Skip to main content
Erschienen in: Clinical Neuroradiology 2/2023

Open Access 12.05.2023 | Clinical Case

Freiburg Neuropathology Case Conference

A 51-year-old Patient Presenting with Epistaxis and Occasional Headaches 16 Years after Diagnosis of a Grade 1 Chondrosarcoma of the Left Petrous Apex

verfasst von: E. Wogram, F. Schlunk, M. J. Shah, M. Prinz, H. Urbach, D. Erny, C. A. Taschner

Erschienen in: Clinical Neuroradiology | Ausgabe 2/2023

Hinweise
The Authors E. Wogram and F. Schlunk contributed equally to the manuscript.

Case Report

Sixteen years ago, a then 35-year-old male patient presented with a right-sided flickering scotoma, diffuse vertigo, a tendency to fall to the left, and nausea. The patient had a history of recurrent headaches with retrobulbar accentuation. Magnetic resonance imaging (MRI) and computed tomography (CT) showed an osteolytic process in the left petrous apex (Fig. 1). Osteoplastic suboccipital trepanation was performed on the left side, and a biopsy was obtained. No tumor was found in the histologic specimen and 3 months after surgery, the pre-existing headache recurred. Therefore, it was decided to perform another transnasal transphenoidal biopsy. Histologically, a low-grade chondroid tumor was diagnosed, corresponding to a differentiated grade 1 chondrosarcoma and 6 months later, proton-ion radiotherapy with 60 Gy followed.
Both clinically and with regular MRI checks, the situation was stable for 10 years. In the twelfth year after irradiation, MRI showed changes suggestive of local recurrence (Figs. 2 and 3). Because of clinical symptoms (headache and nosebleeds) and tumor progression on subsequent MR controls, a total of three inconclusive extended biopsies were performed on different occasions via a transnasal approach. A final, this time conclusive, transnasal biopsy was performed in December 2022, and the patient was discharged under stable conditions. Subsequently, a new proton ion radiotherapy was initiated.

Imaging

Magnetic resonance (MR) and computed tomography (CT) scans performed at the time of initial presentation 16 years ago showed a lesion in the apex of the left petrous bone, adjacent to the clivus (Fig. 1). On T2-weighted images, the lesion appeared clearly demarcated and showed a homogeneous hyperintense signal (Fig. 1a, arrowhead). On T1-weighted images, the lesion appeared hypointense (Fig. 1b, arrowhead). After administration of gadolinium (Gd), the lesion showed marked and homogeneous contrast enhancement (Fig. 1c, arrowhead). On CT images with bone window settings, the lesion showed marked osteolysis (Fig. 1d, arrowhead). The histologic diagnosis at that time was a differentiated grade 1 chondrosarcoma.
Magnetic resonance and CT images obtained after tumor progression and increasing symptoms over the past 2 years showed an extensive osteodestructive mass lesion of the skull base (Figs. 2 and 3). On T2-weighted images, the hyperintense mass lesion infiltrated the sphenoid sinus, encircled the left internal carotid artery, and had direct contact with the basilar artery (Fig. 2a, arrow). On T1-weighted images, the lesion appeared hypointense (Fig. 2b, arrow) with marked contrast enhancement after administration of Gd (Fig. 2c, arrow). Sagittal fluid attenuated inversion recovery (FLAIR) images showed the size of the extensive mass lesion. Sagittal reconstructions of CT images in the bone window at initial presentation (Fig. 3a) and at the time of the last biopsy (Fig. 3b) showed the osteodestructive features of the lesion with the clivus (Fig. 3a, arrowhead) almost completely destroyed (Fig. 3b, arrowhead).

Differential Diagnosis

Chondrosarcoma

Chondrosarcoma of the skull base is a rare malignant tumor, arising from chondroid cells and accounting for approximately 0.15% of all intracranial neoplasms [1]. The tumor, which affects mainly middle-aged adults, is typically located off-midline in the petroclival region and spheno-ethmoidal sinus [2]. Location is determined by the embryology because the bones of the skull base develop by endochondral ossification and remnants of these cells may undergo malignant transformation. Although commonly slow growing, more aggressive WHO grade II and III lesions occur [3]. Clinical presentation varies with the exact location and involvement of anatomical structures but often includes headache and cranial nerve palsy [3]. Radiologic diagnosis is challenging due to the resemblance of the tumor to other entities, such as chordoma or skull base metastasis. Skull base chondrosarcomas typically appear isointense or hypointense on T1‑w images and hyperintense on T2‑w images. Most but not all lesions show heterogeneous contrast enhancement [4]. A recent study reported DWI and dynamic contrast enhanced perfusion MR imaging as useful sequences to distinguish chondrosarcoma from other skull base tumors [5]. The CT imaging is useful to visualize bony involvement as well as calcification, which is present in approximately 50% of patients and often has a characteristic ring-like and arc-like configuration [6].
In the present case, because of the location of the tumor as well as the imaging characteristics with high T2‑w imaging signal and contrast enhancement, the initial imaging findings made chondrosarcoma the most probable diagnosis.

Chordoma

Chordomas and the abovedescribed chondrosarcomas of the skull base share many similarities. While chordomas are in comparison a more frequent tumor entity, they still account for less than 1% of all intracranial tumors only [2, 7]. The tumor derives from remnants of the notochord, and is therefore typically centered in the midline, which is a possible differentiating factor from chondrosarcomas. The median age at diagnosis is around 60 years; however, it can affect any age group [8]. Chordoma has an aggressive growth pattern and a high recurrence rate despite multimodal treatment. Symptoms relating to mass effect on surrounding structures include headache, diplopia or cranial nerve impairment [2]. On MR imaging, chordomas demonstrate high T2‑w signal due to high fluid content [9]. Small foci of hemorrhage or calcium are possible findings within the tumor. While contrast enhancement is variable and does not serve to distinguish chordomas from chondrosarcomas and metastasis of the skull base, lower apparent diffusion coefficient (ADC) levels have been reported for chordomas [5]. The CT scans reveal a well-circumscribed, expansile soft tissue mass that arises from the clivus with associated extensive lytic bone destruction [10].
In our patient, the tumor was not located exactly in the midline; however, because of the matching MR characteristics we considered chordoma a valid differential diagnosis.

Skull Base Metastases

Skull base metastases account for approximately 1–5% of all brain metastases [11]. The incidence varies depending on the primary malignancy, with lung and breast cancers being the most common primary sites. Other neoplasms that can manifest in the skull base include melanoma, renal cell carcinoma, gastrointestinal cancer, and prostate cancer [12]. Skull base metastases affect males and females equally and most often occur in older age groups, with a peak incidence at 65 years and older [13]. The location of skull base metastasis is highly variable. The most common site of osseous metastasis is the petrous apex and the clivus, due to high amounts of bone marrow [12, 14]. Skull base metastasis can be in multiple compartments and affect bones as well as dura and leptomeninges at the same time [15]. Clinical presentation varies greatly depending on location and extent of the mass and can include headaches, cranial neuropathy, or can be asymptomatic [16]. Imaging of an enhancing destructive mass of the skull base in a patient with a known primary malignancy makes metastases the most likely diagnosis. The CT scans reveal lytic, sclerotic or mixed type lesions of cortical and trabecular bone [14]. Skull base metastasis can show diffusion restriction and are regularly enhanced on postcontrast MRI scans. On T1‑w imaging lesions in the bone marrow are hypointense and replace high signal fat [17, 18].
The absence of a known malignancy and the singularity of the lesion made skull base metastasis more unlikely in our patient. Initial imaging could not rule out this differential diagnosis completely, however.

Skull Base Meningioma

The most common tumors of the skull base are meningiomas, accounting for approximately 20–25% of all intracranial tumors [19, 20]. Patients are most commonly middle-aged to old individuals and women are affected more often [21]. The tumor originates from arachnoid cap cells and is in 90% of cases benign [22]; however, in a minority of cases meningiomas are higher grade tumors (WHO grade II and grade III) [23]. They are typically located in the midline, and can frequently be found in the olfactory groove, tuberculum sellae, sphenoid wing, petroclival and cavernous sinuses as well as the foramen magnum [22, 24]. Similar to the conditions described above, clinical presentation varies depending on location and extent of the tumor, and can include headache, cranial nerve deficits such as vision disturbance, and seizures [22, 25]. Imaging features include a well-circumscribed, homogeneously and vividly enhancing mass on postcontrast imaging with possible bony involvement. Meningiomas are usually hypointense to isointense to grey matter on T1‑w and T2‑w images [24]. The CSF vascular cleft sign between tumor and parenchyma proves the extra-axial location. A dural tail sign is a typical feature of skull base meningioma but not present in all cases. CT scans can demonstrate hyperostosis or sclerotic adjacent bone at the site of the tumor [26].
The high T2 signal in the present case, as well as the absence of a dural attachment on imaging made this diagnosis unlikely in our patient.

Histology and Immunohistochemistry

The first specimen obtained from the patient in February 2007 from the petrous apex measured 1 mm3 and exhibited bone fragments, connective tissue, and blood cells. No indication of inflammation or neoplasm was evident.
The patient’s second histopathologic specimen in August 2007 showed features characteristic of grade I chondrosarcoma, including minimally increased cellularity and nodular growth (Fig. 4a). No mitotic figures were evident. Based on immunohistochemistry, the malignant cells did not express brachyury, but S100 (Fig. 4b). This ruled out the differential diagnosis chordoma. The diagnosis of a grade 1 chondrosarcoma was confirmed at the bone tumor reference center, University Hospital of Basel.
In December 2022, a tumor from the sphenoid sinus was surgically removed and examined. The histopathological analysis revealed numerous spindle-shaped cells with mitotic figures (Fig. 5a). Immunohistochemistry revealed that the neoplastic cells were negative for pan-cytokeratin, EMA, Desmin, and S100, and positive for vimentin (Fig. 5b). A few tumor cells showed a positive reaction in the immunohistochemistry for SMA (not shown). Ki-67 was detected by immunohistochemistry (Mib1) in approximately 25% of the tumor cells (Fig. 5c), the tumor cells did not express brachyury (Fig. 5d). The histopathological examination was complemented by an 850k DNA methylation assay of the tumor tissue [27]. The methylation pattern was compared to a reference dataset, the brain tumor classifier, version 12.2. The methylation pattern of the tumor tissue matched the pattern of the methylation class undifferentiated sarcoma (Fig. 5e). Notably, the assay revealed a CDKN2A/B deletion, an observation reported before in the context of soft tissue sarcoma [28]. Additionally, sequencing of IDH‑1 and IDH‑2 revealed wild-type sequences. For further evaluation, the samples were evaluation at the bone tumor reference center, at the University Hospital of Basel, Switzerland. There, the diagnosis of undifferentiated high-grade sarcoma was confirmed.

Diagnosis

Undifferentiated High-grade Sarcoma, IDH-Wildtype

Radiation-induced sarcomas, particularly undifferentiated pleomorphic sarcomas, may occur as a long-term complication of radiotherapy [29]. In cancers of the head and neck, the reported risk of developing radiation-induced sarcomas in long-term survivors is 0.3% [30]. Because the present patient underwent radiotherapy, the pathology observed in the last specimen may well be radiotherapy-induced.
On the other hand, numerous chondrosarcoma cases have been described that have dedifferentiated to a tumor resembling a high-grade sarcoma, including undifferentiated pleomorphic sarcomas [31]. Dedifferentiation into anaplastic lesions is expected in 11% of chondrosarcomas [32]. To test this differential diagnosis, we examined features common to chondrosarcomas, i.e., an IDH1 or IDH2 mutation described in approximately 38.7% and 12.1% of chondrosarcoma specimens, respectively. DNA sequencing did not reveal an IDH1 or IDH2 mutation [33]. Therefore, it was not possible to attribute the current pathology to the original chondrosarcoma on the basis of the IDH1 or IDH2 mutation. Consequently, the differential diagnosis of dedifferentiated chondrosarcoma cannot be excluded.

Declarations

Conflict of interest

E. Wogram, F. Schlunk, M. J. Shah, M. Prinz, H. Urbach, D. Erny and C. A. Taschner declare that they have no competing interests.

Ethical standards

All investigations described in this manuscript were carried out with the approval of the responsible ethics committee and in accordance with national law and the Helsinki Declaration of 1975 (in its current revised form). Informed consent was obtained from the patient in this case if identifiable from pictures or other information within the manuscript.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Jetzt e.Med zum Sonderpreis bestellen!

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

Jetzt bestellen und 100 € sparen!

e.Med Neurologie & Psychiatrie

Kombi-Abonnement

Mit e.Med Neurologie & Psychiatrie erhalten Sie Zugang zu CME-Fortbildungen der Fachgebiete, den Premium-Inhalten der dazugehörigen Fachzeitschriften, inklusive einer gedruckten Zeitschrift Ihrer Wahl.

e.Med Neurologie

Kombi-Abonnement

Mit e.Med Neurologie erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes, den Premium-Inhalten der neurologischen Fachzeitschriften, inklusive einer gedruckten Neurologie-Zeitschrift Ihrer Wahl.

Weitere Produktempfehlungen anzeigen
Literatur
5.
Zurück zum Zitat Ota Y, Liao E, Capizzano AA, Baba A, Kurokawa R, Kurokawa M, Srinivasan A. Differentiation of skull base chondrosarcomas, chordomas, and metastases: utility of DWI and dynamic contrast-enhanced perfusion MR imaging. Ajnr Am J Neuroradiol. 2022;43:1325–32. https://doi.org/10.3174/ajnr.A7607.CrossRefPubMed Ota Y, Liao E, Capizzano AA, Baba A, Kurokawa R, Kurokawa M, Srinivasan A. Differentiation of skull base chondrosarcomas, chordomas, and metastases: utility of DWI and dynamic contrast-enhanced perfusion MR imaging. Ajnr Am J Neuroradiol. 2022;43:1325–32. https://​doi.​org/​10.​3174/​ajnr.​A7607.CrossRefPubMed
13.
Zurück zum Zitat Chang EL, Wefel JS, Hess KR, Allen PK, Lang FF, Kornguth DG, Arbuckle RB, Swint JM, Shiu AS, Maor MH, et al. Neurocognition in patients with brain metastases treated with radiosurgery or radiosurgery plus whole-brain irradiation: a randomised controlled trial. Lancet Oncol. 2009;10:1037–44. https://doi.org/10.1016/S1470-2045(09)70263-3.CrossRefPubMed Chang EL, Wefel JS, Hess KR, Allen PK, Lang FF, Kornguth DG, Arbuckle RB, Swint JM, Shiu AS, Maor MH, et al. Neurocognition in patients with brain metastases treated with radiosurgery or radiosurgery plus whole-brain irradiation: a randomised controlled trial. Lancet Oncol. 2009;10:1037–44. https://​doi.​org/​10.​1016/​S1470-2045(09)70263-3.CrossRefPubMed
27.
Zurück zum Zitat Capper D, Jones DTW, Sill M, Hovestadt V, Schrimpf D, Sturm D, et al. DNA methylation-based classification of central nervous system tumours. Nature. 2018;22(7697):469–74.CrossRef Capper D, Jones DTW, Sill M, Hovestadt V, Schrimpf D, Sturm D, et al. DNA methylation-based classification of central nervous system tumours. Nature. 2018;22(7697):469–74.CrossRef
28.
Zurück zum Zitat Bui NQ, Przybyl J, Trabucco SE, Frampton G, Hastie T, van de Rijn M, et al. A clinico-genomic analysis of soft tissue sarcoma patients reveals CDKN2A deletion as a biomarker for poor prognosis. Clin Sarcoma Res. 2019;9:12.CrossRefPubMedPubMedCentral Bui NQ, Przybyl J, Trabucco SE, Frampton G, Hastie T, van de Rijn M, et al. A clinico-genomic analysis of soft tissue sarcoma patients reveals CDKN2A deletion as a biomarker for poor prognosis. Clin Sarcoma Res. 2019;9:12.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Di Marco J, Kaci R, Orcel P, Nizard R, Laredo JD. Radiation-induced undifferentiated pleomorphic sarcoma after radiation therapy for a desmoid tumour. Cancer Radiother. 2016;20(1):36–8.CrossRefPubMed Di Marco J, Kaci R, Orcel P, Nizard R, Laredo JD. Radiation-induced undifferentiated pleomorphic sarcoma after radiation therapy for a desmoid tumour. Cancer Radiother. 2016;20(1):36–8.CrossRefPubMed
31.
Zurück zum Zitat Cao L, Wu Y, Han SM, Sun T, Yu BH, Gao F, et al. Dedifferentiated chondrosarcoma: a clinicopathologic analysis of 25 cases. BMC Musculoskelet Disord. 2021;22(1):189.CrossRefPubMedPubMedCentral Cao L, Wu Y, Han SM, Sun T, Yu BH, Gao F, et al. Dedifferentiated chondrosarcoma: a clinicopathologic analysis of 25 cases. BMC Musculoskelet Disord. 2021;22(1):189.CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Frassica FJ, Unni KK, Beabout JW, Sim FH. Dedifferentiated chondrosarcoma. A report of the clinicopathological features and treatment of seventy-eight cases. J Bone Joint Surg Am. 1986;68(8):1197–205.CrossRefPubMed Frassica FJ, Unni KK, Beabout JW, Sim FH. Dedifferentiated chondrosarcoma. A report of the clinicopathological features and treatment of seventy-eight cases. J Bone Joint Surg Am. 1986;68(8):1197–205.CrossRefPubMed
33.
Zurück zum Zitat Vuong HG, Ngo TNM, Dunn IF. Prognostic importance of IDH mutations in chondrosarcoma: An individual patient data meta-analysis. Cancer Med. 2021;10(13):4415–23.CrossRefPubMedPubMedCentral Vuong HG, Ngo TNM, Dunn IF. Prognostic importance of IDH mutations in chondrosarcoma: An individual patient data meta-analysis. Cancer Med. 2021;10(13):4415–23.CrossRefPubMedPubMedCentral
Metadaten
Titel
Freiburg Neuropathology Case Conference
A 51-year-old Patient Presenting with Epistaxis and Occasional Headaches 16 Years after Diagnosis of a Grade 1 Chondrosarcoma of the Left Petrous Apex
verfasst von
E. Wogram
F. Schlunk
M. J. Shah
M. Prinz
H. Urbach
D. Erny
C. A. Taschner
Publikationsdatum
12.05.2023
Verlag
Springer Berlin Heidelberg
Erschienen in
Clinical Neuroradiology / Ausgabe 2/2023
Print ISSN: 1869-1439
Elektronische ISSN: 1869-1447
DOI
https://doi.org/10.1007/s00062-023-01294-y

Weitere Artikel der Ausgabe 2/2023

Clinical Neuroradiology 2/2023 Zur Ausgabe

Mammakarzinom: Brustdichte beeinflusst rezidivfreies Überleben

26.05.2024 Mammakarzinom Nachrichten

Frauen, die zum Zeitpunkt der Brustkrebsdiagnose eine hohe mammografische Brustdichte aufweisen, haben ein erhöhtes Risiko für ein baldiges Rezidiv, legen neue Daten nahe.

„Übersichtlicher Wegweiser“: Lauterbachs umstrittener Klinik-Atlas ist online

17.05.2024 Klinik aktuell Nachrichten

Sie sei „ethisch geboten“, meint Gesundheitsminister Karl Lauterbach: mehr Transparenz über die Qualität von Klinikbehandlungen. Um sie abzubilden, lässt er gegen den Widerstand vieler Länder einen virtuellen Klinik-Atlas freischalten.

Klinikreform soll zehntausende Menschenleben retten

15.05.2024 Klinik aktuell Nachrichten

Gesundheitsminister Lauterbach hat die vom Bundeskabinett beschlossene Klinikreform verteidigt. Kritik an den Plänen kommt vom Marburger Bund. Und in den Ländern wird über den Gang zum Vermittlungsausschuss spekuliert.

Darf man die Behandlung eines Neonazis ablehnen?

08.05.2024 Gesellschaft Nachrichten

In einer Leseranfrage in der Zeitschrift Journal of the American Academy of Dermatology möchte ein anonymer Dermatologe bzw. eine anonyme Dermatologin wissen, ob er oder sie einen Patienten behandeln muss, der eine rassistische Tätowierung trägt.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.