Skip to main content
Erschienen in: Cancer and Metastasis Reviews 1/2024

30.09.2023 | Review

Epithelial-to-mesenchymal transition in cancer progression: unraveling the immunosuppressive module driving therapy resistance

verfasst von: Deepti Singh, Hifzur R. Siddique

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 1/2024

Einloggen, um Zugang zu erhalten

Abstract

Cancer cells undergo phenotypic switching (cancer cell plasticity) in response to microenvironmental cues, including exposure to therapy/treatment. Phenotypic plasticity enables the cancer cells to acquire more mesenchymal traits promoting cancer cells’ growth, survival, therapy resistance, and disease recurrence. A significant program in cancer cell plasticity is epithelial-to-mesenchymal transition (EMT), wherein a comprehensive reprogramming of gene expression occurs to facilitate the translational shift from epithelial-to-mesenchymal phenotypes resulting in increased invasiveness and metastasis. In addition, EMT plays a pivotal role in facilitating cancer cells’ escape from the body’s immune system using several mechanisms, such as the downregulation of major histocompatibility complex–mediated antigen presentation, upregulation of immune checkpoint molecules, and recruitment of immune-suppressive cells. Cancer cells’ ability to undergo phenotypic switching and EMT-driven immune escape presents a formidable obstacle in cancer management, highlighting the need to unravel the intricate mechanisms underlying these processes and develop novel therapeutic strategies. This article discusses the role of EMT in promoting immune evasion and therapy resistance. We also discuss the ongoing research on developing therapeutic approaches targeting intrinsic and induced cell plasticity within the immune suppressive microenvironment. We believe this review article will update the current research status and equip researchers, clinicians, and other healthcare professionals with valuable insights enhancing their existing knowledge and shedding light on promising directions for future cancer research. This will facilitate the development of innovative strategies for managing therapy-resistant cancers and improving patient outcomes.
Literatur
1.
Zurück zum Zitat Paksa, A., & Rajagopal, J. (2017). The epigenetic basis of cellular plasticity. Current Opinion In Cell Biology, 49, 116–122.PubMed Paksa, A., & Rajagopal, J. (2017). The epigenetic basis of cellular plasticity. Current Opinion In Cell Biology, 49, 116–122.PubMed
2.
Zurück zum Zitat Quintanal-Villalonga, A., Taniguchi, H., Zhan, Y. A., Hasan, M. M., Chavan, S. S., Meng, F., Uddin, F., Allaj, V., Manoj, P., Shah, N. S., Chan, J. M., Ciampricotti, M., Chow, A., Offin, M., Ray-Kirton, J., Egger, J. D., Bhanot, U. K., Linkov, I., Asher, M., et al. (2021). Comprehensive molecular characterization of lung tumors implicates AKT and MYC signaling in adenocarcinoma to squamous cell transdifferentiation. Journal of Hematology & Oncology, 14(1), 170. Quintanal-Villalonga, A., Taniguchi, H., Zhan, Y. A., Hasan, M. M., Chavan, S. S., Meng, F., Uddin, F., Allaj, V., Manoj, P., Shah, N. S., Chan, J. M., Ciampricotti, M., Chow, A., Offin, M., Ray-Kirton, J., Egger, J. D., Bhanot, U. K., Linkov, I., Asher, M., et al. (2021). Comprehensive molecular characterization of lung tumors implicates AKT and MYC signaling in adenocarcinoma to squamous cell transdifferentiation. Journal of Hematology & Oncology, 14(1), 170.
3.
Zurück zum Zitat Saha, S., Mukherjee, S., Khan, P., Kajal, K., Mazumdar, M., Manna, A., Mukherjee, S., De, S., Jana, D., Sarkar, D. K., & Das, T. (2016). Aspirin suppresses the acquisition of chemoresistance in breast cancer by disrupting an NFκB-IL6 signaling axis responsible for the generation of cancer stem cells. Cancer Research, 76(7), 2000–2012.PubMed Saha, S., Mukherjee, S., Khan, P., Kajal, K., Mazumdar, M., Manna, A., Mukherjee, S., De, S., Jana, D., Sarkar, D. K., & Das, T. (2016). Aspirin suppresses the acquisition of chemoresistance in breast cancer by disrupting an NFκB-IL6 signaling axis responsible for the generation of cancer stem cells. Cancer Research, 76(7), 2000–2012.PubMed
4.
Zurück zum Zitat Francescangeli, F., Contavalli, P., De Angelis, M. L., Careccia, S., Signore, M., Haas, T. L., Salaris, F., Baiocchi, M., Boe, A., Giuliani, A., Tcheremenskaia, O., Pagliuca, A., Guardiola, O., Minchiotti, G., Colace, L., Ciardi, A., D'Andrea, V., La Torre, F., Medema, J., et al. (2020). A pre-existing population of ZEB2+ quiescent cells with stemness and mesenchymal features dictate chemoresistance in colorectal cancer. Journal of Experimental & Clinical Cancer Research, 39(1), 2. Francescangeli, F., Contavalli, P., De Angelis, M. L., Careccia, S., Signore, M., Haas, T. L., Salaris, F., Baiocchi, M., Boe, A., Giuliani, A., Tcheremenskaia, O., Pagliuca, A., Guardiola, O., Minchiotti, G., Colace, L., Ciardi, A., D'Andrea, V., La Torre, F., Medema, J., et al. (2020). A pre-existing population of ZEB2+ quiescent cells with stemness and mesenchymal features dictate chemoresistance in colorectal cancer. Journal of Experimental & Clinical Cancer Research, 39(1), 2.
5.
Zurück zum Zitat Boumahdi, S., & de Sauvage, F. J. (2020). The great escape: tumour cell plasticity in resistance to targeted therapy. Nature reviews. Drug Discovery, 19(1), 39–56.PubMed Boumahdi, S., & de Sauvage, F. J. (2020). The great escape: tumour cell plasticity in resistance to targeted therapy. Nature reviews. Drug Discovery, 19(1), 39–56.PubMed
6.
Zurück zum Zitat Shaffer, S. M., Dunagin, M. C., Torborg, S. R., Torre, E. A., Emert, B., Krepler, C., Beqiri, M., Sproesser, K., Brafford, P. A., Xiao, M., Eggan, E., Anastopoulos, I. N., Vargas-Garcia, C. A., Singh, A., Nathanson, K. L., Herlyn, M., & Raj, A. (2017). Rare cell variability and drug-induced reprogramming as a mode of cancer drug resistance. Nature, 546(7658), 431–435.PubMedPubMedCentral Shaffer, S. M., Dunagin, M. C., Torborg, S. R., Torre, E. A., Emert, B., Krepler, C., Beqiri, M., Sproesser, K., Brafford, P. A., Xiao, M., Eggan, E., Anastopoulos, I. N., Vargas-Garcia, C. A., Singh, A., Nathanson, K. L., Herlyn, M., & Raj, A. (2017). Rare cell variability and drug-induced reprogramming as a mode of cancer drug resistance. Nature, 546(7658), 431–435.PubMedPubMedCentral
7.
Zurück zum Zitat Qin, S., Jiang, J., Lu, Y., Nice, E. C., Huang, C., Zhang, J., & He, W. (2020). The emerging role of tumor cell plasticity in modifying therapeutic response. Signal Transduction And Targeted Therapy, 5(1), 228.PubMedPubMedCentral Qin, S., Jiang, J., Lu, Y., Nice, E. C., Huang, C., Zhang, J., & He, W. (2020). The emerging role of tumor cell plasticity in modifying therapeutic response. Signal Transduction And Targeted Therapy, 5(1), 228.PubMedPubMedCentral
8.
Zurück zum Zitat Cabanos, H. F., & Hata, A. N. (2021). Emerging insights into targeted therapy-tolerant persister cells in cancer. Cancers, 13(11), 2666.PubMedPubMedCentral Cabanos, H. F., & Hata, A. N. (2021). Emerging insights into targeted therapy-tolerant persister cells in cancer. Cancers, 13(11), 2666.PubMedPubMedCentral
9.
Zurück zum Zitat Xue, Y., Martelotto, L., Baslan, T., Vides, A., Solomon, M., Mai, T. T., Chaudhary, N., Riely, G. J., Li, B. T., Scott, K., Cechhi, F., Stierner, U., Chadalavada, K., de Stanchina, E., Schwartz, S., Hembrough, T., Nanjangud, G., Berger, M. F., Nilsson, J., et al. (2017). An approach to suppress the evolution of resistance in BRAFV600E-mutant cancer. Nature Medicine, 23(8), 929–937.PubMedPubMedCentral Xue, Y., Martelotto, L., Baslan, T., Vides, A., Solomon, M., Mai, T. T., Chaudhary, N., Riely, G. J., Li, B. T., Scott, K., Cechhi, F., Stierner, U., Chadalavada, K., de Stanchina, E., Schwartz, S., Hembrough, T., Nanjangud, G., Berger, M. F., Nilsson, J., et al. (2017). An approach to suppress the evolution of resistance in BRAFV600E-mutant cancer. Nature Medicine, 23(8), 929–937.PubMedPubMedCentral
10.
Zurück zum Zitat Singh, D., Khan, M. A., & Siddique, H. R. (2022). Role of p53-miRNAs circuitry in immune surveillance and cancer development: A potential avenue for therapeutic intervention. Seminars in Cell & Developmental Biology, 124, 15–25. Singh, D., Khan, M. A., & Siddique, H. R. (2022). Role of p53-miRNAs circuitry in immune surveillance and cancer development: A potential avenue for therapeutic intervention. Seminars in Cell & Developmental Biology, 124, 15–25.
11.
Zurück zum Zitat Wei, S. C., Duffy, C. R., & Allison, J. P. (2018). Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discovery, 8(9), 1069–1086.PubMed Wei, S. C., Duffy, C. R., & Allison, J. P. (2018). Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discovery, 8(9), 1069–1086.PubMed
12.
Zurück zum Zitat Sharma, P., Hu-Lieskovan, S., Wargo, J. A., & Ribas, A. (2017). Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell, 168(4), 707–723.PubMedPubMedCentral Sharma, P., Hu-Lieskovan, S., Wargo, J. A., & Ribas, A. (2017). Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell, 168(4), 707–723.PubMedPubMedCentral
13.
Zurück zum Zitat Shibue, T., & Weinberg, R. A. (2017). EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nature reviews. Clinical Oncology, 14(10), 611–629.PubMedPubMedCentral Shibue, T., & Weinberg, R. A. (2017). EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nature reviews. Clinical Oncology, 14(10), 611–629.PubMedPubMedCentral
14.
Zurück zum Zitat Zhu, X., Chen, L., Liu, L., & Niu, X. (2019). EMT-mediated acquired EGFR-TKI resistance in NSCLC: Mechanisms and strategies. Frontiers In Oncology, 9, 1044.PubMedPubMedCentral Zhu, X., Chen, L., Liu, L., & Niu, X. (2019). EMT-mediated acquired EGFR-TKI resistance in NSCLC: Mechanisms and strategies. Frontiers In Oncology, 9, 1044.PubMedPubMedCentral
15.
Zurück zum Zitat Hass, R., von der Ohe, J., & Ungefroren, H. (2020). The intimate relationship among EMT, MET, and TME: A t(ransdifferentiation) e(nhancing) m(ix) to be exploited for therapeutic purposes. Cancers, 12(12), 3674.PubMedPubMedCentral Hass, R., von der Ohe, J., & Ungefroren, H. (2020). The intimate relationship among EMT, MET, and TME: A t(ransdifferentiation) e(nhancing) m(ix) to be exploited for therapeutic purposes. Cancers, 12(12), 3674.PubMedPubMedCentral
16.
Zurück zum Zitat De Angelis, M. L., Francescangeli, F., & Zeuner, A. (2019). Breast cancer stem cells as drivers of tumor chemoresistance, dormancy and relapse: New challenges and therapeutic opportunities. Cancers, 11(10), 1569.PubMedPubMedCentral De Angelis, M. L., Francescangeli, F., & Zeuner, A. (2019). Breast cancer stem cells as drivers of tumor chemoresistance, dormancy and relapse: New challenges and therapeutic opportunities. Cancers, 11(10), 1569.PubMedPubMedCentral
17.
Zurück zum Zitat Culig, Z. (2019). Epithelial mesenchymal transition and resistance in endocrine-related cancers. Biochimica et biophysica acta. Molecular. Cell Research, 1866(9), 1368–1375. Culig, Z. (2019). Epithelial mesenchymal transition and resistance in endocrine-related cancers. Biochimica et biophysica acta. Molecular. Cell Research, 1866(9), 1368–1375.
18.
Zurück zum Zitat Paulitschke, V., Eichhoff, O., Gerner, C., Paulitschke, P., Bileck, A., Mohr, T., Cheng, P. F., Leitner, A., Guenova, E., Saulite, I., Freiberger, S. N., Irmisch, A., Knapp, B., Zila, N., Chatziisaak, T. P., Stephan, J., Mangana, J., Kunstfeld, R., Pehamberger, H., et al. (2019). Proteomic identification of a marker signature for MAPKi resistance in melanoma. The EMBO Journal, 38(15), e95874.PubMedPubMedCentral Paulitschke, V., Eichhoff, O., Gerner, C., Paulitschke, P., Bileck, A., Mohr, T., Cheng, P. F., Leitner, A., Guenova, E., Saulite, I., Freiberger, S. N., Irmisch, A., Knapp, B., Zila, N., Chatziisaak, T. P., Stephan, J., Mangana, J., Kunstfeld, R., Pehamberger, H., et al. (2019). Proteomic identification of a marker signature for MAPKi resistance in melanoma. The EMBO Journal, 38(15), e95874.PubMedPubMedCentral
19.
Zurück zum Zitat Farmer, P., Bonnefoi, H., Anderle, P., Cameron, D., Wirapati, P., Becette, V., André, S., Piccart, M., Campone, M., Brain, E., Macgrogan, G., Petit, T., Jassem, J., Bibeau, F., Blot, E., Bogaerts, J., Aguet, M., Bergh, J., Iggo, R., & Delorenzi, M. (2009). A stroma-related gene signature predicts resistance to neoadjuvant chemotherapy in breast cancer. Nature Medicine, 15(1), 68–74.PubMed Farmer, P., Bonnefoi, H., Anderle, P., Cameron, D., Wirapati, P., Becette, V., André, S., Piccart, M., Campone, M., Brain, E., Macgrogan, G., Petit, T., Jassem, J., Bibeau, F., Blot, E., Bogaerts, J., Aguet, M., Bergh, J., Iggo, R., & Delorenzi, M. (2009). A stroma-related gene signature predicts resistance to neoadjuvant chemotherapy in breast cancer. Nature Medicine, 15(1), 68–74.PubMed
20.
Zurück zum Zitat Luke, J. J., Bao, R., Sweis, R. F., Spranger, S., & Gajewski, T. F. (2019). WNT/β-catenin pathway activation correlates with immune exclusion across human cancers. Clinical Cancer Research, 25(10), 3074–3083.PubMedPubMedCentral Luke, J. J., Bao, R., Sweis, R. F., Spranger, S., & Gajewski, T. F. (2019). WNT/β-catenin pathway activation correlates with immune exclusion across human cancers. Clinical Cancer Research, 25(10), 3074–3083.PubMedPubMedCentral
21.
Zurück zum Zitat Ruiz de Galarreta, M., Bresnahan, E., Molina-Sánchez, P., Lindblad, K. E., Maier, B., Sia, D., Puigvehi, M., Miguela, V., Casanova-Acebes, M., Dhainaut, M., Villacorta-Martin, C., Singhi, A. D., Moghe, A., von Felden, J., Tal Grinspan, L., Wang, S., Kamphorst, A. O., Monga, S. P., Brown, B. D., et al. (2019). β-Catenin activation promotes immune escape and resistance to anti-PD-1 therapy in hepatocellular carcinoma. Cancer Discovery, 9(8), 1124–1141.PubMed Ruiz de Galarreta, M., Bresnahan, E., Molina-Sánchez, P., Lindblad, K. E., Maier, B., Sia, D., Puigvehi, M., Miguela, V., Casanova-Acebes, M., Dhainaut, M., Villacorta-Martin, C., Singhi, A. D., Moghe, A., von Felden, J., Tal Grinspan, L., Wang, S., Kamphorst, A. O., Monga, S. P., Brown, B. D., et al. (2019). β-Catenin activation promotes immune escape and resistance to anti-PD-1 therapy in hepatocellular carcinoma. Cancer Discovery, 9(8), 1124–1141.PubMed
22.
Zurück zum Zitat Singh, D., Khan, M. A., & Siddique, H. R. (2022). Specific targeting of cancer stem cells by immunotherapy: A possible stratagem to restrain cancer recurrence and metastasis. Biochemical Pharmacology, 198, 114955.PubMed Singh, D., Khan, M. A., & Siddique, H. R. (2022). Specific targeting of cancer stem cells by immunotherapy: A possible stratagem to restrain cancer recurrence and metastasis. Biochemical Pharmacology, 198, 114955.PubMed
23.
Zurück zum Zitat Chen, L., Gibbons, D. L., Goswami, S., Cortez, M. A., Ahn, Y. H., Byers, L. A., Zhang, X., Yi, X., Dwyer, D., Lin, W., Diao, L., Wang, J., Roybal, J., Patel, M., Ungewiss, C., Peng, D., Antonia, S., Mediavilla-Varela, M., Robertson, G., et al. (2014). Metastasis is regulated via microRNA-200/ZEB1 axis control of tumour cell PD-L1 expression and intratumoral immunosuppression. Nature Communications, 5, 5241.PubMed Chen, L., Gibbons, D. L., Goswami, S., Cortez, M. A., Ahn, Y. H., Byers, L. A., Zhang, X., Yi, X., Dwyer, D., Lin, W., Diao, L., Wang, J., Roybal, J., Patel, M., Ungewiss, C., Peng, D., Antonia, S., Mediavilla-Varela, M., Robertson, G., et al. (2014). Metastasis is regulated via microRNA-200/ZEB1 axis control of tumour cell PD-L1 expression and intratumoral immunosuppression. Nature Communications, 5, 5241.PubMed
24.
Zurück zum Zitat Guinney, J., Dienstmann, R., Wang, X., de Reyniès, A., Schlicker, A., Soneson, C., Marisa, L., Roepman, P., Nyamundanda, G., Angelino, P., Bot, B. M., Morris, J. S., Simon, I. M., Gerster, S., Fessler, E., De Sousa, E., Melo, F., Missiaglia, E., Ramay, H., et al. (2015). The consensus molecular subtypes of colorectal cancer. Nature Medicine, 21(11), 1350–1356.PubMedPubMedCentral Guinney, J., Dienstmann, R., Wang, X., de Reyniès, A., Schlicker, A., Soneson, C., Marisa, L., Roepman, P., Nyamundanda, G., Angelino, P., Bot, B. M., Morris, J. S., Simon, I. M., Gerster, S., Fessler, E., De Sousa, E., Melo, F., Missiaglia, E., Ramay, H., et al. (2015). The consensus molecular subtypes of colorectal cancer. Nature Medicine, 21(11), 1350–1356.PubMedPubMedCentral
25.
Zurück zum Zitat Mak, M. P., Tong, P., Diao, L., Cardnell, R. J., Gibbons, D. L., William, W. N., Skoulidis, F., Parra, E. R., Rodriguez-Canales, J., Wistuba, I. I., Heymach, J. V., Weinstein, J. N., Coombes, K. R., Wang, J., & Byers, L. A. (2016). A patient-derived, pan-cancer EMT signature identifies global molecular alterations and immune target enrichment following epithelial-to-mesenchymal transition. Clinical Cancer Research, 22(3), 609–620.PubMed Mak, M. P., Tong, P., Diao, L., Cardnell, R. J., Gibbons, D. L., William, W. N., Skoulidis, F., Parra, E. R., Rodriguez-Canales, J., Wistuba, I. I., Heymach, J. V., Weinstein, J. N., Coombes, K. R., Wang, J., & Byers, L. A. (2016). A patient-derived, pan-cancer EMT signature identifies global molecular alterations and immune target enrichment following epithelial-to-mesenchymal transition. Clinical Cancer Research, 22(3), 609–620.PubMed
26.
Zurück zum Zitat Hugo, W., Zaretsky, J. M., Sun, L., Song, C., Moreno, B. H., Hu-Lieskovan, S., Berent-Maoz, B., Pang, J., Chmielowski, B., Cherry, G., Seja, E., Lomeli, S., Kong, X., Kelley, M. C., Sosman, J. A., Johnson, D. B., Ribas, A., & Lo, R. S. (2016). Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell, 165(1), 35–44.PubMedPubMedCentral Hugo, W., Zaretsky, J. M., Sun, L., Song, C., Moreno, B. H., Hu-Lieskovan, S., Berent-Maoz, B., Pang, J., Chmielowski, B., Cherry, G., Seja, E., Lomeli, S., Kong, X., Kelley, M. C., Sosman, J. A., Johnson, D. B., Ribas, A., & Lo, R. S. (2016). Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell, 165(1), 35–44.PubMedPubMedCentral
27.
Zurück zum Zitat Trujillo, J. A., Luke, J. J., Zha, Y., Segal, J. P., Ritterhouse, L. L., Spranger, S., Matijevich, K., & Gajewski, T. F. (2019). Secondary resistance to immunotherapy associated with β-catenin pathway activation or PTEN loss in metastatic melanoma. Journal For Immunotherapy of Cancer, 7(1), 295.PubMedPubMedCentral Trujillo, J. A., Luke, J. J., Zha, Y., Segal, J. P., Ritterhouse, L. L., Spranger, S., Matijevich, K., & Gajewski, T. F. (2019). Secondary resistance to immunotherapy associated with β-catenin pathway activation or PTEN loss in metastatic melanoma. Journal For Immunotherapy of Cancer, 7(1), 295.PubMedPubMedCentral
28.
Zurück zum Zitat Zhan, T., Rindtorff, N., & Boutros, M. (2017). Wnt signaling in cancer. Oncogene, 36(11), 1461–1473.PubMed Zhan, T., Rindtorff, N., & Boutros, M. (2017). Wnt signaling in cancer. Oncogene, 36(11), 1461–1473.PubMed
29.
Zurück zum Zitat Kudo-Saito, C., Shirako, H., Takeuchi, T., & Kawakami, Y. (2009). Cancer metastasis is accelerated through immunosuppression during SNAIL-induced EMT of cancer cells. Cancer Cell, 15(3), 195–206.PubMed Kudo-Saito, C., Shirako, H., Takeuchi, T., & Kawakami, Y. (2009). Cancer metastasis is accelerated through immunosuppression during SNAIL-induced EMT of cancer cells. Cancer Cell, 15(3), 195–206.PubMed
30.
Zurück zum Zitat Akalay, I., Janji, B., Hasmim, M., Noman, M. Z., André, F., De Cremoux, P., Bertheau, P., Badoual, C., Vielh, P., Larsen, A. K., Sabbah, M., Tan, T. Z., Keira, J. H., Hung, N. T., Thiery, J. P., Mami-Chouaib, F., & Chouaib, S. (2013). Epithelial-to-mesenchymal transition and autophagy induction in breast carcinoma promote escape from T-cell-mediated lysis. Cancer Research, 73(8), 2418–2427.PubMed Akalay, I., Janji, B., Hasmim, M., Noman, M. Z., André, F., De Cremoux, P., Bertheau, P., Badoual, C., Vielh, P., Larsen, A. K., Sabbah, M., Tan, T. Z., Keira, J. H., Hung, N. T., Thiery, J. P., Mami-Chouaib, F., & Chouaib, S. (2013). Epithelial-to-mesenchymal transition and autophagy induction in breast carcinoma promote escape from T-cell-mediated lysis. Cancer Research, 73(8), 2418–2427.PubMed
31.
Zurück zum Zitat Fernando, R. I., Litzinger, M., Trono, P., Hamilton, D. H., Schlom, J., & Palena, C. (2010). The T-box transcription factor Brachyury promotes epithelial-mesenchymal transition in human tumor cells. The Journal of Clinical Investigation, 120(2), 533–544.PubMedPubMedCentral Fernando, R. I., Litzinger, M., Trono, P., Hamilton, D. H., Schlom, J., & Palena, C. (2010). The T-box transcription factor Brachyury promotes epithelial-mesenchymal transition in human tumor cells. The Journal of Clinical Investigation, 120(2), 533–544.PubMedPubMedCentral
32.
Zurück zum Zitat Huang, B., Cohen, J. R., Fernando, R. I., Hamilton, D. H., Litzinger, M. T., Hodge, J. W., & Palena, C. (2013). The embryonic transcription factor Brachyury blocks cell cycle progression and mediates tumor resistance to conventional antitumor therapies. Cell Death & Disease, 4(6), e682. Huang, B., Cohen, J. R., Fernando, R. I., Hamilton, D. H., Litzinger, M. T., Hodge, J. W., & Palena, C. (2013). The embryonic transcription factor Brachyury blocks cell cycle progression and mediates tumor resistance to conventional antitumor therapies. Cell Death & Disease, 4(6), e682.
33.
Zurück zum Zitat Hamilton, D. H., Huang, B., Fernando, R. I., Tsang, K. Y., & Palena, C. (2014). WEE1 inhibition alleviates resistance to immune attack of tumor cells undergoing epithelial-mesenchymal transition. Cancer Research, 74(9), 2510–2519.PubMedPubMedCentral Hamilton, D. H., Huang, B., Fernando, R. I., Tsang, K. Y., & Palena, C. (2014). WEE1 inhibition alleviates resistance to immune attack of tumor cells undergoing epithelial-mesenchymal transition. Cancer Research, 74(9), 2510–2519.PubMedPubMedCentral
34.
Zurück zum Zitat David, J. M., Hamilton, D. H., & Palena, C. (2016). MUC1 upregulation promotes immune resistance in tumor cells undergoing brachyury-mediated epithelial-mesenchymal transition. Oncoimmunology, 5(4), e1117738.PubMedPubMedCentral David, J. M., Hamilton, D. H., & Palena, C. (2016). MUC1 upregulation promotes immune resistance in tumor cells undergoing brachyury-mediated epithelial-mesenchymal transition. Oncoimmunology, 5(4), e1117738.PubMedPubMedCentral
35.
Zurück zum Zitat Terry, S., Buart, S., Tan, T. Z., Gros, G., Noman, M. Z., Lorens, J. B., Mami-Chouaib, F., Thiery, J. P., & Chouaib, S. (2017). Acquisition of tumor cell phenotypic diversity along the EMT spectrum under hypoxic pressure: Consequences on susceptibility to cell-mediated cytotoxicity. Oncoimmunology, 6(2), e1271858.PubMedPubMedCentral Terry, S., Buart, S., Tan, T. Z., Gros, G., Noman, M. Z., Lorens, J. B., Mami-Chouaib, F., Thiery, J. P., & Chouaib, S. (2017). Acquisition of tumor cell phenotypic diversity along the EMT spectrum under hypoxic pressure: Consequences on susceptibility to cell-mediated cytotoxicity. Oncoimmunology, 6(2), e1271858.PubMedPubMedCentral
36.
Zurück zum Zitat Rizvi, N. A., Hellmann, M. D., Snyder, A., Kvistborg, P., Makarov, V., Havel, J. J., Lee, W., Yuan, J., Wong, P., Ho, T. S., Miller, M. L., Rekhtman, N., Moreira, A. L., Ibrahim, F., Bruggeman, C., Gasmi, B., Zappasodi, R., Maeda, Y., Sander, C., et al. (2015). Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science (New York, N.Y., 348(6230), 124–128.PubMedPubMedCentral Rizvi, N. A., Hellmann, M. D., Snyder, A., Kvistborg, P., Makarov, V., Havel, J. J., Lee, W., Yuan, J., Wong, P., Ho, T. S., Miller, M. L., Rekhtman, N., Moreira, A. L., Ibrahim, F., Bruggeman, C., Gasmi, B., Zappasodi, R., Maeda, Y., Sander, C., et al. (2015). Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science (New York, N.Y., 348(6230), 124–128.PubMedPubMedCentral
37.
Zurück zum Zitat Zaretsky, J. M., Garcia-Diaz, A., Shin, D. S., Escuin-Ordinas, H., Hugo, W., Hu-Lieskovan, S., Torrejon, D. Y., Abril-Rodriguez, G., Sandoval, S., Barthly, L., Saco, J., Homet Moreno, B., Mezzadra, R., Chmielowski, B., Ruchalski, K., Shintaku, I. P., Sanchez, P. J., Puig-Saus, C., Cherry, G., et al. (2016). Mutations associated with acquired resistance to PD-1 blockade in melanoma. The New England Journal of Medicine, 375(9), 819–829.PubMedPubMedCentral Zaretsky, J. M., Garcia-Diaz, A., Shin, D. S., Escuin-Ordinas, H., Hugo, W., Hu-Lieskovan, S., Torrejon, D. Y., Abril-Rodriguez, G., Sandoval, S., Barthly, L., Saco, J., Homet Moreno, B., Mezzadra, R., Chmielowski, B., Ruchalski, K., Shintaku, I. P., Sanchez, P. J., Puig-Saus, C., Cherry, G., et al. (2016). Mutations associated with acquired resistance to PD-1 blockade in melanoma. The New England Journal of Medicine, 375(9), 819–829.PubMedPubMedCentral
38.
Zurück zum Zitat Lu, X., Horner, J. W., Paul, E., Shang, X., Troncoso, P., Deng, P., Jiang, S., Chang, Q., Spring, D. J., Sharma, P., Zebala, J. A., Maeda, D. Y., Wang, Y. A., & DePinho, R. A. (2017). Effective combinatorial immunotherapy for castration-resistant prostate cancer. Nature, 543(7647), 728–732.PubMedPubMedCentral Lu, X., Horner, J. W., Paul, E., Shang, X., Troncoso, P., Deng, P., Jiang, S., Chang, Q., Spring, D. J., Sharma, P., Zebala, J. A., Maeda, D. Y., Wang, Y. A., & DePinho, R. A. (2017). Effective combinatorial immunotherapy for castration-resistant prostate cancer. Nature, 543(7647), 728–732.PubMedPubMedCentral
39.
Zurück zum Zitat Skoulidis, F., Goldberg, M. E., Greenawalt, D. M., Hellmann, M. D., Awad, M. M., Gainor, J. F., Schrock, A. B., Hartmaier, R. J., Trabucco, S. E., Gay, L., Ali, S. M., Elvin, J. A., Singal, G., Ross, J. S., Fabrizio, D., Szabo, P. M., Chang, H., Sasson, A., Srinivasan, S., et al. (2018). STK11/LKB1 Mutations and PD-1 inhibitor resistance in KRAS-mutant lung adenocarcinoma. Cancer Discovery, 8(7), 822–835.PubMedPubMedCentral Skoulidis, F., Goldberg, M. E., Greenawalt, D. M., Hellmann, M. D., Awad, M. M., Gainor, J. F., Schrock, A. B., Hartmaier, R. J., Trabucco, S. E., Gay, L., Ali, S. M., Elvin, J. A., Singal, G., Ross, J. S., Fabrizio, D., Szabo, P. M., Chang, H., Sasson, A., Srinivasan, S., et al. (2018). STK11/LKB1 Mutations and PD-1 inhibitor resistance in KRAS-mutant lung adenocarcinoma. Cancer Discovery, 8(7), 822–835.PubMedPubMedCentral
40.
Zurück zum Zitat Xu, J. W., Wang, L., Cheng, Y. G., Zhang, G. Y., Hu, S. Y., Zhou, B., & Zhan, H. X. (2018). Immunotherapy for pancreatic cancer: A long and hopeful journey. Cancer Letters, 425, 143–151.PubMed Xu, J. W., Wang, L., Cheng, Y. G., Zhang, G. Y., Hu, S. Y., Zhou, B., & Zhan, H. X. (2018). Immunotherapy for pancreatic cancer: A long and hopeful journey. Cancer Letters, 425, 143–151.PubMed
41.
Zurück zum Zitat Mariathasan, S., Turley, S. J., Nickles, D., Castiglioni, A., Yuen, K., Wang, Y., Kadel, E. E., III, Koeppen, H., Astarita, J. L., Cubas, R., Jhunjhunwala, S., Banchereau, R., Yang, Y., Guan, Y., Chalouni, C., Ziai, J., Şenbabaoğlu, Y., Santoro, S., Sheinson, D., et al. (2018). TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature, 554(7693), 544–548.PubMedPubMedCentral Mariathasan, S., Turley, S. J., Nickles, D., Castiglioni, A., Yuen, K., Wang, Y., Kadel, E. E., III, Koeppen, H., Astarita, J. L., Cubas, R., Jhunjhunwala, S., Banchereau, R., Yang, Y., Guan, Y., Chalouni, C., Ziai, J., Şenbabaoğlu, Y., Santoro, S., Sheinson, D., et al. (2018). TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature, 554(7693), 544–548.PubMedPubMedCentral
42.
Zurück zum Zitat Tauriello, D. V. F., Palomo-Ponce, S., Stork, D., Berenguer-Llergo, A., Badia-Ramentol, J., Iglesias, M., Sevillano, M., Ibiza, S., Cañellas, A., Hernando-Momblona, X., Byrom, D., Matarin, J. A., Calon, A., Rivas, E. I., Nebreda, A. R., Riera, A., Attolini, C. S., & Batlle, E. (2018). TGFβ drives immune evasion in genetically reconstituted colon cancer metastasis. Nature, 554(7693), 538–543.PubMed Tauriello, D. V. F., Palomo-Ponce, S., Stork, D., Berenguer-Llergo, A., Badia-Ramentol, J., Iglesias, M., Sevillano, M., Ibiza, S., Cañellas, A., Hernando-Momblona, X., Byrom, D., Matarin, J. A., Calon, A., Rivas, E. I., Nebreda, A. R., Riera, A., Attolini, C. S., & Batlle, E. (2018). TGFβ drives immune evasion in genetically reconstituted colon cancer metastasis. Nature, 554(7693), 538–543.PubMed
43.
Zurück zum Zitat Datar, I., & Schalper, K. A. (2016). Epithelial-mesenchymal transition and immune evasion during lung cancer progression: The chicken or the egg? Clinical Cancer Research, 22(14), 3422–3424.PubMedPubMedCentral Datar, I., & Schalper, K. A. (2016). Epithelial-mesenchymal transition and immune evasion during lung cancer progression: The chicken or the egg? Clinical Cancer Research, 22(14), 3422–3424.PubMedPubMedCentral
44.
Zurück zum Zitat Lou, Y., Diao, L., Cuentas, E. R., Denning, W. L., Chen, L., Fan, Y. H., Byers, L. A., Wang, J., Papadimitrakopoulou, V. A., Behrens, C., Rodriguez, J. C., Hwu, P., Wistuba, I. I., Heymach, J. V., & Gibbons, D. L. (2016). Epithelial-mesenchymal transition is associated with a distinct tumor microenvironment including elevation of inflammatory signals and multiple immune checkpoints in lung adenocarcinoma. Clinical Cancer Research, 22(14), 3630–3642.PubMedPubMedCentral Lou, Y., Diao, L., Cuentas, E. R., Denning, W. L., Chen, L., Fan, Y. H., Byers, L. A., Wang, J., Papadimitrakopoulou, V. A., Behrens, C., Rodriguez, J. C., Hwu, P., Wistuba, I. I., Heymach, J. V., & Gibbons, D. L. (2016). Epithelial-mesenchymal transition is associated with a distinct tumor microenvironment including elevation of inflammatory signals and multiple immune checkpoints in lung adenocarcinoma. Clinical Cancer Research, 22(14), 3630–3642.PubMedPubMedCentral
45.
Zurück zum Zitat Hsu, D. S., Wang, H. J., Tai, S. K., Chou, C. H., Hsieh, C. H., Chiu, P. H., Chen, N. J., & Yang, M. H. (2014). Acetylation of SNAIL modulates the cytokinome of cancer cells to enhance the recruitment of macrophages. Cancer Cell, 26(4), 534–548.PubMed Hsu, D. S., Wang, H. J., Tai, S. K., Chou, C. H., Hsieh, C. H., Chiu, P. H., Chen, N. J., & Yang, M. H. (2014). Acetylation of SNAIL modulates the cytokinome of cancer cells to enhance the recruitment of macrophages. Cancer Cell, 26(4), 534–548.PubMed
46.
Zurück zum Zitat Dongre, A., Rashidian, M., Eaton, E. N., Reinhardt, F., Thiru, P., Zagorulya, M., Nepal, S., Banaz, T., Martner, A., Spranger, S., & Weinberg, R. A. (2021). Direct and indirect regulators of epithelial-mesenchymal transition-mediated immunosuppression in breast carcinomas. Cancer Discovery, 11(5), 1286–1305.PubMed Dongre, A., Rashidian, M., Eaton, E. N., Reinhardt, F., Thiru, P., Zagorulya, M., Nepal, S., Banaz, T., Martner, A., Spranger, S., & Weinberg, R. A. (2021). Direct and indirect regulators of epithelial-mesenchymal transition-mediated immunosuppression in breast carcinomas. Cancer Discovery, 11(5), 1286–1305.PubMed
47.
Zurück zum Zitat Plaschka, M., Benboubker, V., Grimont, M., Berthet, J., Tonon, L., Lopez, J., Le-Bouar, M., Balme, B., Tondeur, G., de la Fouchardière, A., Larue, L., Puisieux, A., Grinberg-Bleyer, Y., Bendriss-Vermare, N., Dubois, B., Caux, C., Dalle, S., & Caramel, J. (2022). ZEB1 transcription factor promotes immune escape in melanoma. Journal for Immunotherapy of Cancer, 10(3), e003484.PubMedPubMedCentral Plaschka, M., Benboubker, V., Grimont, M., Berthet, J., Tonon, L., Lopez, J., Le-Bouar, M., Balme, B., Tondeur, G., de la Fouchardière, A., Larue, L., Puisieux, A., Grinberg-Bleyer, Y., Bendriss-Vermare, N., Dubois, B., Caux, C., Dalle, S., & Caramel, J. (2022). ZEB1 transcription factor promotes immune escape in melanoma. Journal for Immunotherapy of Cancer, 10(3), e003484.PubMedPubMedCentral
48.
Zurück zum Zitat Katsura, A., Tamura, Y., Hokari, S., Harada, M., Morikawa, M., Sakurai, T., Takahashi, K., Mizutani, A., Nishida, J., Yokoyama, Y., Morishita, Y., Murakami, T., Ehata, S., Miyazono, K., & Koinuma, D. (2017). ZEB1-regulated inflammatory phenotype in breast cancer cells. Molecular Oncology, 11(9), 1241–1262.PubMedPubMedCentral Katsura, A., Tamura, Y., Hokari, S., Harada, M., Morikawa, M., Sakurai, T., Takahashi, K., Mizutani, A., Nishida, J., Yokoyama, Y., Morishita, Y., Murakami, T., Ehata, S., Miyazono, K., & Koinuma, D. (2017). ZEB1-regulated inflammatory phenotype in breast cancer cells. Molecular Oncology, 11(9), 1241–1262.PubMedPubMedCentral
49.
Zurück zum Zitat Taki, M., Abiko, K., Baba, T., Hamanishi, J., Yamaguchi, K., Murakami, R., Yamanoi, K., Horikawa, N., Hosoe, Y., Nakamura, E., Sugiyama, A., Mandai, M., Konishi, I., & Matsumura, N. (2018). SNAIL promotes ovarian cancer progression by recruiting myeloid-derived suppressor cells via CXCR2 ligand upregulation. Nature Communications, 9(1), 1685.PubMedPubMedCentral Taki, M., Abiko, K., Baba, T., Hamanishi, J., Yamaguchi, K., Murakami, R., Yamanoi, K., Horikawa, N., Hosoe, Y., Nakamura, E., Sugiyama, A., Mandai, M., Konishi, I., & Matsumura, N. (2018). SNAIL promotes ovarian cancer progression by recruiting myeloid-derived suppressor cells via CXCR2 ligand upregulation. Nature Communications, 9(1), 1685.PubMedPubMedCentral
50.
Zurück zum Zitat Guo, Y., Lu, X., Chen, Y., Rendon, B., Mitchell, R. A., Cuatrecasas, M., Cortés, M., Postigo, A., Liu, Y., & Dean, D. C. (2021). Zeb1 induces immune checkpoints to form an immunosuppressive envelope around invading cancer cells. Science. Advances, 7(21), eabd7455. Guo, Y., Lu, X., Chen, Y., Rendon, B., Mitchell, R. A., Cuatrecasas, M., Cortés, M., Postigo, A., Liu, Y., & Dean, D. C. (2021). Zeb1 induces immune checkpoints to form an immunosuppressive envelope around invading cancer cells. Science. Advances, 7(21), eabd7455.
51.
Zurück zum Zitat Qian, Y., Yao, W., Yang, T., Yang, Y., Liu, Y., Shen, Q., Zhang, J., Qi, W., & Wang, J. (2017). aPKC-ι/P-Sp1/SNAIL signaling induces epithelial-mesenchymal transition and immunosuppression in cholangiocarcinoma. Hepatology (Baltimore, Md.), 66(4), 1165–1182.PubMed Qian, Y., Yao, W., Yang, T., Yang, Y., Liu, Y., Shen, Q., Zhang, J., Qi, W., & Wang, J. (2017). aPKC-ι/P-Sp1/SNAIL signaling induces epithelial-mesenchymal transition and immunosuppression in cholangiocarcinoma. Hepatology (Baltimore, Md.), 66(4), 1165–1182.PubMed
52.
Zurück zum Zitat Kuo, C. L., Chou, H. Y., Chiu, Y. C., Cheng, A. N., Fan, C. C., Chang, Y. N., Chen, C. H., Jiang, S. S., Chen, N. J., & Lee, A. Y. (2020). Mitochondrial oxidative stress by Lon-PYCR1 maintains an immunosuppressive tumor microenvironment that promotes cancer progression and metastasis. Cancer Letters, 474, 138–150.PubMed Kuo, C. L., Chou, H. Y., Chiu, Y. C., Cheng, A. N., Fan, C. C., Chang, Y. N., Chen, C. H., Jiang, S. S., Chen, N. J., & Lee, A. Y. (2020). Mitochondrial oxidative stress by Lon-PYCR1 maintains an immunosuppressive tumor microenvironment that promotes cancer progression and metastasis. Cancer Letters, 474, 138–150.PubMed
53.
Zurück zum Zitat Ye, L. Y., Chen, W., Bai, X. L., Xu, X. Y., Zhang, Q., Xia, X. F., Sun, X., Li, G. G., Hu, Q. D., Fu, Q. H., & Liang, T. B. (2016). Hypoxia-induced epithelial-to-mesenchymal transition in hepatocellular carcinoma induces an immunosuppressive tumor microenvironment to promote metastasis. Cancer Research, 76(4), 818–830.PubMed Ye, L. Y., Chen, W., Bai, X. L., Xu, X. Y., Zhang, Q., Xia, X. F., Sun, X., Li, G. G., Hu, Q. D., Fu, Q. H., & Liang, T. B. (2016). Hypoxia-induced epithelial-to-mesenchymal transition in hepatocellular carcinoma induces an immunosuppressive tumor microenvironment to promote metastasis. Cancer Research, 76(4), 818–830.PubMed
54.
Zurück zum Zitat Parajuli, G., Tekguc, M., Wing, J. B., Hashimoto, A., Okuzaki, D., Hirata, T., Sasaki, A., Itokazu, T., Handa, H., Sugino, H., Nishikawa, Y., Metwally, H., Kodama, Y., Tanaka, S., Sabe, H., Yamashita, T., Sakaguchi, S., Kishimoto, T., & Hashimoto, S. (2021). Arid5a promotes immune evasion by augmenting tryptophan metabolism and chemokine expression. Cancer Immunology Research, 9(8), 862–876.PubMed Parajuli, G., Tekguc, M., Wing, J. B., Hashimoto, A., Okuzaki, D., Hirata, T., Sasaki, A., Itokazu, T., Handa, H., Sugino, H., Nishikawa, Y., Metwally, H., Kodama, Y., Tanaka, S., Sabe, H., Yamashita, T., Sakaguchi, S., Kishimoto, T., & Hashimoto, S. (2021). Arid5a promotes immune evasion by augmenting tryptophan metabolism and chemokine expression. Cancer Immunology Research, 9(8), 862–876.PubMed
55.
Zurück zum Zitat Wei, C., Yang, C., Wang, S., Shi, D., Zhang, C., Lin, X., Liu, Q., Dou, R., & Xiong, B. (2019). Crosstalk between cancer cells and tumor associated macrophages is required for mesenchymal circulating tumor cell-mediated colorectal cancer metastasis. Molecular Cancer, 18(1), 64.PubMedPubMedCentral Wei, C., Yang, C., Wang, S., Shi, D., Zhang, C., Lin, X., Liu, Q., Dou, R., & Xiong, B. (2019). Crosstalk between cancer cells and tumor associated macrophages is required for mesenchymal circulating tumor cell-mediated colorectal cancer metastasis. Molecular Cancer, 18(1), 64.PubMedPubMedCentral
56.
Zurück zum Zitat Goyette, M. A., Elkholi, I. E., Apcher, C., Kuasne, H., Rothlin, C. V., Muller, W. J., Richard, D. E., Park, M., Gratton, J. P., & Côté, J. F. (2021). Targeting Axl favors an antitumorigenic microenvironment that enhances immunotherapy responses by decreasing Hif-1α levels. Proceedings of the National Academy of Sciences of the United States of America, 118(29), e2023868118.PubMedPubMedCentral Goyette, M. A., Elkholi, I. E., Apcher, C., Kuasne, H., Rothlin, C. V., Muller, W. J., Richard, D. E., Park, M., Gratton, J. P., & Côté, J. F. (2021). Targeting Axl favors an antitumorigenic microenvironment that enhances immunotherapy responses by decreasing Hif-1α levels. Proceedings of the National Academy of Sciences of the United States of America, 118(29), e2023868118.PubMedPubMedCentral
57.
Zurück zum Zitat Yang, C., Dou, R., Wei, C., Liu, K., Shi, D., Zhang, C., Liu, Q., Wang, S., & Xiong, B. (2021). Tumor-derived exosomal microRNA-106b-5p activates EMT-cancer cell and M2-subtype TAM interaction to facilitate CRC metastasis. Molecular Therapy, 29(6), 2088–2107.PubMedPubMedCentral Yang, C., Dou, R., Wei, C., Liu, K., Shi, D., Zhang, C., Liu, Q., Wang, S., & Xiong, B. (2021). Tumor-derived exosomal microRNA-106b-5p activates EMT-cancer cell and M2-subtype TAM interaction to facilitate CRC metastasis. Molecular Therapy, 29(6), 2088–2107.PubMedPubMedCentral
58.
Zurück zum Zitat Hanahan, D., & Coussens, L. M. (2012). Accessories to the crime: Functions of cells recruited to the tumor microenvironment. Cancer Cell, 21(3), 309–322.PubMed Hanahan, D., & Coussens, L. M. (2012). Accessories to the crime: Functions of cells recruited to the tumor microenvironment. Cancer Cell, 21(3), 309–322.PubMed
59.
Zurück zum Zitat Hui, L., & Chen, Y. (2015). Tumor microenvironment: Sanctuary of the devil. Cancer Letters, 368(1), 7–13.PubMed Hui, L., & Chen, Y. (2015). Tumor microenvironment: Sanctuary of the devil. Cancer Letters, 368(1), 7–13.PubMed
60.
Zurück zum Zitat Yamaguchi, T., Fushida, S., Yamamoto, Y., Tsukada, T., Kinoshita, J., Oyama, K., Miyashita, T., Tajima, H., Ninomiya, I., Munesue, S., Harashima, A., Harada, S., Yamamoto, H., & Ohta, T. (2016). Tumor-associated macrophages of the M2 phenotype contribute to progression in gastric cancer with peritoneal dissemination. Gastric Cancer, 19(4), 1052–1065.PubMed Yamaguchi, T., Fushida, S., Yamamoto, Y., Tsukada, T., Kinoshita, J., Oyama, K., Miyashita, T., Tajima, H., Ninomiya, I., Munesue, S., Harashima, A., Harada, S., Yamamoto, H., & Ohta, T. (2016). Tumor-associated macrophages of the M2 phenotype contribute to progression in gastric cancer with peritoneal dissemination. Gastric Cancer, 19(4), 1052–1065.PubMed
61.
Zurück zum Zitat Yin, S., Huang, J., Li, Z., Zhang, J., Luo, J., Lu, C., Xu, H., & Xu, H. (2017). The prognostic and clinicopathological significance of tumor-associated macrophages in patients with gastric cancer: A meta-analysis. PloS One, 12(1), e0170042.PubMedPubMedCentral Yin, S., Huang, J., Li, Z., Zhang, J., Luo, J., Lu, C., Xu, H., & Xu, H. (2017). The prognostic and clinicopathological significance of tumor-associated macrophages in patients with gastric cancer: A meta-analysis. PloS One, 12(1), e0170042.PubMedPubMedCentral
62.
Zurück zum Zitat Yang, M., Li, Z., Ren, M., Li, S., Zhang, L., Zhang, X., & Liu, F. (2018). Stromal infiltration of tumor-associated macrophages conferring poor prognosis of patients with basal-like breast carcinoma. Journal of Cancer, 9(13), 2308–2316.PubMedPubMedCentral Yang, M., Li, Z., Ren, M., Li, S., Zhang, L., Zhang, X., & Liu, F. (2018). Stromal infiltration of tumor-associated macrophages conferring poor prognosis of patients with basal-like breast carcinoma. Journal of Cancer, 9(13), 2308–2316.PubMedPubMedCentral
63.
Zurück zum Zitat Zhang, Q., He, Y., Luo, N., Patel, S. J., Han, Y., Gao, R., Modak, M., Carotta, S., Haslinger, C., Kind, D., Peet, G. W., Zhong, G., Lu, S., Zhu, W., Mao, Y., Xiao, M., Bergmann, M., Hu, X., Kerkar, S. P., et al. (2019). Landscape and dynamics of single immune cells in hepatocellular carcinoma. Cell, 179(4), 829–845.e20.PubMed Zhang, Q., He, Y., Luo, N., Patel, S. J., Han, Y., Gao, R., Modak, M., Carotta, S., Haslinger, C., Kind, D., Peet, G. W., Zhong, G., Lu, S., Zhu, W., Mao, Y., Xiao, M., Bergmann, M., Hu, X., Kerkar, S. P., et al. (2019). Landscape and dynamics of single immune cells in hepatocellular carcinoma. Cell, 179(4), 829–845.e20.PubMed
64.
Zurück zum Zitat Shrivastava, R., & Shukla, N. (2019). Attributes of alternatively activated (M2) macrophages. Life Sciences, 224, 222–231.PubMed Shrivastava, R., & Shukla, N. (2019). Attributes of alternatively activated (M2) macrophages. Life Sciences, 224, 222–231.PubMed
65.
Zurück zum Zitat Mir, F. A., Contreras-Ruiz, L., & Masli, S. (2015). Thrombospondin-1-dependent immune regulation by transforming growth factor-β2-exposed antigen-presenting cells. Immunology, 146(4), 547–556.PubMedPubMedCentral Mir, F. A., Contreras-Ruiz, L., & Masli, S. (2015). Thrombospondin-1-dependent immune regulation by transforming growth factor-β2-exposed antigen-presenting cells. Immunology, 146(4), 547–556.PubMedPubMedCentral
66.
Zurück zum Zitat Dave, M. (2017). TSP-1-mediated induction of T regulatory cell by adipose-derived mesenchymal stem cells: a mechanism of immunosuppression. Digestive Diseases and Sciences, 62(8), 1975–1976.PubMedPubMedCentral Dave, M. (2017). TSP-1-mediated induction of T regulatory cell by adipose-derived mesenchymal stem cells: a mechanism of immunosuppression. Digestive Diseases and Sciences, 62(8), 1975–1976.PubMedPubMedCentral
67.
Zurück zum Zitat Nath, P. R., Pal-Nath, D., Mandal, A., Cam, M. C., Schwartz, A. L., & Roberts, D. D. (2019). Natural killer cell recruitment and activation are regulated by CD47 expression in the tumor microenvironment. Cancer Immunology Research, 7(9), 1547–1561.PubMedPubMedCentral Nath, P. R., Pal-Nath, D., Mandal, A., Cam, M. C., Schwartz, A. L., & Roberts, D. D. (2019). Natural killer cell recruitment and activation are regulated by CD47 expression in the tumor microenvironment. Cancer Immunology Research, 7(9), 1547–1561.PubMedPubMedCentral
68.
Zurück zum Zitat Hosseini, H., Obradović, M. M. S., Hoffmann, M., Harper, K. L., Sosa, M. S., Werner-Klein, M., Nanduri, L. K., Werno, C., Ehrl, C., Maneck, M., Patwary, N., Haunschild, G., Gužvić, M., Reimelt, C., Grauvogl, M., Eichner, N., Weber, F., Hartkopf, A. D., Taran, F. A., et al. (2016). Early dissemination seeds metastasis in breast cancer. Nature, 540(7634), 552–558.PubMedPubMedCentral Hosseini, H., Obradović, M. M. S., Hoffmann, M., Harper, K. L., Sosa, M. S., Werner-Klein, M., Nanduri, L. K., Werno, C., Ehrl, C., Maneck, M., Patwary, N., Haunschild, G., Gužvić, M., Reimelt, C., Grauvogl, M., Eichner, N., Weber, F., Hartkopf, A. D., Taran, F. A., et al. (2016). Early dissemination seeds metastasis in breast cancer. Nature, 540(7634), 552–558.PubMedPubMedCentral
69.
Zurück zum Zitat Dongre, A., Rashidian, M., Reinhardt, F., Bagnato, A., Keckesova, Z., Ploegh, H. L., & Weinberg, R. A. (2017). Epithelial-to-mesenchymal transition contributes to immunosuppression in breast carcinomas. Cancer Research, 77(15), 3982–3989.PubMedPubMedCentral Dongre, A., Rashidian, M., Reinhardt, F., Bagnato, A., Keckesova, Z., Ploegh, H. L., & Weinberg, R. A. (2017). Epithelial-to-mesenchymal transition contributes to immunosuppression in breast carcinomas. Cancer Research, 77(15), 3982–3989.PubMedPubMedCentral
70.
Zurück zum Zitat Terry, S., Savagner, P., Ortiz-Cuaran, S., Mahjoubi, L., Saintigny, P., Thiery, J. P., & Chouaib, S. (2017). New insights into the role of EMT in tumor immune escape. Molecular Oncology, 11(7), 824–846.PubMedPubMedCentral Terry, S., Savagner, P., Ortiz-Cuaran, S., Mahjoubi, L., Saintigny, P., Thiery, J. P., & Chouaib, S. (2017). New insights into the role of EMT in tumor immune escape. Molecular Oncology, 11(7), 824–846.PubMedPubMedCentral
71.
Zurück zum Zitat Rückerl, D., & Allen, J. E. (2014). Macrophage proliferation, provenance, and plasticity in macroparasite infection. Immunological Reviews, 262(1), 113–133.PubMedPubMedCentral Rückerl, D., & Allen, J. E. (2014). Macrophage proliferation, provenance, and plasticity in macroparasite infection. Immunological Reviews, 262(1), 113–133.PubMedPubMedCentral
72.
Zurück zum Zitat Zhu, J., Zhi, Q., Zhou, B. P., Tao, M., Liu, J., & Li, W. (2016). The role of tumor associated macrophages in the tumor microenvironment: Mechanism and functions. Anti-Cancer Agents In Medicinal Chemistry, 16(9), 1133–1141.PubMed Zhu, J., Zhi, Q., Zhou, B. P., Tao, M., Liu, J., & Li, W. (2016). The role of tumor associated macrophages in the tumor microenvironment: Mechanism and functions. Anti-Cancer Agents In Medicinal Chemistry, 16(9), 1133–1141.PubMed
73.
Zurück zum Zitat Helm, O., Held-Feindt, J., Grage-Griebenow, E., Reiling, N., Ungefroren, H., Vogel, I., Krüger, U., Becker, T., Ebsen, M., Röcken, C., Kabelitz, D., Schäfer, H., & Sebens, S. (2014). Tumor-associated macrophages exhibit pro- and anti-inflammatory properties by which they impact on pancreatic tumorigenesis. International Journal of Cancer, 135(4), 843–861.PubMed Helm, O., Held-Feindt, J., Grage-Griebenow, E., Reiling, N., Ungefroren, H., Vogel, I., Krüger, U., Becker, T., Ebsen, M., Röcken, C., Kabelitz, D., Schäfer, H., & Sebens, S. (2014). Tumor-associated macrophages exhibit pro- and anti-inflammatory properties by which they impact on pancreatic tumorigenesis. International Journal of Cancer, 135(4), 843–861.PubMed
74.
Zurück zum Zitat Mishra, A. K., Banday, S., Bharadwaj, R., Ali, A., Rashid, R., Kulshreshtha, A., & Malonia, S. K. (2022). Macrophages as a potential immunotherapeutic target in solid cancers. Vaccines, 11(1), 55.PubMedPubMedCentral Mishra, A. K., Banday, S., Bharadwaj, R., Ali, A., Rashid, R., Kulshreshtha, A., & Malonia, S. K. (2022). Macrophages as a potential immunotherapeutic target in solid cancers. Vaccines, 11(1), 55.PubMedPubMedCentral
76.
Zurück zum Zitat Pinto, M. L., Rios, E., Durães, C., Ribeiro, R., Machado, J. C., Mantovani, A., Barbosa, M. A., Carneiro, F., & Oliveira, M. J. (2019). The two faces of tumor-associated macrophages and their clinical significance in colorectal cancer. Frontiers in Immunology, 10, 1875.PubMedPubMedCentral Pinto, M. L., Rios, E., Durães, C., Ribeiro, R., Machado, J. C., Mantovani, A., Barbosa, M. A., Carneiro, F., & Oliveira, M. J. (2019). The two faces of tumor-associated macrophages and their clinical significance in colorectal cancer. Frontiers in Immunology, 10, 1875.PubMedPubMedCentral
77.
Zurück zum Zitat Bonde, A. K., Tischler, V., Kumar, S., Soltermann, A., & Schwendener, R. A. (2012). Intratumoral macrophages contribute to epithelial-mesenchymal transition in solid tumors. BMC Cancer, 12, 35.PubMedPubMedCentral Bonde, A. K., Tischler, V., Kumar, S., Soltermann, A., & Schwendener, R. A. (2012). Intratumoral macrophages contribute to epithelial-mesenchymal transition in solid tumors. BMC Cancer, 12, 35.PubMedPubMedCentral
78.
Zurück zum Zitat Shahbaz, S., Bozorgmehr, N., Koleva, P., Namdar, A., Jovel, J., Fava, R. A., & Elahi, S. (2018). CD71+VISTA+ erythroid cells promote the development and function of regulatory T cells through TGF-β. PLoS Biology, 16(12), e2006649.PubMedPubMedCentral Shahbaz, S., Bozorgmehr, N., Koleva, P., Namdar, A., Jovel, J., Fava, R. A., & Elahi, S. (2018). CD71+VISTA+ erythroid cells promote the development and function of regulatory T cells through TGF-β. PLoS Biology, 16(12), e2006649.PubMedPubMedCentral
79.
Zurück zum Zitat Hao, Y., Baker, D., & Ten Dijke, P. (2019). TGF-β-mediated epithelial-mesenchymal transition and cancer metastasis. International Journal of Molecular Sciences, 20(11), 2767.PubMedPubMedCentral Hao, Y., Baker, D., & Ten Dijke, P. (2019). TGF-β-mediated epithelial-mesenchymal transition and cancer metastasis. International Journal of Molecular Sciences, 20(11), 2767.PubMedPubMedCentral
80.
Zurück zum Zitat Liu, M., Li, S., & Li, M. O. (2018). TGF-β control of adaptive immune tolerance: A break from Treg cells. Bioessays : News and Reviews In Molecular, Cellular And Developmental Biology, 40(11), e1800063.PubMed Liu, M., Li, S., & Li, M. O. (2018). TGF-β control of adaptive immune tolerance: A break from Treg cells. Bioessays : News and Reviews In Molecular, Cellular And Developmental Biology, 40(11), e1800063.PubMed
81.
Zurück zum Zitat Crane, C. A., Han, S. J., Barry, J. J., Ahn, B. J., Lanier, L. L., & Parsa, A. T. (2010). TGF-beta downregulates the activating receptor NKG2D on NK cells and CD8+ T cells in glioma patients. Neuro-oncology, 12(1), 7–13.PubMed Crane, C. A., Han, S. J., Barry, J. J., Ahn, B. J., Lanier, L. L., & Parsa, A. T. (2010). TGF-beta downregulates the activating receptor NKG2D on NK cells and CD8+ T cells in glioma patients. Neuro-oncology, 12(1), 7–13.PubMed
82.
Zurück zum Zitat Viel, S., Marçais, A., Guimaraes, F. S., Loftus, R., Rabilloud, J., Grau, M., Degouve, S., Djebali, S., Sanlaville, A., Charrier, E., Bienvenu, J., Marie, J. C., Caux, C., Marvel, J., Town, L., Huntington, N. D., Bartholin, L., Finlay, D., Smyth, M. J., & Walzer, T. (2016). TGF-β inhibits the activation and functions of NK cells by repressing the mTOR pathway. Science Signaling, 9(415), ra19.PubMed Viel, S., Marçais, A., Guimaraes, F. S., Loftus, R., Rabilloud, J., Grau, M., Degouve, S., Djebali, S., Sanlaville, A., Charrier, E., Bienvenu, J., Marie, J. C., Caux, C., Marvel, J., Town, L., Huntington, N. D., Bartholin, L., Finlay, D., Smyth, M. J., & Walzer, T. (2016). TGF-β inhibits the activation and functions of NK cells by repressing the mTOR pathway. Science Signaling, 9(415), ra19.PubMed
83.
Zurück zum Zitat Gregory, P. A., Bracken, C. P., Smith, E., Bert, A. G., Wright, J. A., Roslan, S., Morris, M., Wyatt, L., Farshid, G., Lim, Y. Y., Lindeman, G. J., Shannon, M. F., Drew, P. A., Khew-Goodall, Y., & Goodall, G. J. (2011). An autocrine TGF-beta/ZEB/miR-200 signaling network regulates establishment and maintenance of epithelial-mesenchymal transition. Molecular Biology of the Cell, 22(10), 1686–1698.PubMedPubMedCentral Gregory, P. A., Bracken, C. P., Smith, E., Bert, A. G., Wright, J. A., Roslan, S., Morris, M., Wyatt, L., Farshid, G., Lim, Y. Y., Lindeman, G. J., Shannon, M. F., Drew, P. A., Khew-Goodall, Y., & Goodall, G. J. (2011). An autocrine TGF-beta/ZEB/miR-200 signaling network regulates establishment and maintenance of epithelial-mesenchymal transition. Molecular Biology of the Cell, 22(10), 1686–1698.PubMedPubMedCentral
84.
Zurück zum Zitat David, J. M., Dominguez, C., McCampbell, K. K., Gulley, J. L., Schlom, J., & Palena, C. (2017). A novel bifunctional anti-PD-L1/TGF-β Trap fusion protein (M7824) efficiently reverts mesenchymalization of human lung cancer cells. Oncoimmunology, 6(10), e1349589.PubMedPubMedCentral David, J. M., Dominguez, C., McCampbell, K. K., Gulley, J. L., Schlom, J., & Palena, C. (2017). A novel bifunctional anti-PD-L1/TGF-β Trap fusion protein (M7824) efficiently reverts mesenchymalization of human lung cancer cells. Oncoimmunology, 6(10), e1349589.PubMedPubMedCentral
85.
Zurück zum Zitat Zhu, P., Baek, S. H., Bourk, E. M., Ohgi, K. A., Garcia-Bassets, I., Sanjo, H., Akira, S., Kotol, P. F., Glass, C. K., Rosenfeld, M. G., & Rose, D. W. (2006). Macrophage/cancer cell interactions mediate hormone resistance by a nuclear receptor derepression pathway. Cell, 124(3), 615–629.PubMed Zhu, P., Baek, S. H., Bourk, E. M., Ohgi, K. A., Garcia-Bassets, I., Sanjo, H., Akira, S., Kotol, P. F., Glass, C. K., Rosenfeld, M. G., & Rose, D. W. (2006). Macrophage/cancer cell interactions mediate hormone resistance by a nuclear receptor derepression pathway. Cell, 124(3), 615–629.PubMed
86.
Zurück zum Zitat Izumi, K., Fang, L. Y., Mizokami, A., Namiki, M., Li, L., Lin, W. J., & Chang, C. (2013). Targeting the androgen receptor with siRNA promotes prostate cancer metastasis through enhanced macrophage recruitment via CCL2/CCR2-induced STAT3 activation. EMBO Molecular Medicine, 5(9), 1383–1401.PubMedPubMedCentral Izumi, K., Fang, L. Y., Mizokami, A., Namiki, M., Li, L., Lin, W. J., & Chang, C. (2013). Targeting the androgen receptor with siRNA promotes prostate cancer metastasis through enhanced macrophage recruitment via CCL2/CCR2-induced STAT3 activation. EMBO Molecular Medicine, 5(9), 1383–1401.PubMedPubMedCentral
87.
Zurück zum Zitat Antony, J., & Huang, R. Y. (2017). AXL-Driven EMT state as a targetable conduit in cancer. Cancer Research, 77(14), 3725–3732.PubMed Antony, J., & Huang, R. Y. (2017). AXL-Driven EMT state as a targetable conduit in cancer. Cancer Research, 77(14), 3725–3732.PubMed
88.
Zurück zum Zitat Santamaria, P. G., Moreno-Bueno, G., Portillo, F., & Cano, A. (2017). EMT: Present and future in clinical oncology. Molecular Oncology, 11(7), 718–738.PubMedPubMedCentral Santamaria, P. G., Moreno-Bueno, G., Portillo, F., & Cano, A. (2017). EMT: Present and future in clinical oncology. Molecular Oncology, 11(7), 718–738.PubMedPubMedCentral
89.
Zurück zum Zitat Terry, S., Abdou, A., Engelsen, A. S. T., Buart, S., Dessen, P., Corgnac, S., Collares, D., Meurice, G., Gausdal, G., Baud, V., Saintigny, P., Lorens, J. B., Thiery, J. P., Mami-Chouaib, F., & Chouaib, S. (2019). AXL targeting overcomes human lung cancer cell resistance to NK- and CTL-mediated cytotoxicity. Cancer Immunology Research, 7(11), 1789–1802.PubMed Terry, S., Abdou, A., Engelsen, A. S. T., Buart, S., Dessen, P., Corgnac, S., Collares, D., Meurice, G., Gausdal, G., Baud, V., Saintigny, P., Lorens, J. B., Thiery, J. P., Mami-Chouaib, F., & Chouaib, S. (2019). AXL targeting overcomes human lung cancer cell resistance to NK- and CTL-mediated cytotoxicity. Cancer Immunology Research, 7(11), 1789–1802.PubMed
90.
Zurück zum Zitat Xiong, X., Liao, X., Qiu, S., Xu, H., Zhang, S., Wang, S., Ai, J., & Yang, L. (2022). CXCL8 in tumor biology and its implications for clinical translation. Frontiers in Molecular Biosciences, 9, 723846.PubMedPubMedCentral Xiong, X., Liao, X., Qiu, S., Xu, H., Zhang, S., Wang, S., Ai, J., & Yang, L. (2022). CXCL8 in tumor biology and its implications for clinical translation. Frontiers in Molecular Biosciences, 9, 723846.PubMedPubMedCentral
91.
Zurück zum Zitat Cheng, Y., Ma, X. L., Wei, Y. Q., & Wei, X. W. (2019). Potential roles and targeted therapy of the CXCLs/CXCR2 axis in cancer and inflammatory diseases. Biochimica et Biophysica Acta. Reviews on. Cancer, 1871(2), 289–312. Cheng, Y., Ma, X. L., Wei, Y. Q., & Wei, X. W. (2019). Potential roles and targeted therapy of the CXCLs/CXCR2 axis in cancer and inflammatory diseases. Biochimica et Biophysica Acta. Reviews on. Cancer, 1871(2), 289–312.
92.
Zurück zum Zitat Serafini, P., Mgebroff, S., Noonan, K., & Borrello, I. (2008). Myeloid-derived suppressor cells promote cross-tolerance in B-cell lymphoma by expanding regulatory T cells. Cancer Research, 68(13), 5439–5449.PubMedPubMedCentral Serafini, P., Mgebroff, S., Noonan, K., & Borrello, I. (2008). Myeloid-derived suppressor cells promote cross-tolerance in B-cell lymphoma by expanding regulatory T cells. Cancer Research, 68(13), 5439–5449.PubMedPubMedCentral
93.
Zurück zum Zitat Hanson, E. M., Clements, V. K., Sinha, P., Ilkovitch, D., & Ostrand-Rosenberg, S. (2009). Myeloid-derived suppressor cells down-regulate L-selectin expression on CD4+ and CD8+ T cells. Journal of Immunology (Baltimore, Md.: 1950), 183(2), 937–944.PubMed Hanson, E. M., Clements, V. K., Sinha, P., Ilkovitch, D., & Ostrand-Rosenberg, S. (2009). Myeloid-derived suppressor cells down-regulate L-selectin expression on CD4+ and CD8+ T cells. Journal of Immunology (Baltimore, Md.: 1950), 183(2), 937–944.PubMed
94.
Zurück zum Zitat Geis-Asteggiante, L., Belew, A. T., Clements, V. K., Edwards, N. J., Ostrand-Rosenberg, S., El-Sayed, N. M., & Fenselau, C. (2018). Differential content of proteins, mRNAs, and miRNAs suggests that MDSC and their exosomes may mediate distinct immune suppressive functions. Journal of Proteome Research, 17(1), 486–498.PubMed Geis-Asteggiante, L., Belew, A. T., Clements, V. K., Edwards, N. J., Ostrand-Rosenberg, S., El-Sayed, N. M., & Fenselau, C. (2018). Differential content of proteins, mRNAs, and miRNAs suggests that MDSC and their exosomes may mediate distinct immune suppressive functions. Journal of Proteome Research, 17(1), 486–498.PubMed
95.
Zurück zum Zitat Mao, F. Y., Zhao, Y. L., Lv, Y. P., Teng, Y. S., Kong, H., Liu, Y. G., Wu, X. L., Hao, C. J., Chen, W., Duan, M. B., Han, B., Ma, Q., Wang, T. T., Peng, L. S., Zhang, J. Y., Cheng, P., Su, C. Y., Fu, X. L., Zou, Q. M., et al. (2018). CD45+CD33lowCD11bdim myeloid-derived suppressor cells suppress CD8+ T cell activity via the IL-6/IL-8-arginase I axis in human gastric cancer. Cell Death & Disease, 9(7), 763. Mao, F. Y., Zhao, Y. L., Lv, Y. P., Teng, Y. S., Kong, H., Liu, Y. G., Wu, X. L., Hao, C. J., Chen, W., Duan, M. B., Han, B., Ma, Q., Wang, T. T., Peng, L. S., Zhang, J. Y., Cheng, P., Su, C. Y., Fu, X. L., Zou, Q. M., et al. (2018). CD45+CD33lowCD11bdim myeloid-derived suppressor cells suppress CD8+ T cell activity via the IL-6/IL-8-arginase I axis in human gastric cancer. Cell Death & Disease, 9(7), 763.
96.
Zurück zum Zitat Chi, N., Tan, Z., Ma, K., Bao, L., & Yun, Z. (2014). Increased circulating myeloid-derived suppressor cells correlate with cancer stages, interleukin-8 and -6 in prostate cancer. International Journal of Clinical and Experimental Medicine, 7(10), 3181–3192.PubMedPubMedCentral Chi, N., Tan, Z., Ma, K., Bao, L., & Yun, Z. (2014). Increased circulating myeloid-derived suppressor cells correlate with cancer stages, interleukin-8 and -6 in prostate cancer. International Journal of Clinical and Experimental Medicine, 7(10), 3181–3192.PubMedPubMedCentral
97.
Zurück zum Zitat Jiang, Y., & Zhan, H. (2020). Communication between EMT and PD-L1 signaling: New insights into tumor immune evasion. Cancer Letters, 468, 72–81.PubMed Jiang, Y., & Zhan, H. (2020). Communication between EMT and PD-L1 signaling: New insights into tumor immune evasion. Cancer Letters, 468, 72–81.PubMed
98.
Zurück zum Zitat Noman, M. Z., Janji, B., Abdou, A., Hasmim, M., Terry, S., Tan, T. Z., Mami-Chouaib, F., Thiery, J. P., & Chouaib, S. (2017). The immune checkpoint ligand PD-L1 is upregulated in EMT-activated human breast cancer cells by a mechanism involving ZEB-1 and miR-200. Oncoimmunology, 6(1), e1263412.PubMedPubMedCentral Noman, M. Z., Janji, B., Abdou, A., Hasmim, M., Terry, S., Tan, T. Z., Mami-Chouaib, F., Thiery, J. P., & Chouaib, S. (2017). The immune checkpoint ligand PD-L1 is upregulated in EMT-activated human breast cancer cells by a mechanism involving ZEB-1 and miR-200. Oncoimmunology, 6(1), e1263412.PubMedPubMedCentral
99.
Zurück zum Zitat Mathew, M., Safyan, R. A., & Shu, C. A. (2017). PD-L1 as a biomarker in NSCLC: Challenges and future directions. Annals of Translational Medicine, 5(18), 375.PubMedPubMedCentral Mathew, M., Safyan, R. A., & Shu, C. A. (2017). PD-L1 as a biomarker in NSCLC: Challenges and future directions. Annals of Translational Medicine, 5(18), 375.PubMedPubMedCentral
100.
Zurück zum Zitat Kim, S., Koh, J., Kim, M. Y., Kwon, D., Go, H., Kim, Y. A., Jeon, Y. K., & Chung, D. H. (2016). PD-L1 expression is associated with epithelial-to-mesenchymal transition in adenocarcinoma of the lung. Human Pathology, 58, 7–14.PubMed Kim, S., Koh, J., Kim, M. Y., Kwon, D., Go, H., Kim, Y. A., Jeon, Y. K., & Chung, D. H. (2016). PD-L1 expression is associated with epithelial-to-mesenchymal transition in adenocarcinoma of the lung. Human Pathology, 58, 7–14.PubMed
101.
Zurück zum Zitat Ock, C. Y., Kim, S., Keam, B., Kim, M., Kim, T. M., Kim, J. H., Jeon, Y. K., Lee, J. S., Kwon, S. K., Hah, J. H., Kwon, T. K., Kim, D. W., Wu, H. G., Sung, M. W., & Heo, D. S. (2016). PD-L1 expression is associated with epithelial-mesenchymal transition in head and neck squamous cell carcinoma. Oncotarget, 7(13), 15901–15914.PubMedPubMedCentral Ock, C. Y., Kim, S., Keam, B., Kim, M., Kim, T. M., Kim, J. H., Jeon, Y. K., Lee, J. S., Kwon, S. K., Hah, J. H., Kwon, T. K., Kim, D. W., Wu, H. G., Sung, M. W., & Heo, D. S. (2016). PD-L1 expression is associated with epithelial-mesenchymal transition in head and neck squamous cell carcinoma. Oncotarget, 7(13), 15901–15914.PubMedPubMedCentral
102.
Zurück zum Zitat Tsutsumi, S., Saeki, H., Nakashima, Y., Ito, S., Oki, E., Morita, M., Oda, Y., Okano, S., & Maehara, Y. (2017). Programmed death-ligand 1 expression at tumor invasive front is associated with epithelial-mesenchymal transition and poor prognosis in esophageal squamous cell carcinoma. Cancer Science, 108(6), 1119–1127.PubMedPubMedCentral Tsutsumi, S., Saeki, H., Nakashima, Y., Ito, S., Oki, E., Morita, M., Oda, Y., Okano, S., & Maehara, Y. (2017). Programmed death-ligand 1 expression at tumor invasive front is associated with epithelial-mesenchymal transition and poor prognosis in esophageal squamous cell carcinoma. Cancer Science, 108(6), 1119–1127.PubMedPubMedCentral
103.
Zurück zum Zitat Qiu, X. Y., Hu, D. X., Chen, W. Q., Chen, R. Q., Qian, S. R., Li, C. Y., Li, Y. J., Xiong, X. X., Liu, D., Pan, F., Yu, S. B., & Chen, X. Q. (2018). PD-L1 confers glioblastoma multiforme malignancy via Ras binding and Ras/Erk/EMT activation. Biochimica et biophysica acta. Molecular Basis of Disease, 1864(5 Pt A), 1754–1769.PubMed Qiu, X. Y., Hu, D. X., Chen, W. Q., Chen, R. Q., Qian, S. R., Li, C. Y., Li, Y. J., Xiong, X. X., Liu, D., Pan, F., Yu, S. B., & Chen, X. Q. (2018). PD-L1 confers glioblastoma multiforme malignancy via Ras binding and Ras/Erk/EMT activation. Biochimica et biophysica acta. Molecular Basis of Disease, 1864(5 Pt A), 1754–1769.PubMed
104.
Zurück zum Zitat Alsuliman, A., Colak, D., Al-Harazi, O., Fitwi, H., Tulbah, A., Al-Tweigeri, T., Al-Alwan, M., & Ghebeh, H. (2015). Bidirectional crosstalk between PD-L1 expression and epithelial to mesenchymal transition: Significance in claudin-low breast cancer cells. Molecular Cancer, 14, 149.PubMedPubMedCentral Alsuliman, A., Colak, D., Al-Harazi, O., Fitwi, H., Tulbah, A., Al-Tweigeri, T., Al-Alwan, M., & Ghebeh, H. (2015). Bidirectional crosstalk between PD-L1 expression and epithelial to mesenchymal transition: Significance in claudin-low breast cancer cells. Molecular Cancer, 14, 149.PubMedPubMedCentral
105.
Zurück zum Zitat Bouillez, A., Rajabi, H., Jin, C., Samur, M., Tagde, A., Alam, M., Hiraki, M., Maeda, T., Hu, X., Adeegbe, D., Kharbanda, S., Wong, K. K., & Kufe, D. (2017). MUC1-C integrates PD-L1 induction with repression of immune effectors in non-small-cell lung cancer. Oncogene, 36(28), 4037–4046.PubMedPubMedCentral Bouillez, A., Rajabi, H., Jin, C., Samur, M., Tagde, A., Alam, M., Hiraki, M., Maeda, T., Hu, X., Adeegbe, D., Kharbanda, S., Wong, K. K., & Kufe, D. (2017). MUC1-C integrates PD-L1 induction with repression of immune effectors in non-small-cell lung cancer. Oncogene, 36(28), 4037–4046.PubMedPubMedCentral
106.
Zurück zum Zitat Maeda, T., Hiraki, M., Jin, C., Rajabi, H., Tagde, A., Alam, M., Bouillez, A., Hu, X., Suzuki, Y., Miyo, M., Hata, T., Hinohara, K., & Kufe, D. (2018). MUC1-C induces PD-L1 and immune evasion in triple-negative breast cancer. Cancer research, 78(1), 205–215.PubMed Maeda, T., Hiraki, M., Jin, C., Rajabi, H., Tagde, A., Alam, M., Bouillez, A., Hu, X., Suzuki, Y., Miyo, M., Hata, T., Hinohara, K., & Kufe, D. (2018). MUC1-C induces PD-L1 and immune evasion in triple-negative breast cancer. Cancer research, 78(1), 205–215.PubMed
107.
Zurück zum Zitat Kumar, S., Davra, V., Obr, A. E., Geng, K., Wood, T. L., De Lorenzo, M. S., & Birge, R. B. (2017). Crk adaptor protein promotes PD-L1 expression, EMT and immune evasion in a murine model of triple-negative breast cancer. Oncoimmunology, 7(1), e1376155.PubMedPubMedCentral Kumar, S., Davra, V., Obr, A. E., Geng, K., Wood, T. L., De Lorenzo, M. S., & Birge, R. B. (2017). Crk adaptor protein promotes PD-L1 expression, EMT and immune evasion in a murine model of triple-negative breast cancer. Oncoimmunology, 7(1), e1376155.PubMedPubMedCentral
108.
Zurück zum Zitat Suda, K., Rozeboom, L., Rivard, C. J., Yu, H., Ellison, K., Melnick, M. A. C., Hinz, T. K., Chan, D., Heasley, L. E., Politi, K., Mitsudomi, T., & Hirsch, F. R. (2017). Therapy-induced E-cadherin downregulation alters expression of programmed death ligand-1 in lung cancer cells. Lung Cancer (Amsterdam, Netherlands), 109, 1–8.PubMed Suda, K., Rozeboom, L., Rivard, C. J., Yu, H., Ellison, K., Melnick, M. A. C., Hinz, T. K., Chan, D., Heasley, L. E., Politi, K., Mitsudomi, T., & Hirsch, F. R. (2017). Therapy-induced E-cadherin downregulation alters expression of programmed death ligand-1 in lung cancer cells. Lung Cancer (Amsterdam, Netherlands), 109, 1–8.PubMed
109.
Zurück zum Zitat Martinez-Ciarpaglini, C., Oltra, S., Roselló, S., Roda, D., Mongort, C., Carrasco, F., Gonzalez, J., Santonja, F., Tarazona, N., Huerta, M., Espí, A., Ribas, G., Ferrández, A., Navarro, S., & Cervantes, A. (2019). Low miR200c expression in tumor budding of invasive front predicts worse survival in patients with localized colon cancer and is related to PD-L1 overexpression. Modern Pathology, Inc, 32(2), 306–313. Martinez-Ciarpaglini, C., Oltra, S., Roselló, S., Roda, D., Mongort, C., Carrasco, F., Gonzalez, J., Santonja, F., Tarazona, N., Huerta, M., Espí, A., Ribas, G., Ferrández, A., Navarro, S., & Cervantes, A. (2019). Low miR200c expression in tumor budding of invasive front predicts worse survival in patients with localized colon cancer and is related to PD-L1 overexpression. Modern Pathology, Inc, 32(2), 306–313.
110.
Zurück zum Zitat Ding, X., Ji, J., Jiang, J., Cai, Q., Wang, C., Shi, M., Yu, Y., Zhu, Z., & Zhang, J. (2018). HGF-mediated crosstalk between cancer-associated fibroblasts and MET-unamplified gastric cancer cells activates coordinated tumorigenesis and metastasis. Cell Death & Disease, 9(9), 867. Ding, X., Ji, J., Jiang, J., Cai, Q., Wang, C., Shi, M., Yu, Y., Zhu, Z., & Zhang, J. (2018). HGF-mediated crosstalk between cancer-associated fibroblasts and MET-unamplified gastric cancer cells activates coordinated tumorigenesis and metastasis. Cell Death & Disease, 9(9), 867.
111.
Zurück zum Zitat Dong, Y., Zheng, Q., Wang, Z., Lin, X., You, Y., Wu, S., Wang, Y., Hu, C., Xie, X., Chen, J., Gao, D., Zhao, Y., Wu, W., Liu, Y., Ren, Z., Chen, R., & Cui, J. (2019). Higher matrix stiffness as an independent initiator triggers epithelial-mesenchymal transition and facilitates HCC metastasis. Journal of Hematology & Oncology, 12(1), 112. Dong, Y., Zheng, Q., Wang, Z., Lin, X., You, Y., Wu, S., Wang, Y., Hu, C., Xie, X., Chen, J., Gao, D., Zhao, Y., Wu, W., Liu, Y., Ren, Z., Chen, R., & Cui, J. (2019). Higher matrix stiffness as an independent initiator triggers epithelial-mesenchymal transition and facilitates HCC metastasis. Journal of Hematology & Oncology, 12(1), 112.
112.
Zurück zum Zitat Zhang, K., Corsa, C. A., Ponik, S. M., Prior, J. L., Piwnica-Worms, D., Eliceiri, K. W., Keely, P. J., & Longmore, G. D. (2013). The collagen receptor discoidin domain receptor 2 stabilizes SNAIL1 to facilitate breast cancer metastasis. Nature Cell Biology, 15(6), 677–687.PubMedPubMedCentral Zhang, K., Corsa, C. A., Ponik, S. M., Prior, J. L., Piwnica-Worms, D., Eliceiri, K. W., Keely, P. J., & Longmore, G. D. (2013). The collagen receptor discoidin domain receptor 2 stabilizes SNAIL1 to facilitate breast cancer metastasis. Nature Cell Biology, 15(6), 677–687.PubMedPubMedCentral
113.
Zurück zum Zitat Sim, W. J., Iyengar, P. V., Lama, D., Lui, S. K. L., Ng, H. C., Haviv-Shapira, L., Domany, E., Kappei, D., Tan, T. Z., Saei, A., Jaynes, P. W., Verma, C. S., Kumar, A. P., Rouanne, M., Ha, H. K., Radulescu, C., Ten Dijke, P., Eichhorn, P. J. A., & Thiery, J. P. (2019). c-Met activation leads to the establishment of a TGFβ-receptor regulatory network in bladder cancer progression. Nature Communications, 10(1), 4349.PubMedPubMedCentral Sim, W. J., Iyengar, P. V., Lama, D., Lui, S. K. L., Ng, H. C., Haviv-Shapira, L., Domany, E., Kappei, D., Tan, T. Z., Saei, A., Jaynes, P. W., Verma, C. S., Kumar, A. P., Rouanne, M., Ha, H. K., Radulescu, C., Ten Dijke, P., Eichhorn, P. J. A., & Thiery, J. P. (2019). c-Met activation leads to the establishment of a TGFβ-receptor regulatory network in bladder cancer progression. Nature Communications, 10(1), 4349.PubMedPubMedCentral
114.
Zurück zum Zitat Glodde, N., Bald, T., van den Boorn-Konijnenberg, D., Nakamura, K., O'Donnell, J. S., Szczepanski, S., Brandes, M., Eickhoff, S., Das, I., Shridhar, N., Hinze, D., Rogava, M., van der Sluis, T. C., Ruotsalainen, J. J., Gaffal, E., Landsberg, J., Ludwig, K. U., Wilhelm, C., Riek-Burchardt, M., et al. (2017). Reactive neutrophil responses dependent on the receptor tyrosine kinase c-MET limit cancer immunotherapy. Immunity, 47(4), 789–802.e9.PubMed Glodde, N., Bald, T., van den Boorn-Konijnenberg, D., Nakamura, K., O'Donnell, J. S., Szczepanski, S., Brandes, M., Eickhoff, S., Das, I., Shridhar, N., Hinze, D., Rogava, M., van der Sluis, T. C., Ruotsalainen, J. J., Gaffal, E., Landsberg, J., Ludwig, K. U., Wilhelm, C., Riek-Burchardt, M., et al. (2017). Reactive neutrophil responses dependent on the receptor tyrosine kinase c-MET limit cancer immunotherapy. Immunity, 47(4), 789–802.e9.PubMed
115.
Zurück zum Zitat Jing, X., Yang, F., Shao, C., Wei, K., Xie, M., Shen, H., & Shu, Y. (2019). Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Molecular Cancer, 18(1), 157.PubMedPubMedCentral Jing, X., Yang, F., Shao, C., Wei, K., Xie, M., Shen, H., & Shu, Y. (2019). Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Molecular Cancer, 18(1), 157.PubMedPubMedCentral
116.
Zurück zum Zitat Hou, P. C., Li, Y. H., Lin, S. C., Lin, S. C., Lee, J. C., Lin, B. W., Liou, J. P., Chang, J. Y., Kuo, C. C., Liu, Y. M., Sun, H. S., & Tsai, S. J. (2017). Hypoxia-induced downregulation of DUSP-2 phosphatase drives colon cancer stemness. Cancer Research, 77(16), 4305–4316.PubMed Hou, P. C., Li, Y. H., Lin, S. C., Lin, S. C., Lee, J. C., Lin, B. W., Liou, J. P., Chang, J. Y., Kuo, C. C., Liu, Y. M., Sun, H. S., & Tsai, S. J. (2017). Hypoxia-induced downregulation of DUSP-2 phosphatase drives colon cancer stemness. Cancer Research, 77(16), 4305–4316.PubMed
117.
Zurück zum Zitat Calin, G. A., & Pardini, B. (2019). Mir-roring hypoxia in EGFR-TKI tolerance. Nature Metabolism, 1(4), 418–419.PubMed Calin, G. A., & Pardini, B. (2019). Mir-roring hypoxia in EGFR-TKI tolerance. Nature Metabolism, 1(4), 418–419.PubMed
118.
Zurück zum Zitat Ye, Y., Hu, Q., Chen, H., Liang, K., Yuan, Y., Xiang, Y., Ruan, H., Zhang, Z., Song, A., Zhang, H., Liu, L., Diao, L., Lou, Y., Zhou, B., Wang, L., Zhou, S., Gao, J., Jonasch, E., Lin, S. H., et al. (2019). Characterization of hypoxia-associated molecular features to aid hypoxia-targeted therapy. Nature Metabolism, 1(4), 431–444.PubMedPubMedCentral Ye, Y., Hu, Q., Chen, H., Liang, K., Yuan, Y., Xiang, Y., Ruan, H., Zhang, Z., Song, A., Zhang, H., Liu, L., Diao, L., Lou, Y., Zhou, B., Wang, L., Zhou, S., Gao, J., Jonasch, E., Lin, S. H., et al. (2019). Characterization of hypoxia-associated molecular features to aid hypoxia-targeted therapy. Nature Metabolism, 1(4), 431–444.PubMedPubMedCentral
119.
Zurück zum Zitat Gonzalez, D. M., & Medici, D. (2014). Signaling mechanisms of the epithelial-mesenchymal transition. Science Signaling, 7(344), re8.PubMedPubMedCentral Gonzalez, D. M., & Medici, D. (2014). Signaling mechanisms of the epithelial-mesenchymal transition. Science Signaling, 7(344), re8.PubMedPubMedCentral
120.
Zurück zum Zitat Sahlgren, C., Gustafsson, M. V., Jin, S., Poellinger, L., & Lendahl, U. (2008). Notch signaling mediates hypoxia-induced tumor cell migration and invasion. Proceedings of the National Academy of Sciences of the United States of America, 105(17), 6392–6397.PubMedPubMedCentral Sahlgren, C., Gustafsson, M. V., Jin, S., Poellinger, L., & Lendahl, U. (2008). Notch signaling mediates hypoxia-induced tumor cell migration and invasion. Proceedings of the National Academy of Sciences of the United States of America, 105(17), 6392–6397.PubMedPubMedCentral
121.
Zurück zum Zitat Schito, L., & Semenza, G. L. (2016). Hypoxia-inducible factors: Master regulators of cancer progression. Trends in Cancer, 2(12), 758–770.PubMed Schito, L., & Semenza, G. L. (2016). Hypoxia-inducible factors: Master regulators of cancer progression. Trends in Cancer, 2(12), 758–770.PubMed
122.
Zurück zum Zitat Wang, J., Tian, L., Khan, M. N., Zhang, L., Chen, Q., Zhao, Y., Yan, Q., Fu, L., & Liu, J. (2018). Ginsenoside Rg3 sensitizes hypoxic lung cancer cells to cisplatin via blocking of NF-κB mediated epithelial-mesenchymal transition and stemness. Cancer Letters, 415, 73–85.PubMed Wang, J., Tian, L., Khan, M. N., Zhang, L., Chen, Q., Zhao, Y., Yan, Q., Fu, L., & Liu, J. (2018). Ginsenoside Rg3 sensitizes hypoxic lung cancer cells to cisplatin via blocking of NF-κB mediated epithelial-mesenchymal transition and stemness. Cancer Letters, 415, 73–85.PubMed
123.
Zurück zum Zitat Qin, Y., Liu, H. J., Li, M., Zhai, D. H., Tang, Y. H., Yang, L., Qiao, K. L., Yang, J. H., Zhong, W. L., Zhang, Q., Liu, Y. R., Yang, G., Sun, T., & Yang, C. (2018). Salidroside improves the hypoxic tumor microenvironment and reverses the drug resistance of platinum drugs via HIF-1α signaling pathway. EBioMedicine, 38, 25–36.PubMedPubMedCentral Qin, Y., Liu, H. J., Li, M., Zhai, D. H., Tang, Y. H., Yang, L., Qiao, K. L., Yang, J. H., Zhong, W. L., Zhang, Q., Liu, Y. R., Yang, G., Sun, T., & Yang, C. (2018). Salidroside improves the hypoxic tumor microenvironment and reverses the drug resistance of platinum drugs via HIF-1α signaling pathway. EBioMedicine, 38, 25–36.PubMedPubMedCentral
124.
Zurück zum Zitat Spranger, S., Bao, R., & Gajewski, T. F. (2015). Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature, 523(7559), 231–235.PubMed Spranger, S., Bao, R., & Gajewski, T. F. (2015). Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature, 523(7559), 231–235.PubMed
125.
Zurück zum Zitat Spranger, S., Dai, D., Horton, B., & Gajewski, T. F. (2017). Tumor-residing Batf3 dendritic cells are required for effector T cell trafficking and adoptive T cell therapy. Cancer Cell, 31(5), 711–723.e4.PubMedPubMedCentral Spranger, S., Dai, D., Horton, B., & Gajewski, T. F. (2017). Tumor-residing Batf3 dendritic cells are required for effector T cell trafficking and adoptive T cell therapy. Cancer Cell, 31(5), 711–723.e4.PubMedPubMedCentral
126.
Zurück zum Zitat George, S., Miao, D., Demetri, G. D., Adeegbe, D., Rodig, S. J., Shukla, S., Lipschitz, M., Amin-Mansour, A., Raut, C. P., Carter, S. L., Hammerman, P., Freeman, G. J., Wu, C. J., Ott, P. A., Wong, K. K., & Van Allen, E. M. (2017). Loss of PTEN is associated with resistance to anti-PD-1 checkpoint blockade therapy in metastatic uterine leiomyosarcoma. Immunity, 46(2), 197–204.PubMedPubMedCentral George, S., Miao, D., Demetri, G. D., Adeegbe, D., Rodig, S. J., Shukla, S., Lipschitz, M., Amin-Mansour, A., Raut, C. P., Carter, S. L., Hammerman, P., Freeman, G. J., Wu, C. J., Ott, P. A., Wong, K. K., & Van Allen, E. M. (2017). Loss of PTEN is associated with resistance to anti-PD-1 checkpoint blockade therapy in metastatic uterine leiomyosarcoma. Immunity, 46(2), 197–204.PubMedPubMedCentral
127.
Zurück zum Zitat Terry, S., Faouzi Zaarour, R., Hassan Venkatesh, G., Francis, A., El-Sayed, W., Buart, S., Bravo, P., Thiery, J., & Chouaib, S. (2018). Role of hypoxic stress in regulating tumor immunogenicity, resistance and plasticity. International Journal of Molecular Sciences, 19(10), 3044.PubMedPubMedCentral Terry, S., Faouzi Zaarour, R., Hassan Venkatesh, G., Francis, A., El-Sayed, W., Buart, S., Bravo, P., Thiery, J., & Chouaib, S. (2018). Role of hypoxic stress in regulating tumor immunogenicity, resistance and plasticity. International Journal of Molecular Sciences, 19(10), 3044.PubMedPubMedCentral
128.
Zurück zum Zitat Malek, R., Wang, H., Taparra, K., & Tran, P. T. (2017). Therapeutic targeting of epithelial plasticity programs: focus on the epithelial-mesenchymal transition. Cells, Tissues, Organs, 203(2), 114–127.PubMed Malek, R., Wang, H., Taparra, K., & Tran, P. T. (2017). Therapeutic targeting of epithelial plasticity programs: focus on the epithelial-mesenchymal transition. Cells, Tissues, Organs, 203(2), 114–127.PubMed
129.
Zurück zum Zitat Holmgaard, R. B., Schaer, D. A., Li, Y., Castaneda, S. P., Murphy, M. Y., Xu, X., Inigo, I., Dobkin, J., Manro, J. R., Iversen, P. W., Surguladze, D., Hall, G. E., Novosiadly, R. D., Benhadji, K. A., Plowman, G. D., Kalos, M., & Driscoll, K. E. (2018). Targeting the TGFβ pathway with galunisertib, a TGFβRI small molecule inhibitor, promotes anti-tumor immunity leading to durable, complete responses, as monotherapy and in combination with checkpoint blockade. Journal For Immunotherapy of Cancer, 6(1), 47.PubMedPubMedCentral Holmgaard, R. B., Schaer, D. A., Li, Y., Castaneda, S. P., Murphy, M. Y., Xu, X., Inigo, I., Dobkin, J., Manro, J. R., Iversen, P. W., Surguladze, D., Hall, G. E., Novosiadly, R. D., Benhadji, K. A., Plowman, G. D., Kalos, M., & Driscoll, K. E. (2018). Targeting the TGFβ pathway with galunisertib, a TGFβRI small molecule inhibitor, promotes anti-tumor immunity leading to durable, complete responses, as monotherapy and in combination with checkpoint blockade. Journal For Immunotherapy of Cancer, 6(1), 47.PubMedPubMedCentral
130.
Zurück zum Zitat Sow, H. S., Ren, J., Camps, M., Ossendorp, F., & Ten Dijke, P. (2019). Combined inhibition of TGF-β signaling and the PD-L1 immune checkpoint is differentially effective in tumor models. Cells, 8(4), 320.PubMedPubMedCentral Sow, H. S., Ren, J., Camps, M., Ossendorp, F., & Ten Dijke, P. (2019). Combined inhibition of TGF-β signaling and the PD-L1 immune checkpoint is differentially effective in tumor models. Cells, 8(4), 320.PubMedPubMedCentral
131.
Zurück zum Zitat Yang, Y., Xu, W., Peng, D., Wang, H., Zhang, X., Wang, H., Xiao, F., Zhu, Y., Ji, Y., Gulukota, K., Helseth, D. L., Jr., Mangold, K. A., Sullivan, M., Kaul, K., Wang, E., Prabhakar, B. S., Li, J., Wu, X., Wang, L., & Seth, P. (2019). An oncolytic adenovirus targeting transforming growth factor β inhibits protumorigenic signals and produces immune activation: A novel approach to enhance anti-PD-1 and anti-CTLA-4 therapy. Human gene therapy, 30(9), 1117–1132.PubMedPubMedCentral Yang, Y., Xu, W., Peng, D., Wang, H., Zhang, X., Wang, H., Xiao, F., Zhu, Y., Ji, Y., Gulukota, K., Helseth, D. L., Jr., Mangold, K. A., Sullivan, M., Kaul, K., Wang, E., Prabhakar, B. S., Li, J., Wu, X., Wang, L., & Seth, P. (2019). An oncolytic adenovirus targeting transforming growth factor β inhibits protumorigenic signals and produces immune activation: A novel approach to enhance anti-PD-1 and anti-CTLA-4 therapy. Human gene therapy, 30(9), 1117–1132.PubMedPubMedCentral
132.
Zurück zum Zitat Dodagatta-Marri, E., Meyer, D. S., Reeves, M. Q., Paniagua, R., To, M. D., Binnewies, M., Broz, M. L., Mori, H., Wu, D., Adoumie, M., Del Rosario, R., Li, O., Buchmann, T., Liang, B., Malato, J., Arce Vargus, F., Sheppard, D., Hann, B. C., Mirza, A., et al. (2019). α-PD-1 therapy elevates Treg/Th balance and increases tumor cell pSmad3 that are both targeted by α-TGFβ antibody to promote durable rejection and immunity in squamous cell carcinomas. Journal for Immunotherapy of Cancer, 7(1), 62.PubMedPubMedCentral Dodagatta-Marri, E., Meyer, D. S., Reeves, M. Q., Paniagua, R., To, M. D., Binnewies, M., Broz, M. L., Mori, H., Wu, D., Adoumie, M., Del Rosario, R., Li, O., Buchmann, T., Liang, B., Malato, J., Arce Vargus, F., Sheppard, D., Hann, B. C., Mirza, A., et al. (2019). α-PD-1 therapy elevates Treg/Th balance and increases tumor cell pSmad3 that are both targeted by α-TGFβ antibody to promote durable rejection and immunity in squamous cell carcinomas. Journal for Immunotherapy of Cancer, 7(1), 62.PubMedPubMedCentral
133.
Zurück zum Zitat Knudson, K. M., Hicks, K. C., Luo, X., Chen, J. Q., Schlom, J., & Gameiro, S. R. (2018). M7824, a novel bifunctional anti-PD-L1/TGFβ Trap fusion protein, promotes anti-tumor efficacy as monotherapy and in combination with vaccine. Oncoimmunology, 7(5), e1426519.PubMedPubMedCentral Knudson, K. M., Hicks, K. C., Luo, X., Chen, J. Q., Schlom, J., & Gameiro, S. R. (2018). M7824, a novel bifunctional anti-PD-L1/TGFβ Trap fusion protein, promotes anti-tumor efficacy as monotherapy and in combination with vaccine. Oncoimmunology, 7(5), e1426519.PubMedPubMedCentral
134.
Zurück zum Zitat Lan, Y., Zhang, D., Xu, C., Hance, K. W., Marelli, B., Qi, J., Yu, H., Qin, G., Sircar, A., Hernández, V. M., Jenkins, M. H., Fontana, R. E., Deshpande, A., Locke, G., Sabzevari, H., Radvanyi, L., & Lo, K. M. (2018). Enhanced preclinical antitumor activity of M7824, a bifunctional fusion protein simultaneously targeting PD-L1 and TGF-β. Science Translational Medicine, 10(424), eaan5488.PubMed Lan, Y., Zhang, D., Xu, C., Hance, K. W., Marelli, B., Qi, J., Yu, H., Qin, G., Sircar, A., Hernández, V. M., Jenkins, M. H., Fontana, R. E., Deshpande, A., Locke, G., Sabzevari, H., Radvanyi, L., & Lo, K. M. (2018). Enhanced preclinical antitumor activity of M7824, a bifunctional fusion protein simultaneously targeting PD-L1 and TGF-β. Science Translational Medicine, 10(424), eaan5488.PubMed
135.
Zurück zum Zitat Grenga, I., Donahue, R. N., Gargulak, M. L., Lepone, L. M., Roselli, M., Bilusic, M., & Schlom, J. (2018). Anti-PD-L1/TGFβR2 (M7824) fusion protein induces immunogenic modulation of human urothelial carcinoma cell lines, rendering them more susceptible to immune-mediated recognition and lysis. Urologic Oncology, 36(3), 93.e1–93.e11.PubMed Grenga, I., Donahue, R. N., Gargulak, M. L., Lepone, L. M., Roselli, M., Bilusic, M., & Schlom, J. (2018). Anti-PD-L1/TGFβR2 (M7824) fusion protein induces immunogenic modulation of human urothelial carcinoma cell lines, rendering them more susceptible to immune-mediated recognition and lysis. Urologic Oncology, 36(3), 93.e1–93.e11.PubMed
136.
Zurück zum Zitat Strauss, J., Heery, C. R., Schlom, J., Madan, R. A., Cao, L., Kang, Z., Lamping, E., Marté, J. L., Donahue, R. N., Grenga, I., Cordes, L., Christensen, O., Mahnke, L., Helwig, C., & Gulley, J. L. (2018). Phase I trial of M7824 (MSB0011359C), a bifunctional fusion protein targeting PD-L1 and TGFβ, in advanced solid tumors. Clinical Cancer Research, 24(6), 1287–1295.PubMedPubMedCentral Strauss, J., Heery, C. R., Schlom, J., Madan, R. A., Cao, L., Kang, Z., Lamping, E., Marté, J. L., Donahue, R. N., Grenga, I., Cordes, L., Christensen, O., Mahnke, L., Helwig, C., & Gulley, J. L. (2018). Phase I trial of M7824 (MSB0011359C), a bifunctional fusion protein targeting PD-L1 and TGFβ, in advanced solid tumors. Clinical Cancer Research, 24(6), 1287–1295.PubMedPubMedCentral
137.
Zurück zum Zitat Kang, S. H., Keam, B., Ahn, Y. O., Park, H. R., Kim, M., Kim, T. M., Kim, D. W., & Heo, D. S. (2018). Inhibition of MEK with trametinib enhances the efficacy of anti-PD-L1 inhibitor by regulating anti-tumor immunity in head and neck squamous cell carcinoma. Oncoimmunology, 8(1), e1515057.PubMedPubMedCentral Kang, S. H., Keam, B., Ahn, Y. O., Park, H. R., Kim, M., Kim, T. M., Kim, D. W., & Heo, D. S. (2018). Inhibition of MEK with trametinib enhances the efficacy of anti-PD-L1 inhibitor by regulating anti-tumor immunity in head and neck squamous cell carcinoma. Oncoimmunology, 8(1), e1515057.PubMedPubMedCentral
138.
Zurück zum Zitat Hellmann, M. D., Kim, T. W., Lee, C. B., Goh, B. C., Miller, W. H., Jr., Oh, D. Y., Jamal, R., Chee, C. E., Chow, L. Q. M., Gainor, J. F., Desai, J., Solomon, B. J., Das Thakur, M., Pitcher, B., Foster, P., Hernandez, G., Wongchenko, M. J., Cha, E., Bang, Y. J., et al. (2019). Phase Ib study of atezolizumab combined with cobimetinib in patients with solid tumors. Annals of Oncology, 30(7), 1134–1142.PubMedPubMedCentral Hellmann, M. D., Kim, T. W., Lee, C. B., Goh, B. C., Miller, W. H., Jr., Oh, D. Y., Jamal, R., Chee, C. E., Chow, L. Q. M., Gainor, J. F., Desai, J., Solomon, B. J., Das Thakur, M., Pitcher, B., Foster, P., Hernandez, G., Wongchenko, M. J., Cha, E., Bang, Y. J., et al. (2019). Phase Ib study of atezolizumab combined with cobimetinib in patients with solid tumors. Annals of Oncology, 30(7), 1134–1142.PubMedPubMedCentral
139.
Zurück zum Zitat Singh, D., Khan, M. A., & Siddique, H. R. (2020). Emerging role of long non-coding RNAs in cancer chemoresistance: unravelling the multifaceted role and prospective therapeutic targeting. Molecular Biology Reports, 47(7), 5569–5585.PubMed Singh, D., Khan, M. A., & Siddique, H. R. (2020). Emerging role of long non-coding RNAs in cancer chemoresistance: unravelling the multifaceted role and prospective therapeutic targeting. Molecular Biology Reports, 47(7), 5569–5585.PubMed
140.
Zurück zum Zitat Singh, D., Kesharwani, P., Alhakamy, N. A., & Siddique, H. R. (2022). Accentuating CircRNA-miRNA-transcription factors axis: A conundrum in cancer research. Frontiers in Pharmacology, 12, 784801.PubMedPubMedCentral Singh, D., Kesharwani, P., Alhakamy, N. A., & Siddique, H. R. (2022). Accentuating CircRNA-miRNA-transcription factors axis: A conundrum in cancer research. Frontiers in Pharmacology, 12, 784801.PubMedPubMedCentral
141.
Zurück zum Zitat Singh, D., Khan, M. A., & Siddique, H. R. (2023). Role of epigenetic drugs in sensitizing cancers to anticancer therapies: emerging trends and clinical advancements. Epigenomics, 15(8), 517–537.PubMed Singh, D., Khan, M. A., & Siddique, H. R. (2023). Role of epigenetic drugs in sensitizing cancers to anticancer therapies: emerging trends and clinical advancements. Epigenomics, 15(8), 517–537.PubMed
Metadaten
Titel
Epithelial-to-mesenchymal transition in cancer progression: unraveling the immunosuppressive module driving therapy resistance
verfasst von
Deepti Singh
Hifzur R. Siddique
Publikationsdatum
30.09.2023
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 1/2024
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-023-10141-y

Weitere Artikel der Ausgabe 1/2024

Cancer and Metastasis Reviews 1/2024 Zur Ausgabe

Announcement

Biographies

EditorialNotes

Preface

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Erhöhtes Risiko fürs Herz unter Checkpointhemmer-Therapie

28.05.2024 Nebenwirkungen der Krebstherapie Nachrichten

Kardiotoxische Nebenwirkungen einer Therapie mit Immuncheckpointhemmern mögen selten sein – wenn sie aber auftreten, wird es für Patienten oft lebensgefährlich. Voruntersuchung und Monitoring sind daher obligat.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.