Skip to main content
Erschienen in: Rechtsmedizin 2/2024

Open Access 03.01.2024 | Original reports

Combination of several predictors for forensic age estimation

verfasst von: Michael Hubig, Daniel Wittschieber, Thomas Hunold, Holger Muggenthaler, Sebastian Schenkl, Gita Mall

Erschienen in: Rechtsmedizin | Ausgabe 2/2024

Abstract

Background

Nearly all practical forensic age diagnostics studies estimate the probability distribution of the age conditional on the developmental status of a certain anatomical feature. Given such a probability distribution, the probability of a person exceeding a certain legal age threshold is computed. In court, forensic experts are often asked to summarize the probabilities obtained by evaluating different age indicators of the same person.

Objective

The present study demonstrates computation of the age probability distribution conditional on the conjunction of several different age indicators given the age probability distributions conditional on the development status of the respective single anatomical features.

Material and methods

Data from two distinctively different studies on age estimation were used to join their probability information via Bayes’ theorem. Each of the cited studies is based on the development status of only one of two different anatomical structures: third molar and clavicular epiphysis.

Results

We derive general formulae for Bayesian information joining in forensic age estimation. Posterior distributions of age class, given the simultaneous statuses of the two anatomical features are generated. Finally, the study presents the technique on an artificial case example.

Conclusion

Bayes’ theorem can be used in forensic age estimations to combine information from several different anatomical features to yield more precise probability values of age given development status data of several distinctly different anatomical features. Conditional stochastic independence of the single age indicators as used in our article has to be scrutinized and is not generally recommendable.
Hinweise

Supplementary Information

The online version of this article (https://​doi.​org/​10.​1007/​s00194-023-00672-7) contains supplementary material, which is available to authorized users.
Scan QR code & read article online

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Introduction

Most forensic studies estimate age distributions conditional on a certain anatomical structures’ development stage as hand and wrist bones (see e.g., [1]), medial clavicular epiphysis (see e.g., [2, 3]) and third molars (see e.g., [4], except e.g., [5, 6]). Leading experts of the DGRM (German Forensic Medicine Society) Study Group on Forensic Age Diagnostics (AGFAD) recommend using the maximum diversity of age indicators for age estimations [710], proposing [11] usage of the maximum age over all indicator minimum ages. Up to now there is no European consensus on how to compute the final results of an age estimation. Our study merges age-diagnostic probabilities using Bayes’ theorem, which is a well-known way to join age information from different anatomical markers.
Table 1 presents a concise sample of approaches to the problem of age estimation using several different markers and/or using Bayesian estimation techniques. The parameters displayed are first author, year of publication, anatomical markers used, methods and sample size.
Table 1
State of research: studies dealing with Bayesian methods and/or multiple anatomical markers
No., year, first author
Anatomical markers, method
Sample size
[12] 1985
Lovejoy, Meindl et al.
Marker Mk: pubic symphyseal face, auricular surface, proximal femur, dental wear, suture closure
261
Summary age by multifactorial aging method: single factor Mk analysis
[13] 1993
Bedford, Russel et al.
Marker Mk: auricular surface, proximal femur, clavicula
55
Summary age by multifactorial aging method vs. single indicator, blinded test
[14] 1996
Lucy, Aykroyd et al.
Marker Mk: periodontal recession, translucency, root roughness
multiple linear legression vs. Bayesian prediction using stochastic independence conditional on age (Eq. 8) assumption, prior: age proportion in sample
71
[15] 2002
Boldsen, Milner et al.,
Marker Mk: pubic symphysis, iliac portion of the sacroiliac joint, suture segments
92f, 94m
Bayesian approach: transition analysis, prior estimation: continuation ratio, Eq. 8 with dependency corrected prediction intervals
[16] 2005
Braga, Heuze et al.
Marker Mk: left permanent mandibular teeth (except 3rd molar)
668f, 456m
Correspondence analysis and linear regression (CAR) vs. Bayesian prediction with uniform priors, with joint probability age-conditional distribution via dental mineralization sequence
[17] 2007
Bhat, Kamath
Marker Mk: 3rd molar mandibular root development, wrist: fusion ossification centers
346f, 389m
[18] 2010
Thevissen, Fieuws et al.
Marker Mk: 3rd molar development stage
910, 16 y–22 y
Bayesian ordinary regress. vs. regression analysis, uniform prior
[19] 2010
Langley-Shirley, Jantz
Marker Mk: ephyseal union of medial clavicula
1289
Test of scoring system and transition analysis, prior: fitted Gompertz hazard model
[20] 2011
Bassed, Briggs et al.
Marker Mk: 3rd molar development, clavicular epiphysis, spheno-occipital synchondrosis
184f, 421m
Multiple linear regression with scoring system
[21] 2015
Tangmose, Thevissen et al.
Marker Mk: 3rd molar mineralization
854
Transition analysis with continuation ratio, with Eq. 8 and ad hoc dependency corrected prediction intervals, uniform prior
[22] 2016
Fieuws, Willems et al.
Marker Mk: 3rd molar development (K = 4)
3200m
Transition analysis with Eq. 8 and dependency corrected prediction intervals, uniform prior
[5] 2016
Schmidt, Schramm et al.
Marker Mk: left hand bones, 3rd molar
307, 10 y–29 y
Multiple linear regression model
[23] 2016
Cameriere, Pacifici et al.
Marker Mk: sum of open apices of 7 left permanent mandibular teeth
2630, 4 y–17 y
Linear regression vs. normal Bayesian calibration with uniform prior
[24] 2016
Sironi, Pinchi et al.
Marker Mk: clavicular epiphysis development
380
Bayesian network, transition analysis with continuation ratio, skew-normal distributions as priors
[25] 2018
Sironi, Taroni et al.
Marker Mk: 3rd molar mineralization
1143
Bayesian network, transition analysis with continuation ratio, skew-normal distributions as priors
[26] 2018
Sironi, Pinchi et al.
Marker Mk: pulp chamber volume
286
Bayesian network, transition analysis with continuation ratio, normal and uniform distributions as priors
[6] 2018
Kumagai, Willems et al.
Marker Mk: development teeth, cervical vertebrae, craniofacial growth, hand bones, wrist bones
135f, 121m
Transition analysis with continuation ratio and Eq. 8
[27] 2019
Konigsberg, Frankenberg et al.
Marker Mk: 3rd molar root apex completion
1184m
Transition analysis with probit regression, Laplace‑, normal‑, uniform distribution as prior
[28] 2020
De Tobel, Fieuws et al.
Marker Mk: 3rd molar development, left wrist, clavicula development
Transition analysis with continuation ratio and with Eq. 8 and dependency corrected prediction intervals
160f, 138m

Methods

Terminology for forensic age estimation

Let t be a point in time of interest (e.g. of a crime) and let a* be the true age of a person at t. Let further Mk be the k‑th anatomical feature (e.g. 3rd molar) (k = 1,…, K) and let mk,j be the j‑th development level of feature Mk (j = 1,…, J(k)). A is the age estimator (estimated age at time of interest) with values a (e.g. A = a = 17 y). The term CSI(M1,…, MK|A) stands for the stochastic independence of M1,…, MK conditional on age A. The symbol P(A) connotes the prior distribution of the age estimator A with density f(x) := z / (a0 − aL) for x in [aL,a0], f(x) := (1 − z) / (aU − a0) for x in [a0,aU] with z in [0,1]. The symbols a0, aL, aU stand for the age threshold of interest (e.g. a0 = 18 y), a first guess lower limit and a first guess upper limit for the age A. The constant z := P(A < a0) is determined by the examiner via visual inspection prior to the examination.

Using Bayes’ theorem for combining information

Bayes’ theorem for the case of K > 1 anatomical age predictors M1,…, MK can be written yielding the final formula of information joining for forensic age estimation in the living:
$$P\left(A=a| M_{1}=m_{1}{,}\ldots {,}M_{K}=m_{K}\right)=\frac{P\left(M_{1}=m_{1}{,}\ldots {,}M_{K}=m_{K}| A=a\right)}{\left\{\begin{array}{c} \sum _{b\in \underline{A}}P\left(M_{1}=m_{1}{,}\ldots {,}M_{K}=m_{K}| A=b\right)\\ \cdot P\left(A=b\right)\end{array}\right\}}\cdot P\left(A=a\right)$$
(1)
Using the definition of conditional stochastic independence (CSI) another simplification is possible:
$$P\left(A=a| M_{1}=m_{1}{,}\ldots {,}M_{K}=m_{K}\right)=\frac{\prod _{k=1{,}\ldots {,}K}P\left(M_{k}=m_{k}| A=a\right)}{\left\{\begin{array}{c}\sum _{b\in \underline{A}}\prod _{k=1{,}\ldots {,}K}P\left(M_{k}=m_{k}| A=b\right)\\ \cdot P\left(A=b\right)\end{array}\right\}}\cdot P\left(A=a\right)$$
(2)

The age distribution conditional on a single feature level

If the distribution density fj of P(A | M = mj) of the age A under the condition of a feature level value mj of the feature M is assumed to be normal with mean Ej and standard deviation Sj we write:
$$\forall j=1{,}\ldots {,}J: f_{j}\left(x\right):= \frac{1}{\sqrt{2\cdot \pi \cdot S_{j}}}\cdot exp\left(-\frac{\left(x-E_{j}\right)^{2}}{2\cdot {S_{j}}^{2}}\right)$$
(3)
This is the case in the study of Olze, Peschke et al. [4], which is our source for dental development data.
To yield the distributions P(M | A = a), we apply Bayes’ theorem again:
$$P\left(M=m_{j}|A=a\right)=\frac{P(A=a|M=m_{j})\cdot P(M=m_{j})}{P\left(A=a\right)}=\frac{P\left(A=a|M=m_{j}\right)\cdot P\left(M=m_{j}\right)}{\sum _{m\epsilon \underline{M}}P\left(A=a|M=m\right)\cdot P\left(M=m\right)}$$
(4)
If the joint probability distributions’ absolute histogram N(A, M) is given as in the study of Kreitner, Schweden et al. [2], which we used as our clavicular related data source, we estimate P(M | A = a):
$$\forall j=1{,}\ldots {,}J: \ P\left(M=m_{j}| A=a\right):= \frac{N\left(a{,}m_{j}\right)}{\sum _{m\in \underline{M}}N\left(a{,}m\right)}$$
(5)

Results

Age distribution conditional on tooth 18 eruption state

The third molar tooth eruption status for tooth 18 was investigated by Olze [4]. Table 1 in [4] provides the prior age distribution P(A) by:
$$P\left(A=a\right)={\#}\{\textit{Males}\,ofageA=a\}/{\#}\{\textit{Males}\}$$
(6)
Table 2 in [4] gives the means E1,j and the standard deviations S1,j of P(A | M1 = m1,j) conditional on the eruption status M1 with the levels m1,j = A, B, C, D. Note that the age variable A should not be confused with the eruption status “A” of tooth 18. Figure 1 shows the age distribution P(A | M1) conditional on the value of the eruption status M1 = m for all four development level values m = A, m = B, m = C, and m = D. As our approach in Eq. 2 needs the distributions P(M1 | A = a) for all ages a, we computed the latter from the distributions P(A | M1 = m1,j) via the conditional probability definition in the first equality of (Eq. 4) using the intra-study [4]—prior Eq. 6. This approach should not be confused with Bayes theorem’s main application (Eq. 2) with the purpose of joining different data sources.

Age distribution conditional on clavicular epiphysis stage

Kreitner [2] published joined histograms N(A, M2) of patient’s CTs (age < 30 y). The development level M2 of the epiphyseal union was quantified according to a four-stage system {S1, S2, S3, S4} from [29]. Figure 2 shows the age distribution P(A | M2) computed by:
$$P\left(A=a| M_{2}=m\right)=N\left(A=a,M_{2}=m\right)/\sum _{a^{\prime}\in \underline{A}}N\left(A=a^{\prime},M_{2}=m\right)$$
(7)

Joining clavicular and tooth state age information

As we assume Eq. 8 for our example, we use Eq. 3 instead of Eq. 2 to compute P(A | M1,…, MK). Figure 3a, b, c visualize the result for three distinct combinations (m1a,m2a), (m1b,m2b), (m1c,m2c) of molar 18 eruption and clavicular development statuses M1 and M2, respectively, the distributions P(A | Mk = mk,x) for k = 1,2 and P(A | M1 = m1,x, M2 = m2,x) resulting from our joining operation.

Application in a hypothetical case example

Let us assume a male individual undergoing a criminal proceeding. He asserts to be younger than 18 years without confirming documents. The prosecution requests a medico-legal investigation (see AGFAD criteria e.g. [9]) whether he is older than 18 years. He matches the selection criteria of [4] and [2].
The persons’ medial clavicular epiphysis status is M2 = S2 (see [2]), the eruption state of tooth 18 is M1 = B (see [4]). Table 2 in [4] gives expectation E1 = 20.8 y and standard deviation S1 = 2.7 y as well as min1 = 14.9 y, max1 = 25.7 y. The normal assumption leads to p1 = P(A ≥ 18 y | M1 = B) = 0.85. With Tab. 1 in [2] we yield p2 = P(A ≥ 18 y | M2 = S2) = (1 + 1 + 4 + 8) / 51 = 0.27. Our Bayesian approach results in p = P(A ≥ 18 y | M1 = B, M2 = S2) = P(A = 18 y | M1 = B, M2 = S2) + P(A = 19 y | M1 = B, M2 = S2) + P(A = 20 y | M1 = B, M2 = S2) + P(A = 22 y | M1 = B, M2 = S2) = 0.01 + 0.01 + 0.035 + 0.1 = 0.155 (as all other relevant conditional age probabilities are 0), which can be directly read from Fig. 4.

Discussion

The approach should not be misunderstood as an attempt to overwrite the suggestions and established procedures (see [711, 30]) given by experienced experts or boards like AGFAD. It should merely provide another tool for dealing with the information at hand.
We would like to emphasize that our assumption Eq. 8 of the age marker M1, …, MK’s stochastic independence conditional on the age A is a hypothetical auxiliary construct, enabling us to perform example calculations. Its usage in casework should be scrutinized in every application case based on empirical data. A general usage of Eq. 8 is not recommendable, although Eq. 8 is applied in several studies, as it is disputed in the literature.
Joining empirical distributions from different study samples and extending the term Eq. 8 needs an explanation: Per definitionem Eq. 8 is a potential property of the random variables M1 and M2: interpreting Eq. 8 for this application, the variables M1 and M2 have to be defined in an overall population‘ H which is not experimentally accessible. Here Eq. 8 is realized:
$$P_{H}\left(M_{1}=m_{1}.M_{2}=m_{2}| A=a\right)=P_{H}\left(M_{1}=m_{1}| A=a\right)\cdot P_{H}(M_{2}=m_{2}| A=a)$$
(8)
Two disjoint subsamples H1 taken from Kreitner, Schweden et al. [2] and H2 from Olze, Peschke et al. [4] respectively, were used to compute the probability distributions PH1(M1) and PH2(M2) respectively. H1 and H2 being representative subsamples in H means:
$$\forall i=1.2\colon P_{H}\left(M_{i}=m_{i}| A=a\right)=P_{Hi}\left(M_{i}=m_{i}| A=a\right)$$
(9)
Note that assumptions like Eq. (9) are the basis of every application of experimental statistics. Thus, we can extend Eq. 8 though none of the individuals in H1 belong to H2:
$$P_{H}\left(M_{1}=m_{1}.M_{2}=m_{2}| A=a\right)=P_{H1}\left(M_{1}=m_{1}| A=a\right)\cdot P_{H2}(M_{2}=m_{2}| A=a)$$
(10)
As in Eq. 2 the number K of anatomical features is not bounded. In principle one distribution P(A | M1 = m1,…, MK = mK) could contain all information from different features.
Our prior P(A) represents an age estimation expert’s first guess of the age before examination but on the basis of informal visual inspection. The value of z in the density f(x) of the age estimator A’s prior distribution P(A), as introduced in the Terminology paragraph of the Methods section, can be interpreted as the a priori probability of the persons age A being below the bound a0 of interest.
Figure 3a, b, c show the dominance in P(A | M1 = m1, M2 = m2) of clavicular feature M2 over molar feature M1 with smaller variance of P(A | M2) than P(A | M1) and wider spread maxima on the age scale (14 y–25 y) (see Fig. 1). In Fig. 3a, b, c the graphs of P(A | M1 = m1, M2 = m2) are more similar to the graphs of P(A | M2 = m2) than to the ones of P(A | M1 = m1). The molar distribution P(A | M1 = m1) smooths the form of the P(A | M1 = m1, M2 = m2) in comparison to the P(A | M2 = m2).
Finally, we encourage all scientists to publish their empirical data on multiple features joint distributions.

Practical conclusion

The study presented demonstrates information fusing from different single predictors, providing probabilities for forensic age estimation. Equation 8 of the single age indicators as presupposition has to be scrutinized.

Declarations

Conflict of interest

M. Hubig, D. Wittschieber, T. Hunold, H. Muggenthaler, S. Schenkl and G. Mall declare that they have no competing interests.

Ethical standards

We herewith confirm the ethical standards: For this article no studies with human participants or animals were performed by any of the authors. All studies mentioned were in accordance with the ethical standards indicated in each case. This article uses only published data of published studies with human participants. The data used are of strictly statistical nature and no identifying individual data can be reconstructed.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

Rechtsmedizin

Print-Titel

• Einzige deutschsprachige Zeitschrift für Rechtsmedizinerinnen und Rechtsmediziner

• Ausgewählte Übersichtsbeiträge zu aktuellen Themenschwerpunkten

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

Literatur
1.
Zurück zum Zitat Greulich WW, Pyle SI (1959) Radiographic atlas of skeletal development of the hand and wrist. Stanford University Press, StanfordCrossRef Greulich WW, Pyle SI (1959) Radiographic atlas of skeletal development of the hand and wrist. Stanford University Press, StanfordCrossRef
2.
Zurück zum Zitat Kreitner KF, Schweden F, Schild HH et al (1997) Die computertomographisch bestimmte Ausreifung der medialen Klavikulaepiphyse – eine additive Methode zur Altersbestimmung im Adoleszensalter und in der dritten Lebensdekade? Fortschr Röntgenstr 166(6):481–486CrossRef Kreitner KF, Schweden F, Schild HH et al (1997) Die computertomographisch bestimmte Ausreifung der medialen Klavikulaepiphyse – eine additive Methode zur Altersbestimmung im Adoleszensalter und in der dritten Lebensdekade? Fortschr Röntgenstr 166(6):481–486CrossRef
3.
Zurück zum Zitat Wittschieber D, Schulz R, Pfeiffer H et al (2017) Systematic procedure for identifying the five main ossification stages of the medial clavicular epiphysis using computed tomography: a practical proposal for forensic age diagnostics. Int J Legal Med 131:217–224CrossRefPubMed Wittschieber D, Schulz R, Pfeiffer H et al (2017) Systematic procedure for identifying the five main ossification stages of the medial clavicular epiphysis using computed tomography: a practical proposal for forensic age diagnostics. Int J Legal Med 131:217–224CrossRefPubMed
4.
Zurück zum Zitat Olze A, Peschke C, Schulz R et al (2008) Studies of the chronological course of wisdom tooth eruption in a German population. J Forensic Leg Med 15:426–429CrossRefPubMed Olze A, Peschke C, Schulz R et al (2008) Studies of the chronological course of wisdom tooth eruption in a German population. J Forensic Leg Med 15:426–429CrossRefPubMed
5.
Zurück zum Zitat Schmidt S, Schramm D, Ribbecke S et al (2016) Forensische Altersschätzung bei Jugendlichen und jungen Erwachsenen: Streubreitenreduktion der Altersdiagnose durch Kombination der Methoden. Arch Kriminol 237:25–37PubMed Schmidt S, Schramm D, Ribbecke S et al (2016) Forensische Altersschätzung bei Jugendlichen und jungen Erwachsenen: Streubreitenreduktion der Altersdiagnose durch Kombination der Methoden. Arch Kriminol 237:25–37PubMed
6.
Zurück zum Zitat Kumagai A, Willems G, Franco A et al (2018) Age estimation combining radiographic information of two dental and four skeletal predictors in children and subadults. Int J Legal Med 132:1769–1777CrossRefPubMed Kumagai A, Willems G, Franco A et al (2018) Age estimation combining radiographic information of two dental and four skeletal predictors in children and subadults. Int J Legal Med 132:1769–1777CrossRefPubMed
7.
Zurück zum Zitat Schmeling A, Kaatsch H‑J, Marré B et al (2001) Empfehlungen für die Altersdiagnostik bei Lebenden im Strafverfahren. Rechtsmedizin 11:1–3CrossRef Schmeling A, Kaatsch H‑J, Marré B et al (2001) Empfehlungen für die Altersdiagnostik bei Lebenden im Strafverfahren. Rechtsmedizin 11:1–3CrossRef
8.
Zurück zum Zitat Schmeling A, Grundmann C, Fuhrmann A et al (2008) Aktualisierte Empfehlungen der Arbeitsgemeinschaft für Forensische Altersdiagnostik für Altersschätzungen bei Lebenden im Strafverfahren. Rechtsmedizin 18:451–453CrossRef Schmeling A, Grundmann C, Fuhrmann A et al (2008) Aktualisierte Empfehlungen der Arbeitsgemeinschaft für Forensische Altersdiagnostik für Altersschätzungen bei Lebenden im Strafverfahren. Rechtsmedizin 18:451–453CrossRef
9.
Zurück zum Zitat Schmeling A, Grundmann C, Fuhrmann A et al (2008) Criteria for age estimation in living individuals. Int J Legal Med 122:457–460CrossRefPubMed Schmeling A, Grundmann C, Fuhrmann A et al (2008) Criteria for age estimation in living individuals. Int J Legal Med 122:457–460CrossRefPubMed
10.
Zurück zum Zitat Lockemann U, Fuhrmann A, Püschel K et al (2004) Arbeitsgemeinschaft für Forensische Altersdiagnostik der Deutschen Gesellschaft für Rechtsmedizin Empfehlungen für die Altersdiagnostik bei Jugendlichen und jungen Erwachsenen außerhalb des Strafverfahrens. Rechtsmedizin 14:123–125CrossRef Lockemann U, Fuhrmann A, Püschel K et al (2004) Arbeitsgemeinschaft für Forensische Altersdiagnostik der Deutschen Gesellschaft für Rechtsmedizin Empfehlungen für die Altersdiagnostik bei Jugendlichen und jungen Erwachsenen außerhalb des Strafverfahrens. Rechtsmedizin 14:123–125CrossRef
11.
Zurück zum Zitat Schmeling A, Dettmeyer R, Rudolf E et al (2016) Forensische Altersdiagnostik Methoden, Aussagesicherheit, Rechtsfragen. Dtsch Ärztebl Int 113(4):44–50PubMedPubMedCentral Schmeling A, Dettmeyer R, Rudolf E et al (2016) Forensische Altersdiagnostik Methoden, Aussagesicherheit, Rechtsfragen. Dtsch Ärztebl Int 113(4):44–50PubMedPubMedCentral
12.
Zurück zum Zitat Lovejoy CO, Meindl RS, Mensforth RP et al (1985) Multifactorial determination of skeletal age at death: a method and blind tests of its accuracy. Am J Phys Anthr 1985(68):1–14CrossRef Lovejoy CO, Meindl RS, Mensforth RP et al (1985) Multifactorial determination of skeletal age at death: a method and blind tests of its accuracy. Am J Phys Anthr 1985(68):1–14CrossRef
13.
Zurück zum Zitat Bedford ME, Russell KF, Lovejoy CO et al (1993) Test of the multifactorial aging method using skeletons with known ages-at-death from the grant collection. Am J Phys Anthr 91:287–297CrossRef Bedford ME, Russell KF, Lovejoy CO et al (1993) Test of the multifactorial aging method using skeletons with known ages-at-death from the grant collection. Am J Phys Anthr 91:287–297CrossRef
14.
Zurück zum Zitat Lucy D, Aykroyd RG, Pollard AM et al (1996) A Bayesian approach to adult human age estimation from dental observations by Johanson’s age changes. J Forensic Sci 41(2):189–194CrossRefPubMed Lucy D, Aykroyd RG, Pollard AM et al (1996) A Bayesian approach to adult human age estimation from dental observations by Johanson’s age changes. J Forensic Sci 41(2):189–194CrossRefPubMed
15.
Zurück zum Zitat Boldsen JL, Milner GR, Konigsberg LW et al (2002) Transition analysis: a new method for estimating age from skeletons. In: Hoppa RD, Vaupel JW (eds) Paleodemography: age distributions from skeletal samples. Cambridge University Press, Cambridge, pp 73–106CrossRef Boldsen JL, Milner GR, Konigsberg LW et al (2002) Transition analysis: a new method for estimating age from skeletons. In: Hoppa RD, Vaupel JW (eds) Paleodemography: age distributions from skeletal samples. Cambridge University Press, Cambridge, pp 73–106CrossRef
16.
Zurück zum Zitat Braga J, Heuze Y, Chabadel O et al (2005) Non-adult dental age assessment: correspondence analysis and linear regression versus Bayesian predictions. Int J Legal Med 119:260–274CrossRefPubMed Braga J, Heuze Y, Chabadel O et al (2005) Non-adult dental age assessment: correspondence analysis and linear regression versus Bayesian predictions. Int J Legal Med 119:260–274CrossRefPubMed
17.
Zurück zum Zitat Bhat VJ, Kamath GP (2007) Age estimation from root development of mandibular third molars in comparison with skeletal Age of wrist joint. Am J Forensic Med Pathol 28(3):238–241CrossRefPubMed Bhat VJ, Kamath GP (2007) Age estimation from root development of mandibular third molars in comparison with skeletal Age of wrist joint. Am J Forensic Med Pathol 28(3):238–241CrossRefPubMed
18.
Zurück zum Zitat Thevissen PW, Fieuws S, Willems G (2010) Human dental age estimation using third molar developmental stages: does a Bayesian approach outperform regression models to discriminate between juveniles and adults? Int J Legal Med 124(1):35–42CrossRefPubMed Thevissen PW, Fieuws S, Willems G (2010) Human dental age estimation using third molar developmental stages: does a Bayesian approach outperform regression models to discriminate between juveniles and adults? Int J Legal Med 124(1):35–42CrossRefPubMed
19.
Zurück zum Zitat Langley-Shirley N, Jantz RL (2010) A Bayesian approach to age estimation in modern Americans from the clavicle. J Forensic Sci 55(3):571–583CrossRefPubMed Langley-Shirley N, Jantz RL (2010) A Bayesian approach to age estimation in modern Americans from the clavicle. J Forensic Sci 55(3):571–583CrossRefPubMed
20.
Zurück zum Zitat Bassed RB, Briggs C, Drummer OH (2011) Age estimation using CT imaging of the third molar tooth, the medial clavicular epiphysis, and the spheno-occipital synchondrosis: A multifactorial approach. Forensic Sci Int 212(273):e1–e273.e5 Bassed RB, Briggs C, Drummer OH (2011) Age estimation using CT imaging of the third molar tooth, the medial clavicular epiphysis, and the spheno-occipital synchondrosis: A multifactorial approach. Forensic Sci Int 212(273):e1–e273.e5
21.
Zurück zum Zitat Tangmose S, Thevissen P, Lynnerup N et al (2015) Age estimation in the living: transition analysis on developing third molars. Forensic Sci Int 257(512):e1–e512.e7 Tangmose S, Thevissen P, Lynnerup N et al (2015) Age estimation in the living: transition analysis on developing third molars. Forensic Sci Int 257(512):e1–e512.e7
22.
Zurück zum Zitat Fieuws S, Willems G, Larsen-Tangmose S et al (2016) Obtaining appropriate interval estimates for age when multiple indicators are used: evaluation of an ad-hoc procedure. Int J Legal Med 130:489–499CrossRefPubMed Fieuws S, Willems G, Larsen-Tangmose S et al (2016) Obtaining appropriate interval estimates for age when multiple indicators are used: evaluation of an ad-hoc procedure. Int J Legal Med 130:489–499CrossRefPubMed
23.
Zurück zum Zitat Cameriere R, Pacifici A, Pacifici L et al (2016) Age estimation in children by measurement of open apices in teeth with Bayesian calibration approach. Forensic Sci Int 258:50–54CrossRefPubMed Cameriere R, Pacifici A, Pacifici L et al (2016) Age estimation in children by measurement of open apices in teeth with Bayesian calibration approach. Forensic Sci Int 258:50–54CrossRefPubMed
24.
Zurück zum Zitat Sironi E, Pinchi V, Taroni F (2016) Probabilistic age classification with Bayesian networks: a study on the ossification status of the medial clavicular epiphysis. Forensic Sci Int 258:81–87CrossRefPubMed Sironi E, Pinchi V, Taroni F (2016) Probabilistic age classification with Bayesian networks: a study on the ossification status of the medial clavicular epiphysis. Forensic Sci Int 258:81–87CrossRefPubMed
25.
Zurück zum Zitat Sironi E, Taroni F, Baldinotti C et al (2018) Age estimation by assessment of pulp chamber volume: a Bayesian network for the evaluation of dental evidence. Int J Legal Med 132:1125–1138CrossRefPubMed Sironi E, Taroni F, Baldinotti C et al (2018) Age estimation by assessment of pulp chamber volume: a Bayesian network for the evaluation of dental evidence. Int J Legal Med 132:1125–1138CrossRefPubMed
26.
Zurück zum Zitat Sironi E, Pinchi V, Pradella F et al (2018) Bayesian networks of age estimation and classification based on dental evidence: a study on the third molar mineralization. J Forensic Leg Med 55:23–32CrossRefPubMed Sironi E, Pinchi V, Pradella F et al (2018) Bayesian networks of age estimation and classification based on dental evidence: a study on the third molar mineralization. J Forensic Leg Med 55:23–32CrossRefPubMed
27.
Zurück zum Zitat Konigsberg LW, Frankenberg SR, Liversidge HM (2019) Status of mandibular third molar development as evidence in legal age threshold cases. J Forensic Sci 64(3):680–697CrossRefPubMed Konigsberg LW, Frankenberg SR, Liversidge HM (2019) Status of mandibular third molar development as evidence in legal age threshold cases. J Forensic Sci 64(3):680–697CrossRefPubMed
28.
Zurück zum Zitat De Tobel J, Fieuws S, Hillewiga E et al (2020) Multi-factorial age estimation: a Bayesian approach combining dental and skeletal magnetic resonance imaging. Forensic Sci Int 306:110054CrossRefPubMed De Tobel J, Fieuws S, Hillewiga E et al (2020) Multi-factorial age estimation: a Bayesian approach combining dental and skeletal magnetic resonance imaging. Forensic Sci Int 306:110054CrossRefPubMed
29.
Zurück zum Zitat Owings Webb PA, Myers Suchey J (1985) Epiphyseal union of the anterior Iliac crest and medial clavicle in a modern multiracial sample of American males and females. Am J Phys Anthr 68:457–466CrossRef Owings Webb PA, Myers Suchey J (1985) Epiphyseal union of the anterior Iliac crest and medial clavicle in a modern multiracial sample of American males and females. Am J Phys Anthr 68:457–466CrossRef
Metadaten
Titel
Combination of several predictors for forensic age estimation
verfasst von
Michael Hubig
Daniel Wittschieber
Thomas Hunold
Holger Muggenthaler
Sebastian Schenkl
Gita Mall
Publikationsdatum
03.01.2024
Verlag
Springer Medizin
Erschienen in
Rechtsmedizin / Ausgabe 2/2024
Print ISSN: 0937-9819
Elektronische ISSN: 1434-5196
DOI
https://doi.org/10.1007/s00194-023-00672-7

Weitere Artikel der Ausgabe 2/2024

Rechtsmedizin 2/2024 Zur Ausgabe

Neu im Fachgebiet Rechtsmedizin

Molekularpathologische Untersuchungen im Wandel der Zeit

Open Access Biomarker Leitthema

Um auch an kleinen Gewebeproben zuverlässige und reproduzierbare Ergebnisse zu gewährleisten ist eine strenge Qualitätskontrolle in jedem Schritt des Arbeitsablaufs erforderlich. Eine nicht ordnungsgemäße Prüfung oder Behandlung des …

Vergleichende Pathologie in der onkologischen Forschung

Pathologie Leitthema

Die vergleichende experimentelle Pathologie („comparative experimental pathology“) ist ein Fachbereich an der Schnittstelle von Human- und Veterinärmedizin. Sie widmet sich der vergleichenden Erforschung von Gemeinsamkeiten und Unterschieden von …

Gastrointestinale Stromatumoren

Open Access GIST CME-Artikel

Gastrointestinale Stromatumoren (GIST) stellen seit über 20 Jahren ein Paradigma für die zielgerichtete Therapie mit Tyrosinkinaseinhibitoren dar. Eine elementare Voraussetzung für eine mögliche neoadjuvante oder adjuvante Behandlung bei …

Personalisierte Medizin in der Onkologie

Aufgrund des erheblichen technologischen Fortschritts in der molekularen und genetischen Diagnostik sowie zunehmender Erkenntnisse über die molekulare Pathogenese von Krankheiten hat in den letzten zwei Jahrzehnten ein grundlegender …