Skip to main content
Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging 5/2024

11.12.2023 | Original Article

Dynamic total-body PET/CT imaging with reduced acquisition time shows acceptable performance in quantification of [18F]FDG tumor kinetic metrics

verfasst von: Guobing Liu, Yimeng Shi, Xiaoguang Hou, Haojun Yu, Yan Hu, Yiqiu Zhang, Hongcheng Shi

Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging | Ausgabe 5/2024

Einloggen, um Zugang zu erhalten

Abstract

Purpose

To investigate the feasibility of reducing the acquisition time for continuous dynamic positron emission tomography (PET) while retaining acceptable performance in quantifying kinetic metrics of 2-[18F]-fluoro-2-deoxy-D-glucose ([18F]FDG) in tumors.

Methods

In total, 78 oncological patients underwent total-body dynamic PET imaging for ≥ 60 min, with 8, 20, and 50 patients receiving full activity (3.7 MBq/kg), half activity (1.85 MBq/kg), and ultra-low activity (0.37 MBq/kg) of [18F]FDG, respectively. The dynamic data were divided into 21-, 30-, 45- and ≥ 60-min groups. The kinetic analysis involved model fitting to derive constant rates (VB, K1 to k3, and Ki) for both tumors and normal tissues, using both reversible and irreversible two-tissue-compartment models. One-way ANOVA with repeated measures or the Freidman test compared the kinetic metrics among groups, while the Deming regression assessed the correlation of kinetic metrics among groups.

Results

All kinetic metrics in the 30-min and 45-min groups were statistically comparable to those in the ≥ 60-min group. The relative differences between the 30-min and ≥ 60-min groups ranged from 12.3% ± 15.1% for K1 to 29.8% ± 30.0% for VB, and those between the 45-min and ≥ 60-min groups ranged from 7.5% ± 8.7% for Ki to 24.0% ± 24.3% for VB. However, this comparability was not observed between the 21-min and ≥ 60-min groups. The significance trend of these comparisons remained consistent across different models (reversible or irreversible), administrated activity levels, and partial volume corrections for lesions. Significant correlations in tumor kinetic metrics were identified between the 30-/45-min and ≥ 60-min groups, with Deming regression slopes > 0.813. In addition, the comparability of kinetic metrics between the 30-min and ≥ 60-min groups were established for normal tissues.

Conclusion

The acquisition time for dynamic PET imaging can be reduced to 30 min without compromising the ability to reveal tumor kinetic metrics of [18F]FDG, using the total-body PET/CT system.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Strauss LG, Klippel S, Pan L, Schonleben K, Haberkorn U, Dimitrakopoulou-Strauss A. Assessment of quantitative FDG PET data in primary colorectal tumours: which parameters are important with respect to tumour detection? Eur J Nucl Med Mol Imaging. 2007;34(6):868–77.CrossRefPubMed Strauss LG, Klippel S, Pan L, Schonleben K, Haberkorn U, Dimitrakopoulou-Strauss A. Assessment of quantitative FDG PET data in primary colorectal tumours: which parameters are important with respect to tumour detection? Eur J Nucl Med Mol Imaging. 2007;34(6):868–77.CrossRefPubMed
2.
Zurück zum Zitat Dimitrakopoulou-Strauss A, Strauss LG, Heichel T, Wu H, Burger C, Bernd L, et al. The role of quantitative 18F-FDG PET studies for the differentiation of malignant and benign bone lesions. J Nucl Med. 2002;43(4):510–8.PubMed Dimitrakopoulou-Strauss A, Strauss LG, Heichel T, Wu H, Burger C, Bernd L, et al. The role of quantitative 18F-FDG PET studies for the differentiation of malignant and benign bone lesions. J Nucl Med. 2002;43(4):510–8.PubMed
3.
Zurück zum Zitat Strauss LG, Dimitrakopoulou-Strauss A, Koczan D, Bernd L, Haberkorn U, Ewerbeck V, et al. 18F-FDG kinetics and gene expression in giant cell tumors. J Nucl Med. 2004;45(9):1528–35.PubMed Strauss LG, Dimitrakopoulou-Strauss A, Koczan D, Bernd L, Haberkorn U, Ewerbeck V, et al. 18F-FDG kinetics and gene expression in giant cell tumors. J Nucl Med. 2004;45(9):1528–35.PubMed
4.
Zurück zum Zitat Cochet A, Pigeonnat S, Khoury B, Vrigneaud JM, Touzery C, Berriolo-Riedinger A, et al. Evaluation of breast Tumor blood flow with dynamic first-pass 18F-FDG PET/CT: comparison with angiogenesis markers and prognostic factors. J Nucl Med. 2012;53(4):512–20.CrossRefPubMed Cochet A, Pigeonnat S, Khoury B, Vrigneaud JM, Touzery C, Berriolo-Riedinger A, et al. Evaluation of breast Tumor blood flow with dynamic first-pass 18F-FDG PET/CT: comparison with angiogenesis markers and prognostic factors. J Nucl Med. 2012;53(4):512–20.CrossRefPubMed
5.
Zurück zum Zitat Dimitrakopoulou-Strauss A, Strauss LG, Schwarzbach M, Burger C, Heichel T, Willeke F, et al. Dynamic PET 18F-FDG studies in patients with primary and recurrent soft-tissue sarcomas: impact on diagnosis and correlation with grading. J Nucl Med. 2001;42(5):713–20.PubMed Dimitrakopoulou-Strauss A, Strauss LG, Schwarzbach M, Burger C, Heichel T, Willeke F, et al. Dynamic PET 18F-FDG studies in patients with primary and recurrent soft-tissue sarcomas: impact on diagnosis and correlation with grading. J Nucl Med. 2001;42(5):713–20.PubMed
6.
Zurück zum Zitat Rusten E, Rodal J, Revheim ME, Skretting A, Bruland OS, Malinen E. Quantitative dynamic 18FDG-PET and tracer kinetic analysis of soft tissue sarcomas. Acta Oncol. 2013;52(6):1160–7.CrossRefPubMed Rusten E, Rodal J, Revheim ME, Skretting A, Bruland OS, Malinen E. Quantitative dynamic 18FDG-PET and tracer kinetic analysis of soft tissue sarcomas. Acta Oncol. 2013;52(6):1160–7.CrossRefPubMed
7.
Zurück zum Zitat Dunnwald LK, Doot RK, Specht JM, Gralow JR, Ellis GK, Livingston RB, et al. PET Tumor metabolism in locally advanced Breast cancer patients undergoing neoadjuvant chemotherapy: value of static versus kinetic measures of fluorodeoxyglucose uptake. Clin Cancer Res. 2011;17(8):2400–9.CrossRefPubMedPubMedCentral Dunnwald LK, Doot RK, Specht JM, Gralow JR, Ellis GK, Livingston RB, et al. PET Tumor metabolism in locally advanced Breast cancer patients undergoing neoadjuvant chemotherapy: value of static versus kinetic measures of fluorodeoxyglucose uptake. Clin Cancer Res. 2011;17(8):2400–9.CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Dimitrakopoulou-Strauss A, Strauss LG, Egerer G, Vasamiliette J, Mechtersheimer G, Schmitt T, et al. Impact of dynamic 18F-FDG PET on the early prediction of therapy outcome in patients with high-risk soft-tissue sarcomas after neoadjuvant chemotherapy: a feasibility study. J Nucl Med. 2010;51(4):551–8.CrossRefPubMed Dimitrakopoulou-Strauss A, Strauss LG, Egerer G, Vasamiliette J, Mechtersheimer G, Schmitt T, et al. Impact of dynamic 18F-FDG PET on the early prediction of therapy outcome in patients with high-risk soft-tissue sarcomas after neoadjuvant chemotherapy: a feasibility study. J Nucl Med. 2010;51(4):551–8.CrossRefPubMed
9.
Zurück zum Zitat Humbert O, Lasserre M, Bertaut A, Fumoleau P, Coutant C, Brunotte F, et al. Breast Cancer Blood Flow and Metabolism on Dual-Acquisition 18F-FDG PET: correlation with Tumor phenotype and neoadjuvant chemotherapy response. J Nucl Med. 2018;59(7):1035–41.CrossRefPubMed Humbert O, Lasserre M, Bertaut A, Fumoleau P, Coutant C, Brunotte F, et al. Breast Cancer Blood Flow and Metabolism on Dual-Acquisition 18F-FDG PET: correlation with Tumor phenotype and neoadjuvant chemotherapy response. J Nucl Med. 2018;59(7):1035–41.CrossRefPubMed
10.
Zurück zum Zitat Dimitrakopoulou-Strauss A, Strauss LG, Burger C, Ruhl A, Irngartinger G, Stremmel W, et al. Prognostic aspects of 18F-FDG PET kinetics in patients with metastatic colorectal carcinoma receiving FOLFOX chemotherapy. J Nucl Med. 2004;45(9):1480–7.PubMed Dimitrakopoulou-Strauss A, Strauss LG, Burger C, Ruhl A, Irngartinger G, Stremmel W, et al. Prognostic aspects of 18F-FDG PET kinetics in patients with metastatic colorectal carcinoma receiving FOLFOX chemotherapy. J Nucl Med. 2004;45(9):1480–7.PubMed
11.
Zurück zum Zitat Ilan E, Sandstrom M, Velikyan I, Sundin A, Eriksson B, Lubberink M. Parametric Net Influx Rate images of 68Ga-DOTATOC and 68Ga-DOTATATE: quantitative accuracy and improved image contrast. J Nucl Med. 2017;58(5):744–9.CrossRefPubMed Ilan E, Sandstrom M, Velikyan I, Sundin A, Eriksson B, Lubberink M. Parametric Net Influx Rate images of 68Ga-DOTATOC and 68Ga-DOTATATE: quantitative accuracy and improved image contrast. J Nucl Med. 2017;58(5):744–9.CrossRefPubMed
12.
Zurück zum Zitat Pantel AR, Viswanath V, Muzi M, Doot RK, Mankoff DA. Principles of Tracer Kinetic Analysis in Oncology, Part I: principles and overview of Methodology. J Nucl Med. 2022;63(3):342–52.CrossRefPubMedPubMedCentral Pantel AR, Viswanath V, Muzi M, Doot RK, Mankoff DA. Principles of Tracer Kinetic Analysis in Oncology, Part I: principles and overview of Methodology. J Nucl Med. 2022;63(3):342–52.CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Fujimura Y, Kimura Y, Simeon FG, Dickstein LP, Pike VW, Innis RB, et al. Biodistribution and Radiation Dosimetry in humans of a new PET Ligand, 18F-PBR06, to Image Translocator protein (18 kDa). J Nucl Med. 2010;51(1):145–9.CrossRefPubMed Fujimura Y, Kimura Y, Simeon FG, Dickstein LP, Pike VW, Innis RB, et al. Biodistribution and Radiation Dosimetry in humans of a new PET Ligand, 18F-PBR06, to Image Translocator protein (18 kDa). J Nucl Med. 2010;51(1):145–9.CrossRefPubMed
14.
Zurück zum Zitat Mizrahi R, Rusjan PM, Vitcu I, Ng A, Wilson AA, Houle S, et al. Whole body biodistribution and radiation dosimetry in humans of a new PET ligand, [18F]-FEPPA, to image translocator protein (18 kDa). Mol Imaging Biol. 2013;15(3):353–9.CrossRefPubMed Mizrahi R, Rusjan PM, Vitcu I, Ng A, Wilson AA, Houle S, et al. Whole body biodistribution and radiation dosimetry in humans of a new PET ligand, [18F]-FEPPA, to image translocator protein (18 kDa). Mol Imaging Biol. 2013;15(3):353–9.CrossRefPubMed
15.
Zurück zum Zitat Zhu W, Li Q, Bai B, Conti PS, Leahy RM. Patlak image estimation from dual time-point list-mode PET data. IEEE Trans Med Imaging. 2014;33(4):913–24.CrossRefPubMedPubMedCentral Zhu W, Li Q, Bai B, Conti PS, Leahy RM. Patlak image estimation from dual time-point list-mode PET data. IEEE Trans Med Imaging. 2014;33(4):913–24.CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Karakatsanis NA, Casey ME, Lodge MA, Rahmim A, Zaidi H. Whole-body direct 4D parametric PET imaging employing nested generalized Patlak expectation-maximization reconstruction. Phys Med Biol. 2016;61(15):5456–85.CrossRefPubMedPubMedCentral Karakatsanis NA, Casey ME, Lodge MA, Rahmim A, Zaidi H. Whole-body direct 4D parametric PET imaging employing nested generalized Patlak expectation-maximization reconstruction. Phys Med Biol. 2016;61(15):5456–85.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Strauss LG, Pan L, Cheng C, Haberkorn U, Dimitrakopoulou-Strauss A. Shortened acquisition protocols for the quantitative assessment of the 2-tissue-compartment model using dynamic PET/CT 18F-FDG studies. J Nucl Med. 2011;52(3):379–85.CrossRefPubMed Strauss LG, Pan L, Cheng C, Haberkorn U, Dimitrakopoulou-Strauss A. Shortened acquisition protocols for the quantitative assessment of the 2-tissue-compartment model using dynamic PET/CT 18F-FDG studies. J Nucl Med. 2011;52(3):379–85.CrossRefPubMed
18.
Zurück zum Zitat Wu Y, Feng T, Zhao Y, Xu T, Fu F, Huang Z, et al. Whole-body Parametric Imaging of 18F-FDG PET using uEXPLORER with reduced scanning time. J Nucl Med. 2022;63(4):622–8.CrossRefPubMedPubMedCentral Wu Y, Feng T, Zhao Y, Xu T, Fu F, Huang Z, et al. Whole-body Parametric Imaging of 18F-FDG PET using uEXPLORER with reduced scanning time. J Nucl Med. 2022;63(4):622–8.CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Badawi RD, Shi H, Hu P, Chen S, Xu T, Price PM, et al. First Human Imaging Studies with the EXPLORER Total-Body PET scanner. J Nucl Med. 2019;60(3):299–303.CrossRefPubMedPubMedCentral Badawi RD, Shi H, Hu P, Chen S, Xu T, Price PM, et al. First Human Imaging Studies with the EXPLORER Total-Body PET scanner. J Nucl Med. 2019;60(3):299–303.CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Alberts I, Hunermund JN, Prenosil G, Mingels C, Bohn KP, Viscione M, et al. Clinical performance of long axial field of view PET/CT: a head-to-head intra-individual comparison of the Biograph Vision quadra with the Biograph Vision PET/CT. Eur J Nucl Med Mol Imaging. 2021;48(8):2395–404.CrossRefPubMedPubMedCentral Alberts I, Hunermund JN, Prenosil G, Mingels C, Bohn KP, Viscione M, et al. Clinical performance of long axial field of view PET/CT: a head-to-head intra-individual comparison of the Biograph Vision quadra with the Biograph Vision PET/CT. Eur J Nucl Med Mol Imaging. 2021;48(8):2395–404.CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Liu G, Yu H, Shi D, Hu P, Hu Y, Tan H, et al. Short-time total-body dynamic PET imaging performance in quantifying the kinetic metrics of 18F-FDG in healthy volunteers. Eur J Nucl Med Mol Imaging. 2022;49(8):2493–503.CrossRefPubMed Liu G, Yu H, Shi D, Hu P, Hu Y, Tan H, et al. Short-time total-body dynamic PET imaging performance in quantifying the kinetic metrics of 18F-FDG in healthy volunteers. Eur J Nucl Med Mol Imaging. 2022;49(8):2493–503.CrossRefPubMed
22.
Zurück zum Zitat Boellaard R, Delgado-Bolton R, Oyen WJ, Giammarile F, Tatsch K, Eschner W, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging. 2015;42(2):328–54.CrossRefPubMed Boellaard R, Delgado-Bolton R, Oyen WJ, Giammarile F, Tatsch K, Eschner W, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging. 2015;42(2):328–54.CrossRefPubMed
23.
Zurück zum Zitat Boudraa A, Zaidi H. Image segmentation techniques in nuclear medicine imaging. In: Zaidi H, editor. Quantitative analysis in Nuclear Medicine Imaging. New York: Springer; 2006. pp. 308–57.CrossRef Boudraa A, Zaidi H. Image segmentation techniques in nuclear medicine imaging. In: Zaidi H, editor. Quantitative analysis in Nuclear Medicine Imaging. New York: Springer; 2006. pp. 308–57.CrossRef
24.
Zurück zum Zitat Foster B, Bagci U, Mansoor A, Xu Z, Mollura DJ. A review on segmentation of positron emission tomography images. Comput Biol Med. 2014;50:76–96.CrossRefPubMed Foster B, Bagci U, Mansoor A, Xu Z, Mollura DJ. A review on segmentation of positron emission tomography images. Comput Biol Med. 2014;50:76–96.CrossRefPubMed
25.
Zurück zum Zitat Liu G, Xu H, Hu P, Tan H, Zhang Y, Yu H, et al. Kinetic metrics of 18F-FDG in normal human organs identified by systematic dynamic total-body positron emission tomography. Eur J Nucl Med Mol Imaging. 2021;48(8):2363–72.CrossRefPubMed Liu G, Xu H, Hu P, Tan H, Zhang Y, Yu H, et al. Kinetic metrics of 18F-FDG in normal human organs identified by systematic dynamic total-body positron emission tomography. Eur J Nucl Med Mol Imaging. 2021;48(8):2363–72.CrossRefPubMed
26.
Zurück zum Zitat Liu G, Hu P, Yu H, Tan H, Zhang Y, Yin H, et al. Ultra-low-activity total-body dynamic PET imaging allows equal performance to full-activity PET imaging for investigating kinetic metrics of 18F-FDG in healthy volunteers. Eur J Nucl Med Mol Imaging. 2021;48(8):2373–83.CrossRefPubMed Liu G, Hu P, Yu H, Tan H, Zhang Y, Yin H, et al. Ultra-low-activity total-body dynamic PET imaging allows equal performance to full-activity PET imaging for investigating kinetic metrics of 18F-FDG in healthy volunteers. Eur J Nucl Med Mol Imaging. 2021;48(8):2373–83.CrossRefPubMed
27.
Zurück zum Zitat Wahl LM, Asselin MC, Nahmias C. Regions of interest in the venous sinuses as input functions for quantitative PET. J Nucl Med. 1999;40(10):1666–75.PubMed Wahl LM, Asselin MC, Nahmias C. Regions of interest in the venous sinuses as input functions for quantitative PET. J Nucl Med. 1999;40(10):1666–75.PubMed
28.
Zurück zum Zitat Tseng J, Dunnwald LK, Schubert EK, Link JM, Minoshima S, Muzi M, et al. 18F-FDG kinetics in locally advanced Breast cancer: correlation with Tumor blood flow and changes in response to neoadjuvant chemotherapy. J Nucl Med. 2004;45(11):1829–37.PubMed Tseng J, Dunnwald LK, Schubert EK, Link JM, Minoshima S, Muzi M, et al. 18F-FDG kinetics in locally advanced Breast cancer: correlation with Tumor blood flow and changes in response to neoadjuvant chemotherapy. J Nucl Med. 2004;45(11):1829–37.PubMed
29.
Zurück zum Zitat Srinivas SM, Dhurairaj T, Basu S, Bural G, Surti S, Alavi A. A recovery coefficient method for partial volume correction of PET images. Ann Nucl Med. 2009;23(4):341–8.CrossRefPubMed Srinivas SM, Dhurairaj T, Basu S, Bural G, Surti S, Alavi A. A recovery coefficient method for partial volume correction of PET images. Ann Nucl Med. 2009;23(4):341–8.CrossRefPubMed
30.
Zurück zum Zitat Torizuka T, Nobezawa S, Momiki S, Kasamatsu N, Kanno T, Yoshikawa E, et al. Short dynamic FDG-PET imaging protocol for patients with Lung cancer. Eur J Nucl Med. 2000;27(10):1538–42.CrossRefPubMed Torizuka T, Nobezawa S, Momiki S, Kasamatsu N, Kanno T, Yoshikawa E, et al. Short dynamic FDG-PET imaging protocol for patients with Lung cancer. Eur J Nucl Med. 2000;27(10):1538–42.CrossRefPubMed
31.
Zurück zum Zitat Dimitrakopoulou-Strauss A, Strauss LG, Egerer G, Vasamiliette J, Schmitt T, Haberkorn U, et al. Prediction of chemotherapy outcome in patients with metastatic soft tissue sarcomas based on dynamic FDG PET (dPET) and a multiparameter analysis. Eur J Nucl Med Mol Imaging. 2010;37(8):1481–9.CrossRefPubMed Dimitrakopoulou-Strauss A, Strauss LG, Egerer G, Vasamiliette J, Schmitt T, Haberkorn U, et al. Prediction of chemotherapy outcome in patients with metastatic soft tissue sarcomas based on dynamic FDG PET (dPET) and a multiparameter analysis. Eur J Nucl Med Mol Imaging. 2010;37(8):1481–9.CrossRefPubMed
32.
Zurück zum Zitat Feng T, Zhao Y, Shi H, Li H, Zhang X, Wang G, et al. Total-body quantitative Parametric Imaging of Early Kinetics of 18F-FDG. J Nucl Med. 2021;62(5):738–44.CrossRefPubMedPubMedCentral Feng T, Zhao Y, Shi H, Li H, Zhang X, Wang G, et al. Total-body quantitative Parametric Imaging of Early Kinetics of 18F-FDG. J Nucl Med. 2021;62(5):738–44.CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Wang Z, Wu Y, Li X, Bai Y, Chen H, Ding J, et al. Comparison between a dual-time-window protocol and other simplified protocols for dynamic total-body 18F-FDG PET imaging. EJNMMI Phys. 2022;9(1):63.CrossRefPubMedPubMedCentral Wang Z, Wu Y, Li X, Bai Y, Chen H, Ding J, et al. Comparison between a dual-time-window protocol and other simplified protocols for dynamic total-body 18F-FDG PET imaging. EJNMMI Phys. 2022;9(1):63.CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Wu Y, Feng T, Shen Y, Fu F, Meng N, Li X, et al. Total-body parametric imaging using the Patlak model: feasibility of reduced scan time. Med Phys. 2022;49(7):4529–39.CrossRefPubMed Wu Y, Feng T, Shen Y, Fu F, Meng N, Li X, et al. Total-body parametric imaging using the Patlak model: feasibility of reduced scan time. Med Phys. 2022;49(7):4529–39.CrossRefPubMed
35.
Zurück zum Zitat Sari H, Eriksson L, Mingels C, Alberts I, Casey ME, Afshar-Oromieh A, et al. Feasibility of using abbreviated scan protocols with population-based input functions for accurate kinetic modeling of [18F]-FDG datasets from a long axial FOV PET scanner. Eur J Nucl Med Mol Imaging. 2023;50(2):257–65.CrossRefPubMed Sari H, Eriksson L, Mingels C, Alberts I, Casey ME, Afshar-Oromieh A, et al. Feasibility of using abbreviated scan protocols with population-based input functions for accurate kinetic modeling of [18F]-FDG datasets from a long axial FOV PET scanner. Eur J Nucl Med Mol Imaging. 2023;50(2):257–65.CrossRefPubMed
Metadaten
Titel
Dynamic total-body PET/CT imaging with reduced acquisition time shows acceptable performance in quantification of [18F]FDG tumor kinetic metrics
verfasst von
Guobing Liu
Yimeng Shi
Xiaoguang Hou
Haojun Yu
Yan Hu
Yiqiu Zhang
Hongcheng Shi
Publikationsdatum
11.12.2023
Verlag
Springer Berlin Heidelberg
Erschienen in
European Journal of Nuclear Medicine and Molecular Imaging / Ausgabe 5/2024
Print ISSN: 1619-7070
Elektronische ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-023-06526-4

Weitere Artikel der Ausgabe 5/2024

European Journal of Nuclear Medicine and Molecular Imaging 5/2024 Zur Ausgabe