Skip to main content
Erschienen in: Inflammation 3/2023

18.02.2023 | ORIGINAL ARTICLE

CXCL9, 10, 11/CXCR3 Axis Contributes to the Progress of Primary Sjogren’s Syndrome by Activating GRK2 to Promote T Lymphocyte Migration

verfasst von: Jing Zhang, Xiao Zhang, Xingjie Shi, Yuqi Liu, Danqian Cheng, Qianwen Tian, Ning Lin, Wei Wei, Huaxun Wu

Erschienen in: Inflammation | Ausgabe 3/2023

Einloggen, um Zugang zu erhalten

Abstract

Primary Sjogren’s syndrome (pSS) is a systemic autoimmune disease that causes dysfunction of secretory glands and the specific pathogenesis is still unknown. The CXCL9, 10, 11/CXCR3 axis and G protein-coupled receptor kinase 2 (GRK2) involved in many inflammation and immunity processes. We used NOD/Ltj mice, a spontaneous SS animal model, to elucidate the pathological mechanism of CXCL9, 10, 11/CXCR3 axis promoting T lymphocyte migration by activating GRK2 in pSS. We found that CD4 + GRK2, Th17 + CXCR3 was apparently increased and Treg + CXCR3 was significantly decreased in the spleen of 4W NOD mice without sicca symptom compared to ICR mice (control group). The protein levels of IFN-γ, CXCL9, 10, 11 increased in submandibular gland (SG) tissue accompanied by obvious lymphocytic infiltration and Th17 cells overwhelmingly infiltrated relative to Treg cells at the sicca symptom occurs, and we found that the proportion of Th17 cells was increased, whereas that of Treg cells was decreased in spleen. In vitro, we used IFN-γ to stimulate human salivary gland epithelial cells (HSGECs) co-cultured with Jurkat cells, and the results showed that CXCL9, 10, 11 was increased by IFN-γ activating JAK2/STAT1 signal pathway and Jurkat cell migration increased with the raised of cell membrane GRK2 expression. HSGECs with tofacitinib or Jurkat cells with GRK2 siRNA can reduce the migration of Jurkat cells. The results indicate that CXCL9, 10, 11 significantly increased in SG tissue through IFN-γ stimulating HSGECs, and the CXCL9, 10, 11/CXCR3 axis contributes to the progress of pSS by activating GRK2 to promote T lymphocyte migration.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Brito-Zerón, P., C. Baldini, H. Bootsma, S.J. Bowman, R. Jonsson, X. Mariette, K. Sivils, E. Theander, A. Tzioufas, and M. Ramos-Casals. 2016. Sjögren syndrome. Nature Reviews Disease Primers Brito-Zerón, P., C. Baldini, H. Bootsma, S.J. Bowman, R. Jonsson, X. Mariette, K. Sivils, E. Theander, A. Tzioufas, and M. Ramos-Casals. 2016. Sjögren syndrome. Nature Reviews Disease Primers
2.
Zurück zum Zitat Stefanski, A.L., C. Tomiak, U. Pleyer, T. Dietrich, G.R. Burmester, and T. Dorner. 2017. The Diagnosis and Treatment of Sjogren’s Syndrome. Deutsches Ärzteblatt International 114: 354–361.PubMedPubMedCentral Stefanski, A.L., C. Tomiak, U. Pleyer, T. Dietrich, G.R. Burmester, and T. Dorner. 2017. The Diagnosis and Treatment of Sjogren’s Syndrome. Deutsches Ärzteblatt International 114: 354–361.PubMedPubMedCentral
3.
Zurück zum Zitat Both, T., V.A.S.H. Dalm, P.M. van Hagen, and P.L.A. van Daele. 2017. Reviewing primary Sjögren’s syndrome: Beyond the dryness - From pathophysiology to diagnosis and treatment. International Journal of Medical Sciences 14: 191–200.CrossRefPubMedPubMedCentral Both, T., V.A.S.H. Dalm, P.M. van Hagen, and P.L.A. van Daele. 2017. Reviewing primary Sjögren’s syndrome: Beyond the dryness - From pathophysiology to diagnosis and treatment. International Journal of Medical Sciences 14: 191–200.CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Yao, Y., J. Ma, C. Chang, T. Xu, C. Gao, M.E. Gershwin, and Z. Lian. 2021. Immunobiology of T Cells in Sjögren’s Syndrome. Clinical Reviews in Allergy & Immunology 60: 111–131.CrossRef Yao, Y., J. Ma, C. Chang, T. Xu, C. Gao, M.E. Gershwin, and Z. Lian. 2021. Immunobiology of T Cells in Sjögren’s Syndrome. Clinical Reviews in Allergy & Immunology 60: 111–131.CrossRef
5.
Zurück zum Zitat Verstappen, G.M., S. Pringle, H. Bootsma, and F. Kroese. 2021. Epithelial-immune cell interplay in primary Sjogren syndrome salivary gland pathogenesis. Nature Reviews Rheumatology 17: 333–348.CrossRefPubMedPubMedCentral Verstappen, G.M., S. Pringle, H. Bootsma, and F. Kroese. 2021. Epithelial-immune cell interplay in primary Sjogren syndrome salivary gland pathogenesis. Nature Reviews Rheumatology 17: 333–348.CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Ogawa, Y., E. Shimizu, and K. Tsubota. 2018. Interferons and Dry Eye in Sjögren’s Syndrome. International Journal of Molecular Sciences 19: 3548.CrossRefPubMedPubMedCentral Ogawa, Y., E. Shimizu, and K. Tsubota. 2018. Interferons and Dry Eye in Sjögren’s Syndrome. International Journal of Molecular Sciences 19: 3548.CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Van Raemdonck, K., P.E. Van den Steen, S. Liekens, J. Van Damme, and S. Struyf. 2015. CXCR3 ligands in disease and therapy. Cytokine & Growth Factor Reviews 26: 311–327.CrossRef Van Raemdonck, K., P.E. Van den Steen, S. Liekens, J. Van Damme, and S. Struyf. 2015. CXCR3 ligands in disease and therapy. Cytokine & Growth Factor Reviews 26: 311–327.CrossRef
9.
Zurück zum Zitat Yoon, K.C., C.S. Park, I.C. You, H.J. Choi, K.H. Lee, S.K. Im, H.Y. Park, and S.C. Pflugfelder. 2010. Expression of CXCL9, -10, -11, and CXCR3 in the tear film and ocular surface of patients with dry eye syndrome. Investigative Ophthalmology & Visual Science 51: 643–650.CrossRef Yoon, K.C., C.S. Park, I.C. You, H.J. Choi, K.H. Lee, S.K. Im, H.Y. Park, and S.C. Pflugfelder. 2010. Expression of CXCL9, -10, -11, and CXCR3 in the tear film and ocular surface of patients with dry eye syndrome. Investigative Ophthalmology & Visual Science 51: 643–650.CrossRef
10.
Zurück zum Zitat James, J.A., J.M. Guthridge, H. Chen, R. Lu, R.L. Bourn, K. Bean, M.E. Munroe, M. Smith, E. Chakravarty, A.N. Baer, G. Noaiseh, A. Parke, K. Boyle, L. Keyes-Elstein, A. Coca, T. Utset, M.C. Genovese, V. Pascual, P.J. Utz, V.M. Holers, K.D. Deane, K.L. Sivils, T. Aberle, D.J. Wallace, J. McNamara, N. Franchimont, and St. Clair, E.W. 2020. Unique Sjögren’s syndrome patient subsets defined by molecular features. Rheumatology 59: 860–868.CrossRefPubMed James, J.A., J.M. Guthridge, H. Chen, R. Lu, R.L. Bourn, K. Bean, M.E. Munroe, M. Smith, E. Chakravarty, A.N. Baer, G. Noaiseh, A. Parke, K. Boyle, L. Keyes-Elstein, A. Coca, T. Utset, M.C. Genovese, V. Pascual, P.J. Utz, V.M. Holers, K.D. Deane, K.L. Sivils, T. Aberle, D.J. Wallace, J. McNamara, N. Franchimont, and St. Clair, E.W. 2020. Unique Sjögren’s syndrome patient subsets defined by molecular features. Rheumatology 59: 860–868.CrossRefPubMed
11.
Zurück zum Zitat Antonelli, A., S.M. Ferrari, D. Giuggioli, E. Ferrannini, C. Ferri, and P. Fallahi. 2014. Chemokine (C–X–C motif) ligand (CXCL)10 in autoimmune diseases. Autoimmunity Reviews 13: 272–280.CrossRefPubMed Antonelli, A., S.M. Ferrari, D. Giuggioli, E. Ferrannini, C. Ferri, and P. Fallahi. 2014. Chemokine (C–X–C motif) ligand (CXCL)10 in autoimmune diseases. Autoimmunity Reviews 13: 272–280.CrossRefPubMed
12.
Zurück zum Zitat Panzer, U., G. Zahner, U. Wienberg, O.M. Steinmetz, A. Peters, J.E. Turner, H.J. Paust, G. Wolf, R.A.K. Stahl, and A. Schneider. 2008. 15-Deoxy- 12,14-prostaglandin J2 inhibits INF- -induced JAK/STAT1 signalling pathway activation and IP-10/CXCL10 expression in mesangial cells. Nephrology Dialysis Transplantation 23: 3776–3785.CrossRef Panzer, U., G. Zahner, U. Wienberg, O.M. Steinmetz, A. Peters, J.E. Turner, H.J. Paust, G. Wolf, R.A.K. Stahl, and A. Schneider. 2008. 15-Deoxy- 12,14-prostaglandin J2 inhibits INF- -induced JAK/STAT1 signalling pathway activation and IP-10/CXCL10 expression in mesangial cells. Nephrology Dialysis Transplantation 23: 3776–3785.CrossRef
13.
Zurück zum Zitat Barrera, M., S. Aguilera, I. Castro, S. Matus, P. Carvajal, C. Molina, S. González, D. Jara, M. Hermoso, and M. González. 2021. Tofacitinib counteracts IL-6 overexpression induced by deficient autophagy: Implications in Sjögren’s syndrome. Rheumatology 60: 1951–1962.CrossRefPubMed Barrera, M., S. Aguilera, I. Castro, S. Matus, P. Carvajal, C. Molina, S. González, D. Jara, M. Hermoso, and M. González. 2021. Tofacitinib counteracts IL-6 overexpression induced by deficient autophagy: Implications in Sjögren’s syndrome. Rheumatology 60: 1951–1962.CrossRefPubMed
14.
Zurück zum Zitat Eiger, D.S., N. Boldizsar, C.C. Honeycutt, J. Gardner, S. Kirchner, C. Hicks, I. Choi, U. Pham, K. Zheng, A. Warman, J.S. Smith, J.Y. Zhang, and S. Rajagopal. 2022. Location bias contributes to functionally selective responses of biased CXCR3 agonists. Nature Communications 13. Eiger, D.S., N. Boldizsar, C.C. Honeycutt, J. Gardner, S. Kirchner, C. Hicks, I. Choi, U. Pham, K. Zheng, A. Warman, J.S. Smith, J.Y. Zhang, and S. Rajagopal. 2022. Location bias contributes to functionally selective responses of biased CXCR3 agonists. Nature Communications 13.
15.
Zurück zum Zitat Satarkar, D., and Patra, C. 2022. Evolution, Expression and Functional Analysis of CXCR3 in Neuronal and Cardiovascular Diseases: A Narrative Review. Frontiers in Cell and Developmental Biology 10. Satarkar, D., and Patra, C. 2022. Evolution, Expression and Functional Analysis of CXCR3 in Neuronal and Cardiovascular Diseases: A Narrative Review. Frontiers in Cell and Developmental Biology 10.
16.
Zurück zum Zitat Zhou, J., and Q. Yu. 2018. Disruption of CXCR3 function impedes the development of Sjögren’s syndrome-like xerostomia in non-obese diabetic mice. Laboratory Investigation 98: 620–628.CrossRefPubMed Zhou, J., and Q. Yu. 2018. Disruption of CXCR3 function impedes the development of Sjögren’s syndrome-like xerostomia in non-obese diabetic mice. Laboratory Investigation 98: 620–628.CrossRefPubMed
17.
Zurück zum Zitat Allred, M., M.S. Chimenti, A.E. Ciecko, Y. Chen, and S.M. Lieberman. 2021. Characterization of Type I Interferon-Associated Chemokines and Cytokines in Lacrimal Glands of Nonobese Diabetic Mice. International Journal of Molecular Sciences 22: 3767.CrossRefPubMedPubMedCentral Allred, M., M.S. Chimenti, A.E. Ciecko, Y. Chen, and S.M. Lieberman. 2021. Characterization of Type I Interferon-Associated Chemokines and Cytokines in Lacrimal Glands of Nonobese Diabetic Mice. International Journal of Molecular Sciences 22: 3767.CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Tokunaga, R., W. Zhang, M. Naseem, A. Puccini, M.D. Berger, S. Soni, M. McSkane, H. Baba, and H. Lenz. 2018. CXCL9, CXCL10, CXCL11/CXCR3 axis for immune activation – A target for novel cancer therapy. Cancer Treatment Reviews 63: 40–47.CrossRefPubMed Tokunaga, R., W. Zhang, M. Naseem, A. Puccini, M.D. Berger, S. Soni, M. McSkane, H. Baba, and H. Lenz. 2018. CXCL9, CXCL10, CXCL11/CXCR3 axis for immune activation – A target for novel cancer therapy. Cancer Treatment Reviews 63: 40–47.CrossRefPubMed
19.
Zurück zum Zitat Palmer, C.B., G. D’Uonnolo, R. Luís, M. Meyrath, T. Uchański, A. Chevigné, and M. Szpakowska. 2022. Nanoluciferase-based complementation assay for systematic profiling of GPCR-GRK interactions. Methods in Cell Biology 169: 309–321.CrossRefPubMed Palmer, C.B., G. D’Uonnolo, R. Luís, M. Meyrath, T. Uchański, A. Chevigné, and M. Szpakowska. 2022. Nanoluciferase-based complementation assay for systematic profiling of GPCR-GRK interactions. Methods in Cell Biology 169: 309–321.CrossRefPubMed
20.
Zurück zum Zitat Smith, J.S., P. Alagesan, N.K. Desai, T.F. Pack, J. Wu, A. Inoue, N.J. Freedman, and S. Rajagopal. 2017. C-X-C Motif Chemokine Receptor 3 Splice Variants Differentially Activate Beta-Arrestins to Regulate Downstream Signaling Pathways. Molecular Pharmacology 92: 136–150.CrossRefPubMedPubMedCentral Smith, J.S., P. Alagesan, N.K. Desai, T.F. Pack, J. Wu, A. Inoue, N.J. Freedman, and S. Rajagopal. 2017. C-X-C Motif Chemokine Receptor 3 Splice Variants Differentially Activate Beta-Arrestins to Regulate Downstream Signaling Pathways. Molecular Pharmacology 92: 136–150.CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Scuron, M.D., B. Fay, J. Oliver, and P. Smith. 2019. Spontaneous Model of Sjögren’s Syndrome in NOD Mice. Current Protocols in Pharmacology 86. Scuron, M.D., B. Fay, J. Oliver, and P. Smith. 2019. Spontaneous Model of Sjögren’s Syndrome in NOD Mice. Current Protocols in Pharmacology 86.
22.
Zurück zum Zitat Bautista-Vargas, M., A.J. Vivas, and G.J. Tobón. 2020. Minor salivary gland biopsy: Its role in the classification and prognosis of Sjögren’s syndrome. Autoimmunity Reviews 19: 102690.CrossRefPubMed Bautista-Vargas, M., A.J. Vivas, and G.J. Tobón. 2020. Minor salivary gland biopsy: Its role in the classification and prognosis of Sjögren’s syndrome. Autoimmunity Reviews 19: 102690.CrossRefPubMed
23.
Zurück zum Zitat Nocturne, G., and X. Mariette. 2013. Advances in understanding the pathogenesis of primary Sjogren’s syndrome. Nature Reviews Rheumatology 9: 544–556.CrossRefPubMed Nocturne, G., and X. Mariette. 2013. Advances in understanding the pathogenesis of primary Sjogren’s syndrome. Nature Reviews Rheumatology 9: 544–556.CrossRefPubMed
24.
Zurück zum Zitat Sarkar, I., R. Davies, A.K. Aarebrot, S.M. Solberg, A. Petrovic, A.M. Joshi, B. Bergum, J.G. Brun, D. Hammenfors, R. Jonsson, and S. Appel. 2022. Aberrant signaling of immune cells in Sjögren’s syndrome patient subgroups upon interferon stimulation. Frontiers in Immunology 13. Sarkar, I., R. Davies, A.K. Aarebrot, S.M. Solberg, A. Petrovic, A.M. Joshi, B. Bergum, J.G. Brun, D. Hammenfors, R. Jonsson, and S. Appel. 2022. Aberrant signaling of immune cells in Sjögren’s syndrome patient subgroups upon interferon stimulation. Frontiers in Immunology 13.
25.
Zurück zum Zitat Grange, L., E. Chalayer, D. Boutboul, S. Paul, L. Galicier, B. Gramont, and M. Killian. 2022. TAFRO syndrome: A severe manifestation of Sjogren’s syndrome? A systematic review. Autoimmun Rev 21: 103137.CrossRefPubMed Grange, L., E. Chalayer, D. Boutboul, S. Paul, L. Galicier, B. Gramont, and M. Killian. 2022. TAFRO syndrome: A severe manifestation of Sjogren’s syndrome? A systematic review. Autoimmun Rev 21: 103137.CrossRefPubMed
26.
Zurück zum Zitat Bombardieri, M., O.D. Argyropoulou, F. Ferro, R. Coleby, E. Pontarini, G. Governato, D. Lucchesi, G. Fulvio, A.G. Tzioufas, and C. Baldini. 2020. One year in review 2020: Pathogenesis of primary Sjogren’s syndrome. Clinical and Experimental Rheumatology 38 (Suppl 126): 3–9.PubMed Bombardieri, M., O.D. Argyropoulou, F. Ferro, R. Coleby, E. Pontarini, G. Governato, D. Lucchesi, G. Fulvio, A.G. Tzioufas, and C. Baldini. 2020. One year in review 2020: Pathogenesis of primary Sjogren’s syndrome. Clinical and Experimental Rheumatology 38 (Suppl 126): 3–9.PubMed
27.
Zurück zum Zitat Negrini, S., G. Emmi, M. Greco, M. Borro, F. Sardanelli, G. Murdaca, F. Indiveri, and F. Puppo. 2022. Sjögren’s syndrome: A systemic autoimmune disease. Clinical and Experimental Medicine 22: 9–25.CrossRefPubMed Negrini, S., G. Emmi, M. Greco, M. Borro, F. Sardanelli, G. Murdaca, F. Indiveri, and F. Puppo. 2022. Sjögren’s syndrome: A systemic autoimmune disease. Clinical and Experimental Medicine 22: 9–25.CrossRefPubMed
28.
Zurück zum Zitat Nezos, A., F. Gravani, A. Tassidou, E.K. Kapsogeorgou, M. Voulgarelis, M. Koutsilieris, M.K. Crow, and C.P. Mavragani. 2015. Type I and II interferon signatures in Sjogren’s syndrome pathogenesis: Contributions in distinct clinical phenotypes and Sjogren’s related lymphomagenesis. Journal of Autoimmunity 63: 47–58.CrossRefPubMedPubMedCentral Nezos, A., F. Gravani, A. Tassidou, E.K. Kapsogeorgou, M. Voulgarelis, M. Koutsilieris, M.K. Crow, and C.P. Mavragani. 2015. Type I and II interferon signatures in Sjogren’s syndrome pathogenesis: Contributions in distinct clinical phenotypes and Sjogren’s related lymphomagenesis. Journal of Autoimmunity 63: 47–58.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Hall, J.C., A.N. Baer, A.A. Shah, L.A. Criswell, C.H. Shiboski, A. Rosen, and L. Casciola-Rosen. 2015. Molecular Subsetting of Interferon Pathways in Sjögren’s Syndrome. Arthritis & Rheumatology 67: 2437–2446.CrossRef Hall, J.C., A.N. Baer, A.A. Shah, L.A. Criswell, C.H. Shiboski, A. Rosen, and L. Casciola-Rosen. 2015. Molecular Subsetting of Interferon Pathways in Sjögren’s Syndrome. Arthritis & Rheumatology 67: 2437–2446.CrossRef
30.
Zurück zum Zitat Hall, J.C., L. Casciola-Rosen, A.E. Berger, E.K. Kapsogeorgou, C. Cheadle, A.G. Tzioufas, A.N. Baer, and A. Rosen. 2012. Precise probes of type II interferon activity define the origin of interferon signatures in target tissues in rheumatic diseases. Proceedings of the National Academy of Sciences 109: 17609–17614.CrossRef Hall, J.C., L. Casciola-Rosen, A.E. Berger, E.K. Kapsogeorgou, C. Cheadle, A.G. Tzioufas, A.N. Baer, and A. Rosen. 2012. Precise probes of type II interferon activity define the origin of interferon signatures in target tissues in rheumatic diseases. Proceedings of the National Academy of Sciences 109: 17609–17614.CrossRef
31.
Zurück zum Zitat Voynova, E., F. Lefebvre, A. Qadri, and S. Muller. 2020. Correction of autophagy impairment inhibits pathology in the NOD.H-2h4 mouse model of primary Sjögren’s syndrome. Journal of Autoimmunity 108, 102418. Voynova, E., F. Lefebvre, A. Qadri, and S. Muller. 2020. Correction of autophagy impairment inhibits pathology in the NOD.H-2h4 mouse model of primary Sjögren’s syndrome. Journal of Autoimmunity 108, 102418.
32.
Zurück zum Zitat Yu, S., L. Sun, Y. Jiao, and L.T.O. Lee. 2018. The Role of G Protein-coupled Receptor Kinases in Cancer. International Journal of Biological Sciences 14: 189–203.CrossRefPubMedPubMedCentral Yu, S., L. Sun, Y. Jiao, and L.T.O. Lee. 2018. The Role of G Protein-coupled Receptor Kinases in Cancer. International Journal of Biological Sciences 14: 189–203.CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Jiménez-Sainz, M.C., C. Murga, A. Kavelaars, M. Jurado-Pueyo, B.F. Krakstad, C.J. Heijnen, F.J. Mayor, and A.M. Aragay. 2006. G protein-coupled receptor kinase 2 negatively regulates chemokine signaling at a level downstream from G protein subunits. Molecular Biology of the Cell 17: 25–31.CrossRefPubMedPubMedCentral Jiménez-Sainz, M.C., C. Murga, A. Kavelaars, M. Jurado-Pueyo, B.F. Krakstad, C.J. Heijnen, F.J. Mayor, and A.M. Aragay. 2006. G protein-coupled receptor kinase 2 negatively regulates chemokine signaling at a level downstream from G protein subunits. Molecular Biology of the Cell 17: 25–31.CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Liampas, A., K. Parperis, M.F. Erotocritou, A. Nteveros, M. Papadopoulou, C. Moschovos, M. Akil, S. Coaccioli, G.M. Hadjigeorgiou, M. Hadjivassiliou, and P. Zis. 2022. Primary Sjögren syndrome‐related peripheral neuropathy: A systematic review and meta‐analysis. European Journal of Neurology. Liampas, A., K. Parperis, M.F. Erotocritou, A. Nteveros, M. Papadopoulou, C. Moschovos, M. Akil, S. Coaccioli, G.M. Hadjigeorgiou, M. Hadjivassiliou, and P. Zis. 2022. Primary Sjögren syndrome‐related peripheral neuropathy: A systematic review and meta‐analysis. European Journal of Neurology.
35.
Zurück zum Zitat Zhao, J., Q. An, X. Zhu, B. Yang, X. Gao, Y. Niu, L. Zhang, K. Xu, and D. Ma. 2022. Research status and future prospects of extracellular vesicles in primary Sjögren’s syndrome. Stem Cell Research and Therapy 13. Zhao, J., Q. An, X. Zhu, B. Yang, X. Gao, Y. Niu, L. Zhang, K. Xu, and D. Ma. 2022. Research status and future prospects of extracellular vesicles in primary Sjögren’s syndrome. Stem Cell Research and Therapy 13.
Metadaten
Titel
CXCL9, 10, 11/CXCR3 Axis Contributes to the Progress of Primary Sjogren’s Syndrome by Activating GRK2 to Promote T Lymphocyte Migration
verfasst von
Jing Zhang
Xiao Zhang
Xingjie Shi
Yuqi Liu
Danqian Cheng
Qianwen Tian
Ning Lin
Wei Wei
Huaxun Wu
Publikationsdatum
18.02.2023
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 3/2023
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-023-01791-9

Weitere Artikel der Ausgabe 3/2023

Inflammation 3/2023 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

Nach Herzinfarkt mit Typ-1-Diabetes schlechtere Karten als mit Typ 2?

29.05.2024 Herzinfarkt Nachrichten

Bei Menschen mit Typ-2-Diabetes sind die Chancen, einen Myokardinfarkt zu überleben, in den letzten 15 Jahren deutlich gestiegen – nicht jedoch bei Betroffenen mit Typ 1.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.