cells by downregulating the epidermal growth factor receptor, inhibiting PI3K and Ras/MAP signaling and activating the FOXo3a-mediated induction of Rab7. Cell Death Differ, 21(8), 1275–1289.PubMedPubMedCentralCrossRef Lu, Z., Yang, H., Sutton, M. N., Yang, M., Clarke, C. H., Liao, W. S. L., & Bast, R. C. (2014). ARHI (DIRAS3) induces autophagy in ovarian cancer cells by downregulating the epidermal growth factor receptor, inhibiting PI3K and Ras/MAP signaling and activating the FOXo3a-mediated induction of Rab7. Cell Death Differ, 21(8), 1275–1289.PubMedPubMedCentralCrossRef
177.
Zurück zum Zitat Amend, S. R., Torga, G., Lin, K., Kostecka, L. G., de Marzo, A., Austin, R. H., & Pienta, K. J. (2019). Polyploid giant cancer cells: unrecognized actuators of tumorigenesis, metastasis, and resistance. The Prostate, 79(13), 1489–1497.PubMedPubMedCentralCrossRef Amend, S. R., Torga, G., Lin, K., Kostecka, L. G., de Marzo, A., Austin, R. H., & Pienta, K. J. (2019). Polyploid giant cancer cells: unrecognized actuators of tumorigenesis, metastasis, and resistance. The Prostate, 79(13), 1489–1497.PubMedPubMedCentralCrossRef
178.
Zurück zum Zitat Dudkowska, M., Staniak, K., Bojko, A., & Sikora, E. (2021). Chapter Five - The role of autophagy in escaping therapy-induced polyploidy/senescence. In D. A. Gewirtz, P. B. B. T.-A, & C. R. Fisher (Eds.), Autophagy and senescence in cancer therapy (Vol. 150, pp. 209–247). Academic Press.CrossRef Dudkowska, M., Staniak, K., Bojko, A., & Sikora, E. (2021). Chapter Five - The role of autophagy in escaping therapy-induced polyploidy/senescence. In D. A. Gewirtz, P. B. B. T.-A, & C. R. Fisher (Eds.), Autophagy and senescence in cancer therapy (Vol. 150, pp. 209–247). Academic Press.CrossRef
179.
Zurück zum Zitat Wang, L., Ouyang, M., Xing, S., Zhao, S., Liu, S., Sun, L., & Yu, H. (2022). Mesenchymal stem cells and their derived exosomes promote malignant phenotype of polyploid non-small-cell lung cancer cells through AMPK signaling pathway. Anal. Cell. Pathol, 2022, 8708202. https://doi.org/10.1155/2022/8708202CrossRef Wang, L., Ouyang, M., Xing, S., Zhao, S., Liu, S., Sun, L., & Yu, H. (2022). Mesenchymal stem cells and their derived exosomes promote malignant phenotype of polyploid non-small-cell lung cancer cells through AMPK signaling pathway. Anal. Cell. Pathol, 2022, 8708202. https://​doi.​org/​10.​1155/​2022/​8708202CrossRef
183.
Zurück zum Zitat Alhasan, B. A., Gordeev, S. A., Knyazeva, A. R., Aleksandrova, K. V., Margulis, B. A., Guzhova, I. V., & Suvorova, I. I. (2021). The mTOR pathway in pluripotent stem cells: lessons for understanding cancer cell dormancy. Membranes, 11(11). https://doi.org/10.3390/membranes11110858 Alhasan, B. A., Gordeev, S. A., Knyazeva, A. R., Aleksandrova, K. V., Margulis, B. A., Guzhova, I. V., & Suvorova, I. I. (2021). The mTOR pathway in pluripotent stem cells: lessons for understanding cancer cell dormancy. Membranes, 11(11). https://​doi.​org/​10.​3390/​membranes1111085​8
187.
Zurück zum Zitat Zhang, S., Mercado-Uribe, I., Xing, Z., Sun, B., Kuang, J., & Liu, J. (2014). Generation of cancer stem-like cells through the formation of polyploid giant cancer cells. Oncogene, 33(1), 116–128.PubMedCrossRef Zhang, S., Mercado-Uribe, I., Xing, Z., Sun, B., Kuang, J., & Liu, J. (2014). Generation of cancer stem-like cells through the formation of polyploid giant cancer cells. Oncogene, 33(1), 116–128.PubMedCrossRef
192.
Zurück zum Zitat Zhao, Y., Wu, H., Xing, X., Ma, Y., Ji, S., Xu, X., et al. (2020). CD13 induces autophagy to promote hepatocellular carcinoma cell chemoresistance through the P38/Hsp27/CREB/ATG7 pathway. J. Pharmacol. Exp. Ther., 374(3), 512–520.PubMedCrossRef Zhao, Y., Wu, H., Xing, X., Ma, Y., Ji, S., Xu, X., et al. (2020). CD13 induces autophagy to promote hepatocellular carcinoma cell chemoresistance through the P38/Hsp27/CREB/ATG7 pathway. J. Pharmacol. Exp. Ther., 374(3), 512–520.PubMedCrossRef
193.
Zurück zum Zitat Paillas, S., Causse, A., Marzi, L., De Medina, P., Poirot, M., Denis, V., et al. (2012). MAPK14/p38α confers irinotecan resistance to TP53-defective cells by inducing survival autophagy. Autophagy, 8(7), 1098–1112.PubMedPubMedCentralCrossRef Paillas, S., Causse, A., Marzi, L., De Medina, P., Poirot, M., Denis, V., et al. (2012). MAPK14/p38α confers irinotecan resistance to TP53-defective cells by inducing survival autophagy. Autophagy, 8(7), 1098–1112.PubMedPubMedCentralCrossRef
195.
Zurück zum Zitat Aqbi, H. F., Tyutyunyk-Massey, L., Keim, R. C., Butler, S. E., Thekkudan, T., Joshi, S., et al. (2018). Autophagy-deficient breast cancer shows early tumor recurrence and escape from dormancy. Oncotarget, 9(31), 22113.PubMedPubMedCentralCrossRef Aqbi, H. F., Tyutyunyk-Massey, L., Keim, R. C., Butler, S. E., Thekkudan, T., Joshi, S., et al. (2018). Autophagy-deficient breast cancer shows early tumor recurrence and escape from dormancy. Oncotarget, 9(31), 22113.PubMedPubMedCentralCrossRef
196.
Zurück zum Zitat Petherick, K. J., Williams, A. C., Lane, J. D., Ordóñez-Morán, P., Huelsken, J., Collard, T. J., et al. (2013). Autolysosomal β-catenin degradation regulates Wnt-autophagy-p62 crosstalk. The EMBO j., 32(13), 1903–1916.PubMedCrossRef Petherick, K. J., Williams, A. C., Lane, J. D., Ordóñez-Morán, P., Huelsken, J., Collard, T. J., et al. (2013). Autolysosomal β-catenin degradation regulates Wnt-autophagy-p62 crosstalk. The EMBO j., 32(13), 1903–1916.PubMedCrossRef
197.
Zurück zum Zitat Lorzadeh, S., Kohan, L., Ghavami, S., & Azarpira, N. (2021). Autophagy and the Wnt signaling pathway: a focus on Wnt/β-catenin signaling. Biochimica et Biophysica Acta (BBA)-Molecular. Cell Res., 1868(3), 118926. Lorzadeh, S., Kohan, L., Ghavami, S., & Azarpira, N. (2021). Autophagy and the Wnt signaling pathway: a focus on Wnt/β-catenin signaling. Biochimica et Biophysica Acta (BBA)-Molecular. Cell Res., 1868(3), 118926.
199.
Zurück zum Zitat Ahn, J.-S., Ann, E.-J., Kim, M.-Y., Yoon, J.-H., Lee, H.-J., Jo, E.-H., et al. (2016). Autophagy negatively regulates tumor cell proliferation through phosphorylation dependent degradation of the Notch1 intracellular domain. Oncotarget, 7(48), 79047.PubMedPubMedCentralCrossRef Ahn, J.-S., Ann, E.-J., Kim, M.-Y., Yoon, J.-H., Lee, H.-J., Jo, E.-H., et al. (2016). Autophagy negatively regulates tumor cell proliferation through phosphorylation dependent degradation of the Notch1 intracellular domain. Oncotarget, 7(48), 79047.PubMedPubMedCentralCrossRef
200.
Zurück zum Zitat Natsumeda, M., Maitani, K., Liu, Y., Miyahara, H., Kaur, H., Chu, Q., et al. (2016). Targeting notch signaling and autophagy increases cytotoxicity in glioblastoma neurospheres. Brain Pathol., 26(6), 713–723.PubMedPubMedCentralCrossRef Natsumeda, M., Maitani, K., Liu, Y., Miyahara, H., Kaur, H., Chu, Q., et al. (2016). Targeting notch signaling and autophagy increases cytotoxicity in glioblastoma neurospheres. Brain Pathol., 26(6), 713–723.PubMedPubMedCentralCrossRef
202.
Zurück zum Zitat Zhang, B., & Liu, L. (2021). Autophagy is a double-edged sword in the therapy of colorectal cancer. Onco Lett., 21(5), 1–8. Zhang, B., & Liu, L. (2021). Autophagy is a double-edged sword in the therapy of colorectal cancer. Onco Lett., 21(5), 1–8.
205.
Zurück zum Zitat Skah, S., Richartz, N., Duthil, E., Gilljam, K. M., Bindesbøll, C., Naderi, E. H., et al. (2018). cAMP-mediated autophagy inhibits DNA damage-induced death of leukemia cells independent of p53. Oncotarget, 9(54), 30434.PubMedPubMedCentralCrossRef Skah, S., Richartz, N., Duthil, E., Gilljam, K. M., Bindesbøll, C., Naderi, E. H., et al. (2018). cAMP-mediated autophagy inhibits DNA damage-induced death of leukemia cells independent of p53. Oncotarget, 9(54), 30434.PubMedPubMedCentralCrossRef
206.
Zurück zum Zitat Avsec, D., Jakoš Djordjevič, A. T., Kandušer, M., Podgornik, H., Škerget, M., & Mlinarič-Raščan, I. (2021). Targeting autophagy triggers apoptosis and complements the action of venetoclax in chronic lymphocytic leukemia cells. Cancers. https://doi.org/10.3390/cancers13184557 Avsec, D., Jakoš Djordjevič, A. T., Kandušer, M., Podgornik, H., Škerget, M., & Mlinarič-Raščan, I. (2021). Targeting autophagy triggers apoptosis and complements the action of venetoclax in chronic lymphocytic leukemia cells. Cancers. https://​doi.​org/​10.​3390/​cancers13184557
207.
Zurück zum Zitat Deng, J., Thennavan, A., Dolgalev, I., Chen, T., Li, J., Marzio, A., et al. (2021). ULK1 inhibition overcomes compromised antigen presentation and restores antitumor immunity in LKB1-mutant lung cancer. Nat. Cancer, 2(5), 503–514.PubMedPubMedCentralCrossRef Deng, J., Thennavan, A., Dolgalev, I., Chen, T., Li, J., Marzio, A., et al. (2021). ULK1 inhibition overcomes compromised antigen presentation and restores antitumor immunity in LKB1-mutant lung cancer. Nat. Cancer, 2(5), 503–514.PubMedPubMedCentralCrossRef
212.
Zurück zum Zitat Cechakova, L., Ondrej, M., Pavlik, V., Jost, P., Cizkova, D., Bezrouk, A., et al. (2019). A potent autophagy inhibitor (Lys05) enhances the impact of ionizing radiation on human lung cancer cells H1299. Int. J. Mol. Sci., 20(23). https://doi.org/10.3390/ijms20235881 Cechakova, L., Ondrej, M., Pavlik, V., Jost, P., Cizkova, D., Bezrouk, A., et al. (2019). A potent autophagy inhibitor (Lys05) enhances the impact of ionizing radiation on human lung cancer cells H1299. Int. J. Mol. Sci., 20(23). https://​doi.​org/​10.​3390/​ijms20235881
218.
Zurück zum Zitat Koren, J., & Blagg, B. S. J. (2020). The right tool for the job: an overview of Hsp90 inhibitors. Molecular Cell, 40(2), 253–266. Koren, J., & Blagg, B. S. J. (2020). The right tool for the job: an overview of Hsp90 inhibitors. Molecular Cell, 40(2), 253–266.
222.
Zurück zum Zitat Mendillo, M. L., Santagata, S., Koeva, M., Bell, G. W., Hu, R., Tamimi, R. M., et al. (2012). HSF1 drives a transcriptional program distinct from heat shock to support highly malignant human cancers. Cell, 150(3), 549–562.PubMedPubMedCentralCrossRef Mendillo, M. L., Santagata, S., Koeva, M., Bell, G. W., Hu, R., Tamimi, R. M., et al. (2012). HSF1 drives a transcriptional program distinct from heat shock to support highly malignant human cancers. Cell, 150(3), 549–562.PubMedPubMedCentralCrossRef
229.
232.
Zurück zum Zitat Liu, B., Shen, Y., Huang, H., Croce, K. D., Wu, M., Fan, Y., et al. (2020). Curcumin derivative C212 inhibits Hsp90 and eliminates both growing and quiescent leukemia cells in deep dormancy. Cell Commun. Signal., 18(1), 1–15.CrossRef Liu, B., Shen, Y., Huang, H., Croce, K. D., Wu, M., Fan, Y., et al. (2020). Curcumin derivative C212 inhibits Hsp90 and eliminates both growing and quiescent leukemia cells in deep dormancy. Cell Commun. Signal., 18(1), 1–15.CrossRef
234.
Zurück zum Zitat Liu, X., Yan, Z., Huang, L., Guo, M., Zhang, Z., & Guo, C. (2011). Cell surface heat shock protein 90 modulates prostate cancer cell adhesion and invasion through the integrin-β1/ focal adhesion kinase/c-Src signaling pathway. Onco Reports, 25(5), 1343–1351. https://doi.org/10.3892/or.2011.1202CrossRef Liu, X., Yan, Z., Huang, L., Guo, M., Zhang, Z., & Guo, C. (2011). Cell surface heat shock protein 90 modulates prostate cancer cell adhesion and invasion through the integrin-β1/ focal adhesion kinase/c-Src signaling pathway. Onco Reports, 25(5), 1343–1351. https://​doi.​org/​10.​3892/​or.​2011.​1202CrossRef
235.
Zurück zum Zitat Yoon, S., Yang, H., Ryu, H.-M., Lee, E., Jo, Y., Seo, S., et al. (2022). Integrin αvβ3 induces HSP90 inhibitor resistance via FAK activation in KRAS-mutant non-small cell lung cancer. Cancer Res Treat, 54(3), 767.PubMedCrossRef Yoon, S., Yang, H., Ryu, H.-M., Lee, E., Jo, Y., Seo, S., et al. (2022). Integrin αvβ3 induces HSP90 inhibitor resistance via FAK activation in KRAS-mutant non-small cell lung cancer. Cancer Res Treat, 54(3), 767.PubMedCrossRef
239.
Zurück zum Zitat Lee, H. J., Min, H. Y., Yong, Y. S., Ann, J., Nguyen, C. T., La, M. T., et al. (2022). A novel C-terminal heat shock protein 90 inhibitor that overcomes STAT3-Wnt-β-catenin signaling-mediated drug resistance and adverse effects. Theranostics, 27(1), 105–125. https://doi.org/10.7150/thno.63788CrossRef Lee, H. J., Min, H. Y., Yong, Y. S., Ann, J., Nguyen, C. T., La, M. T., et al. (2022). A novel C-terminal heat shock protein 90 inhibitor that overcomes STAT3-Wnt-β-catenin signaling-mediated drug resistance and adverse effects. Theranostics, 27(1), 105–125. https://​doi.​org/​10.​7150/​thno.​63788CrossRef
243.
Zurück zum Zitat Aswad, A., & Liu, T. (2021). Targeting heat shock protein 90 for anti-cancer drug development. In Advances in cancer research (Vol. 152, 1st ed.). Elsevier Inc.. Aswad, A., & Liu, T. (2021). Targeting heat shock protein 90 for anti-cancer drug development. In Advances in cancer research (Vol. 152, 1st ed.). Elsevier Inc..
250.
Zurück zum Zitat Lee, H. J., Shin, S., Kang, J., Han, K. C., Kim, Y. H., Bae, J. W., & Park, K. H. (2020). HSP90 inhibitor, 17-DMAG, alone and in combination with lapatinib attenuates acquired lapatinib-resistance in er-positive, her2-overexpressing breast cancer cell line. Cancers, 12(9), 1–16. https://doi.org/10.3390/cancers12092630CrossRef Lee, H. J., Shin, S., Kang, J., Han, K. C., Kim, Y. H., Bae, J. W., & Park, K. H. (2020). HSP90 inhibitor, 17-DMAG, alone and in combination with lapatinib attenuates acquired lapatinib-resistance in er-positive, her2-overexpressing breast cancer cell line. Cancers, 12(9), 1–16. https://​doi.​org/​10.​3390/​cancers12092630CrossRef
254.
Zurück zum Zitat Ambrose, A. J., & Chapman, E. (2021). Function, therapeutic potential, and inhibition of Hsp70 chaperones. J. Med. Chem., 64(11), 7060–7082.PubMedCrossRef Ambrose, A. J., & Chapman, E. (2021). Function, therapeutic potential, and inhibition of Hsp70 chaperones. J. Med. Chem., 64(11), 7060–7082.PubMedCrossRef
261.
Zurück zum Zitat Lin, Y., Peng, N., Zhuang, H., Zhang, D., Wang, Y., & Hua, Z.-C. (2014). Heat shock proteins HSP70 and MRJ cooperatively regulate cell adhesion and migration through urokinase receptor. BMC cancer, 14(1), 1–14.CrossRef Lin, Y., Peng, N., Zhuang, H., Zhang, D., Wang, Y., & Hua, Z.-C. (2014). Heat shock proteins HSP70 and MRJ cooperatively regulate cell adhesion and migration through urokinase receptor. BMC cancer, 14(1), 1–14.CrossRef
262.
Zurück zum Zitat Ogawa, Y., Nakagami, Y., Ishizaki, R., Yoshida, H., Parkinson, K. M., Robertson, C. N., & Paulson, D. F. (2001). Heat shock protein 70 (HSP70) does not prevent the inhibition of cell growth in DU-145 cells treated with TGF-beta1. Anticancer Res., 21(5), 3341–3347.PubMed Ogawa, Y., Nakagami, Y., Ishizaki, R., Yoshida, H., Parkinson, K. M., Robertson, C. N., & Paulson, D. F. (2001). Heat shock protein 70 (HSP70) does not prevent the inhibition of cell growth in DU-145 cells treated with TGF-beta1. Anticancer Res., 21(5), 3341–3347.PubMed
268.
Zurück zum Zitat Matsushima-Nishiwaki, R., Takai, S., Adachi, S., Minamitani, C., Yasuda, E., Noda, T., et al. (2008). Phosphorylated heat shock protein 27 represses growth of hepatocellular carcinoma via inhibition of extracellular signal-regulated kinase. J. Biol. Chem., 283(27), 18852–18860. https://doi.org/10.1074/jbc.M801301200CrossRefPubMed Matsushima-Nishiwaki, R., Takai, S., Adachi, S., Minamitani, C., Yasuda, E., Noda, T., et al. (2008). Phosphorylated heat shock protein 27 represses growth of hepatocellular carcinoma via inhibition of extracellular signal-regulated kinase. J. Biol. Chem., 283(27), 18852–18860. https://​doi.​org/​10.​1074/​jbc.​M801301200CrossRefPubMed
272.
Zurück zum Zitat Volkmann, J., Reuning, U., Rudelius, M., Häfner, N., Schuster, T., Aaron, A. B., et al. (2013). High expression of crystallin αb represents an independent molecular marker for unfavourable ovarian cancer patient outcome and impairs TRAIL- and cisplatin-induced apoptosis in human ovarian cancer cells. Int. J. Cancer., 132(12), 2820–2832. https://doi.org/10.1002/ijc.27975CrossRefPubMed Volkmann, J., Reuning, U., Rudelius, M., Häfner, N., Schuster, T., Aaron, A. B., et al. (2013). High expression of crystallin αb represents an independent molecular marker for unfavourable ovarian cancer patient outcome and impairs TRAIL- and cisplatin-induced apoptosis in human ovarian cancer cells. Int. J. Cancer., 132(12), 2820–2832. https://​doi.​org/​10.​1002/​ijc.​27975CrossRefPubMed
274.
275.
Zurück zum Zitat von Rekowski, K. W., König, P., Henze, S., Schlesinger, M., Zawierucha, P., Januchowski, R., & Bendas, G. (2020). Insight into cisplatin-resistance signaling of w1 ovarian cancer cells emerges mtor and hsp27 as targets for sensitization strategies. Int. J. Mol. Sci, 21(23), 1–22. https://doi.org/10.3390/ijms21239240CrossRef von Rekowski, K. W., König, P., Henze, S., Schlesinger, M., Zawierucha, P., Januchowski, R., & Bendas, G. (2020). Insight into cisplatin-resistance signaling of w1 ovarian cancer cells emerges mtor and hsp27 as targets for sensitization strategies. Int. J. Mol. Sci, 21(23), 1–22. https://​doi.​org/​10.​3390/​ijms21239240CrossRef
277.
Zurück zum Zitat Nikotina, A. D., Koludarova, L., Komarova, E. Y., Mikhaylova, E. R., Aksenov, N. D., Suezov, R., et al. (2018). Discovery and optimization of cardenolides inhibiting HSF1 activation in human colon HCT-116 cancer cells. Oncotarget, 9(43), 27268.PubMedPubMedCentralCrossRef Nikotina, A. D., Koludarova, L., Komarova, E. Y., Mikhaylova, E. R., Aksenov, N. D., Suezov, R., et al. (2018). Discovery and optimization of cardenolides inhibiting HSF1 activation in human colon HCT-116 cancer cells. Oncotarget, 9(43), 27268.PubMedPubMedCentralCrossRef
280.
281.
283.
Zurück zum Zitat Chen, R., Qiao, Y., Hu, W., Cheng, Q., Xie, H., Zhou, L., et al. (2019). LY2228820 induces synergistic anti-cancer effects with anti-microtubule chemotherapeutic agents independent of P-glycoprotein in multidrug resistant cancer cells. Am. J. Cancer Res., 9(10), 2216.PubMedPubMedCentral Chen, R., Qiao, Y., Hu, W., Cheng, Q., Xie, H., Zhou, L., et al. (2019). LY2228820 induces synergistic anti-cancer effects with anti-microtubule chemotherapeutic agents independent of P-glycoprotein in multidrug resistant cancer cells. Am. J. Cancer Res., 9(10), 2216.PubMedPubMedCentral
284.
Zurück zum Zitat Almanza, A., Carlesso, A., Chintha, C., Creedican, S., Doultsinos, D., Leuzzi, B., et al. (2019). Endoplasmic reticulum stress signalling–from basic mechanisms to clinical applications. The FEBS j., 286(2), 241–278.PubMedCrossRef Almanza, A., Carlesso, A., Chintha, C., Creedican, S., Doultsinos, D., Leuzzi, B., et al. (2019). Endoplasmic reticulum stress signalling–from basic mechanisms to clinical applications. The FEBS j., 286(2), 241–278.PubMedCrossRef
288.
Zurück zum Zitat Hart, L. S., Cunningham, J. T., Datta, T., Dey, S., Tameire, F., Lehman, S. L., et al. (2012). ER stress–mediated autophagy promotes Myc-dependent transformation and tumor growth. J. Clin. Investig., 122(12), 4621–4634.PubMedPubMedCentralCrossRef Hart, L. S., Cunningham, J. T., Datta, T., Dey, S., Tameire, F., Lehman, S. L., et al. (2012). ER stress–mediated autophagy promotes Myc-dependent transformation and tumor growth. J. Clin. Investig., 122(12), 4621–4634.PubMedPubMedCentralCrossRef
289.
Zurück zum Zitat Corazzari, M., Rapino, F., Ciccosanti, F., Giglio, P., Antonioli, M., Conti, B., et al. (2015). Oncogenic BRAF induces chronic ER stress condition resulting in increased basal autophagy and apoptotic resistance of cutaneous melanoma. Cell Death Differ, 22(6), 946–958.PubMedCrossRef Corazzari, M., Rapino, F., Ciccosanti, F., Giglio, P., Antonioli, M., Conti, B., et al. (2015). Oncogenic BRAF induces chronic ER stress condition resulting in increased basal autophagy and apoptotic resistance of cutaneous melanoma. Cell Death Differ, 22(6), 946–958.PubMedCrossRef
292.
Zurück zum Zitat Tosh, D. K., Brackett, C. M., Jung, Y.-H., Gao, Z.-G., Banerjee, M., Blagg, B. S. J., & Jacobson, K. A. (2021). Biological evaluation of 5′-(N-Ethylcarboxamido) adenosine analogues as Grp94-selective inhibitors. ACS Med. Chem. Lett., 12(3), 373–379.PubMedPubMedCentralCrossRef Tosh, D. K., Brackett, C. M., Jung, Y.-H., Gao, Z.-G., Banerjee, M., Blagg, B. S. J., & Jacobson, K. A. (2021). Biological evaluation of 5′-(N-Ethylcarboxamido) adenosine analogues as Grp94-selective inhibitors. ACS Med. Chem. Lett., 12(3), 373–379.PubMedPubMedCentralCrossRef
294.
Zurück zum Zitat Hsu, S.-K., Chiu, C.-C., Dahms, H.-U., Chou, C.-K., Cheng, C.-M., Chang, W.-T., et al. (2019). Unfolded protein response (UPR) in survival, dormancy, immunosuppression, metastasis, and treatments of cancer cells. Int. J. Mol. Sci., 20(10). https://doi.org/10.3390/ijms20102518 Hsu, S.-K., Chiu, C.-C., Dahms, H.-U., Chou, C.-K., Cheng, C.-M., Chang, W.-T., et al. (2019). Unfolded protein response (UPR) in survival, dormancy, immunosuppression, metastasis, and treatments of cancer cells. Int. J. Mol. Sci., 20(10). https://​doi.​org/​10.​3390/​ijms20102518
296.
Zurück zum Zitat Ranganathan, A. C., Zhang, L., Adam, A. P., & Aguirre-Ghiso, J. A. (2006). Functional coupling of p38-induced up-regulation of BiP and activation of RNA-dependent protein kinase–like endoplasmic reticulum kinase to drug resistance of dormant carcinoma cells. Cancer res., 66(3), 1702–1711.PubMedPubMedCentralCrossRef Ranganathan, A. C., Zhang, L., Adam, A. P., & Aguirre-Ghiso, J. A. (2006). Functional coupling of p38-induced up-regulation of BiP and activation of RNA-dependent protein kinase–like endoplasmic reticulum kinase to drug resistance of dormant carcinoma cells. Cancer res., 66(3), 1702–1711.PubMedPubMedCentralCrossRef
297.
Zurück zum Zitat Bartkowiak, K., Kwiatkowski, M., Buck, F., Gorges, T. M., Nilse, L., Assmann, V., et al. (2015). Disseminated tumor cells persist in the bone marrow of breast cancer patients through sustained activation of the unfolded protein response. Cancer res., 75(24), 5367–5377.PubMedCrossRef Bartkowiak, K., Kwiatkowski, M., Buck, F., Gorges, T. M., Nilse, L., Assmann, V., et al. (2015). Disseminated tumor cells persist in the bone marrow of breast cancer patients through sustained activation of the unfolded protein response. Cancer res., 75(24), 5367–5377.PubMedCrossRef
298.
Zurück zum Zitat Brewer, J. W., & Diehl, J. A. (2000). PERK mediates cell-cycle exit during the mammalian unfolded protein response. Proc. Natl. Acad. Sci. U.S.A., 97(23), 12625–12630.PubMedPubMedCentralCrossRef Brewer, J. W., & Diehl, J. A. (2000). PERK mediates cell-cycle exit during the mammalian unfolded protein response. Proc. Natl. Acad. Sci. U.S.A., 97(23), 12625–12630.PubMedPubMedCentralCrossRef
299.
Zurück zum Zitat Ranganathan, A. C., Ojha, S., Kourtidis, A., Conklin, D. S., & Aguirre-Ghiso, J. A. (2008). Dual function of pancreatic endoplasmic reticulum kinase in tumor cell growth arrest and survival. Cancer res., 68(9), 3260–3268.PubMedPubMedCentralCrossRef Ranganathan, A. C., Ojha, S., Kourtidis, A., Conklin, D. S., & Aguirre-Ghiso, J. A. (2008). Dual function of pancreatic endoplasmic reticulum kinase in tumor cell growth arrest and survival. Cancer res., 68(9), 3260–3268.PubMedPubMedCentralCrossRef
300.
Zurück zum Zitat Harding, H. P., Zhang, Y., Bertolotti, A., Zeng, H., & Ron, D. (2000). Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol. cell, 5(5), 897–904.PubMedCrossRef Harding, H. P., Zhang, Y., Bertolotti, A., Zeng, H., & Ron, D. (2000). Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol. cell, 5(5), 897–904.PubMedCrossRef
301.
Zurück zum Zitat Cullinan, S. B., & Diehl, J. A. (2004). PERK-dependent activation of Nrf2 contributes to redox homeostasis and cell survival following endoplasmic reticulum stress. J. Biol. Chem., 279(19), 20108–20117.PubMedCrossRef Cullinan, S. B., & Diehl, J. A. (2004). PERK-dependent activation of Nrf2 contributes to redox homeostasis and cell survival following endoplasmic reticulum stress. J. Biol. Chem., 279(19), 20108–20117.PubMedCrossRef
302.
Zurück zum Zitat Sandoval, M. V., Fluegen, G., Staschke, K. A., Calvo-Vidal, V., & Aguirre-Ghiso, J. A. (2016). Abstract A45: PERK-inhibition as a possible therapy for hypoxia-induced solitary dormant tumor cells. Cancer Res., 76(7_Supplement), A45–A45.CrossRef Sandoval, M. V., Fluegen, G., Staschke, K. A., Calvo-Vidal, V., & Aguirre-Ghiso, J. A. (2016). Abstract A45: PERK-inhibition as a possible therapy for hypoxia-induced solitary dormant tumor cells. Cancer Res., 76(7_Supplement), A45–A45.CrossRef
303.
Zurück zum Zitat Schewe, D. M., & Aguirre-Ghiso, J. A. (2008). ATF6α-Rheb-mTOR signaling promotes survival of dormant tumor cells in vivo. Proc. Natl. Acad. Sci. U.S.A., 105(30), 10519–10524.PubMedPubMedCentralCrossRef Schewe, D. M., & Aguirre-Ghiso, J. A. (2008). ATF6α-Rheb-mTOR signaling promotes survival of dormant tumor cells in vivo. Proc. Natl. Acad. Sci. U.S.A., 105(30), 10519–10524.PubMedPubMedCentralCrossRef
304.
Zurück zum Zitat Back, S. H., Lee, K., Vink, E., & Kaufman, R. J. (2006). Cytoplasmic IRE1α-mediated XBP1 mRNA splicing in the absence of nuclear processing and endoplasmic reticulum stress. J. Biol. Chem., 281(27), 18691–18706.PubMedCrossRef Back, S. H., Lee, K., Vink, E., & Kaufman, R. J. (2006). Cytoplasmic IRE1α-mediated XBP1 mRNA splicing in the absence of nuclear processing and endoplasmic reticulum stress. J. Biol. Chem., 281(27), 18691–18706.PubMedCrossRef
305.
Zurück zum Zitat Romero-Ramirez, L., Cao, H., Nelson, D., Hammond, E., Lee, A.-H., Yoshida, H., et al. (2004). XBP1 is essential for survival under hypoxic conditions and is required for tumor growth. Cancer res., 64(17), 5943–5947.PubMedCrossRef Romero-Ramirez, L., Cao, H., Nelson, D., Hammond, E., Lee, A.-H., Yoshida, H., et al. (2004). XBP1 is essential for survival under hypoxic conditions and is required for tumor growth. Cancer res., 64(17), 5943–5947.PubMedCrossRef
308.
Zurück zum Zitat Rouschop, K. M. A., van den Beucken, T., Dubois, L., Niessen, H., Bussink, J., Savelkouls, K., et al. (2010). The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5. J. Clin. Investig., 120(1), 127–141.PubMedCrossRef Rouschop, K. M. A., van den Beucken, T., Dubois, L., Niessen, H., Bussink, J., Savelkouls, K., et al. (2010). The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5. J. Clin. Investig., 120(1), 127–141.PubMedCrossRef
309.
Zurück zum Zitat B’chir, W., Maurin, A.-C., Carraro, V., Averous, J., Jousse, C., Muranishi, Y., et al. (2013). The eIF2α/ATF4 pathway is essential for stress-induced autophagy gene expression. Nucleic Acids Res., 41(16), 7683–7699.PubMedPubMedCentralCrossRef B’chir, W., Maurin, A.-C., Carraro, V., Averous, J., Jousse, C., Muranishi, Y., et al. (2013). The eIF2α/ATF4 pathway is essential for stress-induced autophagy gene expression. Nucleic Acids Res., 41(16), 7683–7699.PubMedPubMedCentralCrossRef
310.
Zurück zum Zitat Li, Y., Cook, K. L., Yu, W., Jin, L., Bouker, K. B., Clarke, R., & Hilakivi-Clarke, L. (2021). Inhibition of antiestrogen-promoted pro-survival autophagy and tamoxifen resistance in breast cancer through vitamin D receptor. Nutrients, 13(5). https://doi.org/10.3390/nu13051715 Li, Y., Cook, K. L., Yu, W., Jin, L., Bouker, K. B., Clarke, R., & Hilakivi-Clarke, L. (2021). Inhibition of antiestrogen-promoted pro-survival autophagy and tamoxifen resistance in breast cancer through vitamin D receptor. Nutrients, 13(5). https://​doi.​org/​10.​3390/​nu13051715
311.
Zurück zum Zitat Cook, K. L., Clarke, P. A. G., Parmar, J., Hu, R., Schwartz-Roberts, J. L., Abu-Asab, M., et al. (2014). Knockdown of estrogen receptor-α induces autophagy and inhibits antiestrogen-mediated unfolded protein response activation, promoting ROS-induced breast cancer cell death. The FASEB J., 28(9), 3891–3905. https://doi.org/10.1096/fj.13-247353CrossRefPubMed Cook, K. L., Clarke, P. A. G., Parmar, J., Hu, R., Schwartz-Roberts, J. L., Abu-Asab, M., et al. (2014). Knockdown of estrogen receptor-α induces autophagy and inhibits antiestrogen-mediated unfolded protein response activation, promoting ROS-induced breast cancer cell death. The FASEB J., 28(9), 3891–3905. https://​doi.​org/​10.​1096/​fj.​13-247353CrossRefPubMed
312.
Zurück zum Zitat Rong, H., Anni, W., Lu, J., Alan, Z., & B., R. R., Hong-Bin, F., & Robert, C. (2015). NF-κB signaling is required for XBP1 (unspliced and spliced)-mediated effects on antiestrogen responsiveness and cell fate decisions in breast cancer. Mol. Cell. Biol., 35(2), 379–390. https://doi.org/10.1128/MCB.00847-14CrossRef Rong, H., Anni, W., Lu, J., Alan, Z., & B., R. R., Hong-Bin, F., & Robert, C. (2015). NF-κB signaling is required for XBP1 (unspliced and spliced)-mediated effects on antiestrogen responsiveness and cell fate decisions in breast cancer. Mol. Cell. Biol., 35(2), 379–390. https://​doi.​org/​10.​1128/​MCB.​00847-14CrossRef
315.
Zurück zum Zitat Peng, Y., Li, Z., & Li, Z. (2013). GRP78 secreted by tumor cells stimulates differentiation of bone marrow mesenchymal stem cells to cancer-associated fibroblasts. Biochem. Biophys. Res. Commun, 440(4), 558–563.PubMedCrossRef Peng, Y., Li, Z., & Li, Z. (2013). GRP78 secreted by tumor cells stimulates differentiation of bone marrow mesenchymal stem cells to cancer-associated fibroblasts. Biochem. Biophys. Res. Commun, 440(4), 558–563.PubMedCrossRef
317.
Zurück zum Zitat Gopal, U., Mowery, Y., Young, K., & Pizzo, S. V. (2019). Targeting cell surface GRP78 enhances pancreatic cancer radiosensitivity through YAP/TAZ protein signaling. J. Biol. Chem., 294(38), 13939–13952.PubMedPubMedCentralCrossRef Gopal, U., Mowery, Y., Young, K., & Pizzo, S. V. (2019). Targeting cell surface GRP78 enhances pancreatic cancer radiosensitivity through YAP/TAZ protein signaling. J. Biol. Chem., 294(38), 13939–13952.PubMedPubMedCentralCrossRef
318.
Zurück zum Zitat Chang, H.-L., Chen, H.-A., Bamodu, O. A., Lee, K.-F., Tzeng, Y.-M., Lee, W.-H., & Tsai, J.-T. (2018). Ovatodiolide suppresses yes-associated protein 1-modulated cancer stem cell phenotypes in highly malignant hepatocellular carcinoma and sensitizes cancer cells to chemotherapy in vitro. Tox. in Vitro, 51, 74–82. https://doi.org/10.1016/j.tiv.2018.04.010CrossRef Chang, H.-L., Chen, H.-A., Bamodu, O. A., Lee, K.-F., Tzeng, Y.-M., Lee, W.-H., & Tsai, J.-T. (2018). Ovatodiolide suppresses yes-associated protein 1-modulated cancer stem cell phenotypes in highly malignant hepatocellular carcinoma and sensitizes cancer cells to chemotherapy in vitro. Tox. in Vitro, 51, 74–82. https://​doi.​org/​10.​1016/​j.​tiv.​2018.​04.​010CrossRef
320.
Zurück zum Zitat Nami, B., Ghasemi-Dizgah, A., & Vaseghi, A. (2016). Overexpression of molecular chaperons GRP78 and GRP94 in CD44hi/CD24lo breast cancer stem cells. BioImpacts: BI, 6(2), 105.PubMedPubMedCentralCrossRef Nami, B., Ghasemi-Dizgah, A., & Vaseghi, A. (2016). Overexpression of molecular chaperons GRP78 and GRP94 in CD44hi/CD24lo breast cancer stem cells. BioImpacts: BI, 6(2), 105.PubMedPubMedCentralCrossRef
321.
Zurück zum Zitat Bartkowiak, K., Effenberger, K. E., Harder, S., Andreas, A., Buck, F., Peter-Katalinic, J., et al. (2010). Discovery of a novel unfolded protein response phenotype of cancer stem/progenitor cells from the bone marrow of breast cancer patients. J. Proteome Res., 9(6), 3158–3168.PubMedCrossRef Bartkowiak, K., Effenberger, K. E., Harder, S., Andreas, A., Buck, F., Peter-Katalinic, J., et al. (2010). Discovery of a novel unfolded protein response phenotype of cancer stem/progenitor cells from the bone marrow of breast cancer patients. J. Proteome Res., 9(6), 3158–3168.PubMedCrossRef
322.
Zurück zum Zitat Sanz-Pamplona, R., Aragüés, R., Driouch, K., Martín, B., Oliva, B., Gil, M., et al. (2011). Expression of endoplasmic reticulum stress proteins is a candidate marker of brain metastasis in both ErbB-2+ and ErbB-2− primary breast tumors. Am. J. Clin. Pathol., 179(2), 564–579.CrossRef Sanz-Pamplona, R., Aragüés, R., Driouch, K., Martín, B., Oliva, B., Gil, M., et al. (2011). Expression of endoplasmic reticulum stress proteins is a candidate marker of brain metastasis in both ErbB-2+ and ErbB-2− primary breast tumors. Am. J. Clin. Pathol., 179(2), 564–579.CrossRef
323.
Zurück zum Zitat Martínez-Aranda, A., Hernández, V., Guney, E., Muixí, L., Foj, R., Baixeras, N., et al. (2015). FN14 and GRP94 expression are prognostic/predictive biomarkers of brain metastasis outcome that open up new therapeutic strategies. Oncotarget, 6(42), 44254.PubMedPubMedCentralCrossRef Martínez-Aranda, A., Hernández, V., Guney, E., Muixí, L., Foj, R., Baixeras, N., et al. (2015). FN14 and GRP94 expression are prognostic/predictive biomarkers of brain metastasis outcome that open up new therapeutic strategies. Oncotarget, 6(42), 44254.PubMedPubMedCentralCrossRef
324.
Zurück zum Zitat Zhang, L., Wang, S., Wangtao, W. Y., Wang, J., Jiang, L., Li, S., Hu, X., & Wang, Q. (2009). Upregulation of GRP78 and GRP94 and its function in chemotherapy resistance to VP-16 in human lung cancer cell line SK-MES-1. Cancer inv., 27(4), 453–458.CrossRef Zhang, L., Wang, S., Wangtao, W. Y., Wang, J., Jiang, L., Li, S., Hu, X., & Wang, Q. (2009). Upregulation of GRP78 and GRP94 and its function in chemotherapy resistance to VP-16 in human lung cancer cell line SK-MES-1. Cancer inv., 27(4), 453–458.CrossRef
325.
Zurück zum Zitat Santana-Codina, N., Muixí, L., Foj, R., Sanz-Pamplona, R., Badia-Villanueva, M., Abramowicz, A., et al. (2020). GRP94 promotes brain metastasis by engaging pro-survival autophagy. Neuro-onco, 22(5), 652–664.CrossRef Santana-Codina, N., Muixí, L., Foj, R., Sanz-Pamplona, R., Badia-Villanueva, M., Abramowicz, A., et al. (2020). GRP94 promotes brain metastasis by engaging pro-survival autophagy. Neuro-onco, 22(5), 652–664.CrossRef
326.
Zurück zum Zitat Misra, U. K., Payne, S., & Pizzo, S. V. (2011). Ligation of prostate cancer cell surface GRP78 activates a proproliferative and antiapoptotic feedback loop: a role for secreted prostate-specific antigen. J. Biol. Chem., 286(2), 1248–1259.PubMedCrossRef Misra, U. K., Payne, S., & Pizzo, S. V. (2011). Ligation of prostate cancer cell surface GRP78 activates a proproliferative and antiapoptotic feedback loop: a role for secreted prostate-specific antigen. J. Biol. Chem., 286(2), 1248–1259.PubMedCrossRef
329.
Zurück zum Zitat Lin, Y. G., Shen, J., Yoo, E., Liu, R., Yen, H.-Y., Mehta, A., et al. (2015). Targeting the glucose-regulated protein-78 abrogates Pten-null driven AKT activation and endometrioid tumorigenesis. Oncogene, 34(43), 5418–5426.PubMedPubMedCentralCrossRef Lin, Y. G., Shen, J., Yoo, E., Liu, R., Yen, H.-Y., Mehta, A., et al. (2015). Targeting the glucose-regulated protein-78 abrogates Pten-null driven AKT activation and endometrioid tumorigenesis. Oncogene, 34(43), 5418–5426.PubMedPubMedCentralCrossRef
330.
Zurück zum Zitat Wey, S., Luo, B., Tseng, C.-C., Ni, M., Zhou, H., Fu, Y., et al. (2012). Inducible knockout of GRP78/BiP in the hematopoietic system suppresses Pten-null leukemogenesis and AKT oncogenic signaling. Am. J. Hematol., 119(3), 817–825. Wey, S., Luo, B., Tseng, C.-C., Ni, M., Zhou, H., Fu, Y., et al. (2012). Inducible knockout of GRP78/BiP in the hematopoietic system suppresses Pten-null leukemogenesis and AKT oncogenic signaling. Am. J. Hematol., 119(3), 817–825.
333.
Zurück zum Zitat Karkampouna, S., van der Helm, D., Gray, P. C., Chen, L., Klima, I., Grosjean, J., et al. (2018). CRIPTO promotes an aggressive tumour phenotype and resistance to treatment in hepatocellular carcinoma. The J of Patho., 245(3), 297–310. https://doi.org/10.1002/path.5083CrossRef Karkampouna, S., van der Helm, D., Gray, P. C., Chen, L., Klima, I., Grosjean, J., et al. (2018). CRIPTO promotes an aggressive tumour phenotype and resistance to treatment in hepatocellular carcinoma. The J of Patho., 245(3), 297–310. https://​doi.​org/​10.​1002/​path.​5083CrossRef
344.
Zurück zum Zitat Liu, Y., Ji, W., Yue, N., & Zhou, W. (2021). Ubiquitin-conjugating enzyme E2T promotes tumor stem cell characteristics and migration of cervical cancer cells by regulating the GRP78/FAK pathway. Open Life Sci., 1082, 16(1), –1090. https://doi.org/10.1515/biol-2021-0108 Liu, Y., Ji, W., Yue, N., & Zhou, W. (2021). Ubiquitin-conjugating enzyme E2T promotes tumor stem cell characteristics and migration of cervical cancer cells by regulating the GRP78/FAK pathway. Open Life Sci., 1082, 16(1), –1090. https://​doi.​org/​10.​1515/​biol-2021-0108
346.
Zurück zum Zitat Yao, X., Liu, H., Zhang, X., Zhang, L., Li, X., Wang, C., & Sun, S. (2015). Cell surface GRP78 accelerated breast cancer cell proliferation and migration by activating STAT3. PloS one, 10(5), e0125634.PubMedPubMedCentralCrossRef Yao, X., Liu, H., Zhang, X., Zhang, L., Li, X., Wang, C., & Sun, S. (2015). Cell surface GRP78 accelerated breast cancer cell proliferation and migration by activating STAT3. PloS one, 10(5), e0125634.PubMedPubMedCentralCrossRef
348.
Zurück zum Zitat Tseng, C.-C., Stanciauskas, R., Zhang, P., Woo, D., Wu, K., Kelly, K., et al. (2019). GRP78 regulates CD44v membrane homeostasis and cell spreading in tamoxifen-resistant breast cancer. Life sci alliance, 2(4). Tseng, C.-C., Stanciauskas, R., Zhang, P., Woo, D., Wu, K., Kelly, K., et al. (2019). GRP78 regulates CD44v membrane homeostasis and cell spreading in tamoxifen-resistant breast cancer. Life sci alliance, 2(4).
352.
Zurück zum Zitat Schneider, M., Winkler, K., Kell, R., Pfaffl, M. W., Atkinson, M. J., & Moertl, S. (2022). The chaperone protein GRP78 promotes survival and migration of head and neck cancer after direct radiation exposure and extracellular vesicle-transfer. Front Oncol, 12. Schneider, M., Winkler, K., Kell, R., Pfaffl, M. W., Atkinson, M. J., & Moertl, S. (2022). The chaperone protein GRP78 promotes survival and migration of head and neck cancer after direct radiation exposure and extracellular vesicle-transfer. Front Oncol, 12.
354.
Zurück zum Zitat Conner, C., Lager, T. W., Guldner, I. H., Wu, M.-Z., Hishida, Y., Hishida, T., et al. (2020). Cell surface GRP78 promotes stemness in normal and neoplastic cells. Sci. reports, 10(1), 1–11. Conner, C., Lager, T. W., Guldner, I. H., Wu, M.-Z., Hishida, Y., Hishida, T., et al. (2020). Cell surface GRP78 promotes stemness in normal and neoplastic cells. Sci. reports, 10(1), 1–11.
357.
Zurück zum Zitat Xiong, H., Xiao, H., Luo, C., Chen, L., Liu, X., Hu, Z., et al. (2019). GRP78 activates the Wnt/HOXB9 pathway to promote invasion and metastasis of hepatocellular carcinoma by chaperoning LRP6. Exp. Cell Res., 383(1), 111493.PubMedCrossRef Xiong, H., Xiao, H., Luo, C., Chen, L., Liu, X., Hu, Z., et al. (2019). GRP78 activates the Wnt/HOXB9 pathway to promote invasion and metastasis of hepatocellular carcinoma by chaperoning LRP6. Exp. Cell Res., 383(1), 111493.PubMedCrossRef
359.
Zurück zum Zitat Hua, Y., White-Gilbertson, S., Kellner, J., Rachidi, S., Usmani, S. Z., Chiosis, G., et al. (2013). Molecular chaperone gp96 is a novel therapeutic target of multiple myelomaRoles of gp96 in regulating myeloma. Clin. Cancer Res., 19(22), 6242–6251.PubMedCrossRef Hua, Y., White-Gilbertson, S., Kellner, J., Rachidi, S., Usmani, S. Z., Chiosis, G., et al. (2013). Molecular chaperone gp96 is a novel therapeutic target of multiple myelomaRoles of gp96 in regulating myeloma. Clin. Cancer Res., 19(22), 6242–6251.PubMedCrossRef
360.
Zurück zum Zitat Hu, T., Xie, N., Qin, C., Wang, J., & You, Y. (2015). Glucose-regulated protein 94 is a novel glioma biomarker and promotes the aggressiveness of glioma via Wnt/β-catenin signaling pathway. Tumor Biol., 36(12), 9357–9364.CrossRef Hu, T., Xie, N., Qin, C., Wang, J., & You, Y. (2015). Glucose-regulated protein 94 is a novel glioma biomarker and promotes the aggressiveness of glioma via Wnt/β-catenin signaling pathway. Tumor Biol., 36(12), 9357–9364.CrossRef
361.
Zurück zum Zitat Shen, J., Yao, L., Lin, Y. G., DeMayo, F. J., Lydon, J. P., Dubeau, L., & Lee, A. S. (2016). Glucose-regulated protein 94 deficiency induces squamous cell metaplasia and suppresses PTEN-null driven endometrial epithelial tumor development. Oncotarget, 7(12), 14885.PubMedPubMedCentralCrossRef Shen, J., Yao, L., Lin, Y. G., DeMayo, F. J., Lydon, J. P., Dubeau, L., & Lee, A. S. (2016). Glucose-regulated protein 94 deficiency induces squamous cell metaplasia and suppresses PTEN-null driven endometrial epithelial tumor development. Oncotarget, 7(12), 14885.PubMedPubMedCentralCrossRef
363.
Zurück zum Zitat Duan, X., Iwanowycz, S., Ngoi, S., Hill, M., Zhao, Q., & Liu, B. (2021). Molecular chaperone GRP94/GP96 in cancers: oncogenesis and therapeutic target. Front Oncol, 11, 629846.PubMedPubMedCentralCrossRef Duan, X., Iwanowycz, S., Ngoi, S., Hill, M., Zhao, Q., & Liu, B. (2021). Molecular chaperone GRP94/GP96 in cancers: oncogenesis and therapeutic target. Front Oncol, 11, 629846.PubMedPubMedCentralCrossRef
364.
Zurück zum Zitat Backer, J. M., Krivoshein, A. V., Hamby, C. V., Pizzonia, J., Gilbert, K. S., Ray, Y. S., et al. (2009). Chaperone-targeting cytotoxin and endoplasmic reticulum stress-inducing drug synergize to kill cancer cells. Neoplasia, 11(11), 1165–IN11.PubMedPubMedCentralCrossRef Backer, J. M., Krivoshein, A. V., Hamby, C. V., Pizzonia, J., Gilbert, K. S., Ray, Y. S., et al. (2009). Chaperone-targeting cytotoxin and endoplasmic reticulum stress-inducing drug synergize to kill cancer cells. Neoplasia, 11(11), 1165–IN11.PubMedPubMedCentralCrossRef
365.
Zurück zum Zitat Rasche, L., Duell, J., Morgner, C., Chatterjee, M., Hensel, F., Rosenwald, A., et al. (2013). The natural human IgM antibody PAT-SM6 induces apoptosis in primary human multiple myeloma cells by targeting heat shock protein GRP78. PloS one, 8(5), e63414.PubMedPubMedCentralCrossRef Rasche, L., Duell, J., Morgner, C., Chatterjee, M., Hensel, F., Rosenwald, A., et al. (2013). The natural human IgM antibody PAT-SM6 induces apoptosis in primary human multiple myeloma cells by targeting heat shock protein GRP78. PloS one, 8(5), e63414.PubMedPubMedCentralCrossRef
366.
Zurück zum Zitat Axten, J. M., Medina, J. R., Feng, Y., Shu, A., Romeril, S. P., Grant, S. W., et al. (2012). Discovery of 7-methyl-5-(1-{[3-(trifluoromethyl)phenyl]acetyl}-2,3-dihydro-1H-indol-5-yl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine (GSK2606414), a potent and selective first-in-class inhibitor of protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK). J. Med. Chem., 55(16), 7193–7207. https://doi.org/10.1021/jm300713sCrossRefPubMed Axten, J. M., Medina, J. R., Feng, Y., Shu, A., Romeril, S. P., Grant, S. W., et al. (2012). Discovery of 7-methyl-5-(1-{[3-(trifluoromethyl)phenyl]acetyl}-2,3-dihydro-1H-indol-5-yl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine (GSK2606414), a potent and selective first-in-class inhibitor of protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK). J. Med. Chem., 55(16), 7193–7207. https://​doi.​org/​10.​1021/​jm300713sCrossRefPubMed
368.
Zurück zum Zitat Shi, Z., Yu, X., Yuan, M., Lv, W., Feng, T., Bai, R., & Zhong, H. (2019). Activation of the PERK-ATF4 pathway promotes chemo-resistance in colon cancer cells. Sci. reports, 9(1), 1–8. Shi, Z., Yu, X., Yuan, M., Lv, W., Feng, T., Bai, R., & Zhong, H. (2019). Activation of the PERK-ATF4 pathway promotes chemo-resistance in colon cancer cells. Sci. reports, 9(1), 1–8.
371.
Zurück zum Zitat Ming, J., Ruan, S., Wang, M., Ye, D., Fan, N., Meng, Q., et al. (2015). A novel chemical, STF-083010, reverses tamoxifen-related drug resistance in breast cancer by inhibiting IRE1/XBP1. Oncotarget, 6(38). Ming, J., Ruan, S., Wang, M., Ye, D., Fan, N., Meng, Q., et al. (2015). A novel chemical, STF-083010, reverses tamoxifen-related drug resistance in breast cancer by inhibiting IRE1/XBP1. Oncotarget, 6(38).
373.
Zurück zum Zitat Gallagher, C. M., Garri, C., Cain, E. L., Ang, K. K.-H., Wilson, C. G., Chen, S., et al. (2016). Ceapins are a new class of unfolded protein response inhibitors, selectively targeting the ATF6α branch. elife, 5, e11878.PubMedPubMedCentralCrossRef Gallagher, C. M., Garri, C., Cain, E. L., Ang, K. K.-H., Wilson, C. G., Chen, S., et al. (2016). Ceapins are a new class of unfolded protein response inhibitors, selectively targeting the ATF6α branch. elife, 5, e11878.PubMedPubMedCentralCrossRef
376.
Zurück zum Zitat Noman, M. Z., Parpal, S., Van Moer, K., Xiao, M., Yu, Y., Arakelian, T., et al. (2020). Inhibition of Vps34 reprograms cold into hot inflamed tumors and improves anti–PD-1/PD-L1 immunotherapy. Sci. adv., 6(18), eaax7881.PubMedPubMedCentralCrossRef Noman, M. Z., Parpal, S., Van Moer, K., Xiao, M., Yu, Y., Arakelian, T., et al. (2020). Inhibition of Vps34 reprograms cold into hot inflamed tumors and improves anti–PD-1/PD-L1 immunotherapy. Sci. adv., 6(18), eaax7881.PubMedPubMedCentralCrossRef
379.
380.
Zurück zum Zitat Ma, X.-H., Piao, S.-F., Dey, S., Mcafee, Q., Karakousis, G., Villanueva, J., et al. (2014). Targeting ER stress–induced autophagy overcomes BRAF inhibitor resistance in melanoma. J. Clin. Investig., 124(3), 1406–1417.PubMedPubMedCentralCrossRef Ma, X.-H., Piao, S.-F., Dey, S., Mcafee, Q., Karakousis, G., Villanueva, J., et al. (2014). Targeting ER stress–induced autophagy overcomes BRAF inhibitor resistance in melanoma. J. Clin. Investig., 124(3), 1406–1417.PubMedPubMedCentralCrossRef
382.
Zurück zum Zitat Jhaveri, K., Wang, R., Teplinsky, E., Chandarlapaty, S., Solit, D., Cadoo, K., et al. (2017). A phase I trial of ganetespib in combination with paclitaxel and trastuzumab in patients with human epidermal growth factor receptor-2 (HER2)-positive metastatic breast cancer. Breast Cancer Res., 19(1), 1–8. https://doi.org/10.1186/s13058-017-0879-5CrossRef Jhaveri, K., Wang, R., Teplinsky, E., Chandarlapaty, S., Solit, D., Cadoo, K., et al. (2017). A phase I trial of ganetespib in combination with paclitaxel and trastuzumab in patients with human epidermal growth factor receptor-2 (HER2)-positive metastatic breast cancer. Breast Cancer Res., 19(1), 1–8. https://​doi.​org/​10.​1186/​s13058-017-0879-5CrossRef
383.
Zurück zum Zitat Parris, J. L. D., Barnoud, T., Leu, J. I.-J., Leung, J. C., Ma, W., Kirven, N. A., et al. (2021). HSP70 inhibition blocks adaptive resistance and synergizes with MEK inhibition for the treatment of NRAS-mutant melanoma. Cancer Treat Res Commun, 1(1), 17–29.CrossRef Parris, J. L. D., Barnoud, T., Leu, J. I.-J., Leung, J. C., Ma, W., Kirven, N. A., et al. (2021). HSP70 inhibition blocks adaptive resistance and synergizes with MEK inhibition for the treatment of NRAS-mutant melanoma. Cancer Treat Res Commun, 1(1), 17–29.CrossRef
386.
Zurück zum Zitat Lin, J.-C., Yang, P.-M., & Liu, T.-P. (2021). PERK/ATF4-dependent ZFAS1 upregulation is associated with sorafenib resistance in hepatocellular carcinoma cells. Int. J. Mol. Sci., 22(11), 5848.PubMedPubMedCentralCrossRef Lin, J.-C., Yang, P.-M., & Liu, T.-P. (2021). PERK/ATF4-dependent ZFAS1 upregulation is associated with sorafenib resistance in hepatocellular carcinoma cells. Int. J. Mol. Sci., 22(11), 5848.PubMedPubMedCentralCrossRef
389.
Zurück zum Zitat Huang, Y., Yuan, K., Tang, M., Yue, J., Bao, L., Wu, S., et al. (2021). Melatonin inhibiting the survival of human gastric cancer cells under ER stress involving autophagy and Ras-Raf-MAPK signalling. J Cell Mol Med, 25(3), 1480–1492.PubMedCrossRef Huang, Y., Yuan, K., Tang, M., Yue, J., Bao, L., Wu, S., et al. (2021). Melatonin inhibiting the survival of human gastric cancer cells under ER stress involving autophagy and Ras-Raf-MAPK signalling. J Cell Mol Med, 25(3), 1480–1492.PubMedCrossRef
Metadaten
Titel
Autophagy, molecular chaperones, and unfolded protein response as promoters of tumor recurrence
verfasst von
Bashar Alhasan
Marina Mikeladze
Irina Guzhova
Boris Margulis
Publikationsdatum
01.02.2023
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 1/2023
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-023-10085-3

Weitere Artikel der Ausgabe 1/2023

Cancer and Metastasis Reviews 1/2023 Zur Ausgabe

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Erhöhtes Risiko fürs Herz unter Checkpointhemmer-Therapie

28.05.2024 Nebenwirkungen der Krebstherapie Nachrichten

Kardiotoxische Nebenwirkungen einer Therapie mit Immuncheckpointhemmern mögen selten sein – wenn sie aber auftreten, wird es für Patienten oft lebensgefährlich. Voruntersuchung und Monitoring sind daher obligat.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.