Skip to main content
Erschienen in: Current Treatment Options in Gastroenterology 3/2022

Open Access 04.07.2022 | Pancreas (C Forsmark, Section Editor)

Genetic Testing in Acute and Chronic Pancreatitis

verfasst von: Ignazio Piseddu, MD, Jakob Vielhauer, MD, Julia Mayerle, Prof

Erschienen in: Current Treatment Options in Gastroenterology | Ausgabe 3/2022

Abstract

Purpose of review

Premature intracellular activation of pancreatic zymogens leads to the initiation of pancreatitis, which in up to 25% leads to chronic tissue destruction, exocrine and endocrine organ failure, and a moderate increased risk of pancreatic cancer development. Whereas in many cases, the trigger of organ damage is identified, diagnostic workup in a significant number of patients does not reveal the underlying etiology of pancreatic inflammation. In these cases, alterations in different pancreatic susceptibility genes have been described to be directly or indirectly involved in disease development. In this review, we want to give an update on the most important pancreatitis risk genes and their impact on clinical diagnostics and risk stratification as well as possible treatment options.

Recent findings

Genetic testing is not routinely implemented in the diagnostic workup of acute or chronic pancreatitis, as most genetic variations are not considered causative for pancreatitis development but confer increased susceptibility and genetic testing rarely changes disease management. However, in patients with recurrent pancreatitis episodes of unknown etiology after intensive diagnostic work-up, in patients with a family history of pancreatitis, relatives of patients with hereditary pancreatitis, and patients with disease onset at young age, genetic testing and counseling is recommended. Besides well-established susceptibility genes such as PRSS1, SPINK1, CPA1, and CFTR, additional genes such as TRPV6 and rare genetic alterations in established risk genes have been recently identified which significantly contribute to the risk of pancreatitis, involving different molecular mechanisms.

Summary

When genetic testing is considered, we propose screening at least for PRSS1, SPINK1, CPA1, and CFTR gene variants. The emergence of next-generation sequencing methods could also render larger gene panels possible and clinically meaningful to detect rare variants with high-risk phenotypes. Here we summarize, evaluate, and convey in the form of practical recommendations the current level of knowledge with respect to definition, etiology, and genetic diagnostics of all forms of inherited pancreatitis.
Hinweise
Ignazio Piseddu and Jakob Vielhauer contributed equally to this work.
This article is part of the Topical Collection on Pancreas.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Introduction

The paradigm that acute pancreatitis (AP), recurrent acute pancreatitis (RAP), and chronic pancreatitis (CP) represent different entities has been increasingly replaced by the concept of a disease continuum with different stages of the same disease spectrum [1]. Pancreatic inflammation is thought to be initiated by premature intracellular activation of zymogens causing pancreatic damage via diverse triggers, followed by complex gene-environment interactions that in up to 25% lead to an irreversible fibroinflammatory syndrome resulting in pancreatic fibrosis and tissue damage [2, 3]. Frequently, RAP represents an intermediate stage in the years between the first episode of AP and the development of CP [3]. Whereas AP and CP significantly overlap regarding clinical manifestations and phenotypes, they differ with regard to morphology and imaging appearance as well as organ function [3].
In AP, alcohol abuse and bile duct stones are the main etiology, whereas other triggers are rare and comprise metabolic alterations (hypertriglyceridemia, hypercalcemia), physical trauma, endoscopic interventions (ERCP, EUS, balloon enteroscopy), autoimmunity, infections (e.g., coxsackievirus), toxins, and certain drugs [4]. CP is particularly caused by noxious agents, especially alcohol and smoking, and the risk of CP development is further increased by simultaneous alcohol and tobacco abuse [3].
Besides the aforementioned etiologies that are caused by exogenous factors, growing evidence has emerged that also endogenous triggers in terms of genetic alterations in different risk genes can directly or indirectly result in acute and/or chronic pancreatitis [5]. In this review, we will highlight recent developments regarding established and novel pancreatitis risk genes and their current impact on clinical reasoning as well as potential future perspectives of genetics in the diagnostic workflow of pancreatitis patients.

Acinar cell–derived susceptibility genes

Pancreatic proenzyme synthesis and regulated enzyme secretion as well as safety mechanism to prevent premature activation are localized in pancreatic acinar cells (Fig. 1). In general, genetic alterations in acinar pancreatitis risk genes result from two pathophysiologically distinctly different mechanisms:
1)
Early trypsinogen activation or impaired trypsin inhibition can lead to autodigestion as it prematurely activates the pancreatic zymogene cascade. This mechanism is also referred to as “trypsinogen-dependent” risk factors (PRSS1, SPINK1, CTRC) [6].
 
2)
Misfolding of proteins causes stress in the endoplasmic reticulum (ER), resulting in cell stress and an inflammatory response, referred to as “misfolding-dependent” risk factors (CPA1, PRSS1, CELL-HYB1 allele) [7].
 
In the following, the different acinar genes involved in pancreatitis development and the evidence supporting their importance will be highlighted.

Cationic trypsinogen (PRSS1)

Changes in PRSS1, the cationic trypsinogen, can lead to pancreatitis via both mechanisms presented above. Mutations causing early autoactivation are by far the most common alterations of PRSS1 and even account for up to 60–80% of all cases of hereditary pancreatitis [8]. Here the term hereditary pancreatitis highlights segregation or the PRSS1 gene in an autosomal dominant pedigree. Lately, different genetic variants with specific effector mechanisms have been highlighted. These comprise chymotrypsinogen C (CTRC)–dependent stimulation of trypsinogen autoactivation (p.N291) and inhibition of CTRC-dependent degradation of trypsinogen (p.R122C/p.R122H) [9], as well as direct, CTRC-independent activation of the enzyme (multiple rare mutations, such as p.D19A and p.D21A) [10]. Misfolding, resulting in intracellular accumulation of the mutated trypsinogen and subsequent ER stress, has been also shown to represent a risk factor for CP in rare cases and is mostly detected in sporadic CP [11•, 12]. Recently, it was shown that in East Asia, about 4% of CP patients carry a mutation in the PRSS1 gene associated with misfolding (p.G208A), whereas this mutation seems to be very rare in Europe [13, 14].
The significance of PRSS1 gene alterations could be reproduced in a mouse model, where insertion of the most common pathogenic variation led to the progression of caerulein-induced AP into CP [15]. Mutations in the PRSS1 gene can either cause autosomal-dominant hereditary pancreatitis (with incomplete penetrance, 80%) or in case of de novo mutations increase the risk for sporadic CP [16].
Interestingly, changes in anionic trypsinogen (PRSS2) are not linked to the development of CP [17]. Strikingly, even a protective variant (p.G191R), present in approximately 5% of the general population, was identified. The underlying pathogenesis is closely linked to increased inactivation and upregulated autocatalytic proteolysis due to a newly introduced trypsin cleavage site [17, 18].

Serine protease inhibitor Kazal-type 1 (SPINK1)

Variations in SPINK1, the gene encoding the most prevailing trypsin inhibitor predisposes to idiopathic chronic pancreatitis [1921]. The most common variant, p.N34S, leads to severe CP in homozygous carriers and is regarded as causative [22]. In heterozygous carriers, a SPINK1 mutation predisposes to pancreatitis and since 1% of the general population carry the variant, further triggers are required for disease manifestation [23]. Yet, the underlying mechanism has not been fully elucidated. For others, mostly rare or private, SPINK1 mutations found in patients with CP, various effector mechanisms, such as diminished secretion, have been described increasing the risk of overt disease [24].

Carboxypeptidase A1 (CPA1)

Carboxypeptidases belong to the group of pancreatic metalloproteinases hydrolyzing C-terminal peptide bonds from dietary polypeptide chains. [25] Three different carboxypeptidases (CPA1, CPA2, CPB1) are known, each defined by its substrate specificity. In a patient cohort of CP, an increased mutational burden of CPA1 was observed when compared to the general population, whereas variants of CBP1 or CPA2 were not associated with CP [26]. Mechanistically, in loss-of-function CPA1 carriers, changes in trypsin activation or degradation could not be detected, but reduced CPA1 protein secretion and misfolding-dependent ER stress were identified as possible inflammatory triggers predisposing to pancreatitis [26]. The hypothesis of CPA1 variants causing ER stress via protein misfolding as underlying mechanism of CP was further underlined in murine experiments. Here, artificial insertion of a variation (p.N256K) indeed leads to elevated ER stress markers and progressive pancreatitis [27].

Chymotrypsinogen C (CTRC)

CTRC serves as key factor in the degradation of all trypsin isoforms. Mutations in this protein either lead to decreased secretion (p.A73T), increased degradation (p.K247_R254del), or reduced enzymatic activity (p.V235I), resulting in trypsin-dependent CP [28, 29•]. Multiple risk genes have been recently identified which elevate the risk for CP and alcoholic CP by 5- to 19-fold [29•, 30]. Furthermore, a p.G60 = variant has been identified with surprisingly high frequency of up to 30% in CP [31, 32]. When a heterozygous alteration occurs, the risk of CP is elevated by 2.5-fold, whereas a homozygous mutation increases the probability by up to tenfold [32, 33]. Mechanistically, reduced CTRC mRNA expression levels possibly due to altered pre-mRNA splicing leading to diminished CTRC-dependent trypsin degradation were described as possible cause.

Carboxyl ester lipase (CEL-HYPB1 allele)

During tissue homeostasis, CEL is secreted into the duodenum to hydrolyze and facilitate absorption of lipid-soluble vitamin esters and cholesterol [34]. The enzyme is activated upon contact with bile salts. Non-allelic homologous recombination, also referred to as “cross-over,” between CEL and CELP, its adjoining pseudogene, has been named hybrid allele CEL-HYB1. First described in 2015, a population-based study showed an increase of the risk gene in a German population of CP [35•]. Interestingly, allele distribution varied among different patient cohorts from Europe and additionally, the hybrid allele could not be detected in independent cohorts originating from Asia [36].
The molecular basis of the increased CP risk was highlighted in cell culture experiments, where secretion of the hybrid protein was reduced resulting in intracellular accumulation, thereby causing CP via the misfolding pathway and subsequent ER stress [35•].
Blood group antigens attached to the surface of the CEL protein and fucosyltransferase 2 (FUT2) non-secretor status (which affects the status of the ABO antigens, especially blood group B) was associated in a genome-wide association study (GWAS) [37]. However, in following studies, this association could not be confirmed apart from an association between blood group B and azathioprine-induced AP [3840].

Ductal risk genes

Apart from pathogenic acinar gene variations causing alterations in pancreatic enzyme activation and protein misfolding, variants can also affect ductal cell function (Fig. 1). Mechanistically, these gene variants are particularly involved in the regulation of pancreatic juice composition and calcium homeostasis. In the following, the most important ductal genes involved in pancreatic inflammation will be highlighted.

Cystic fibrosis transmembrane conductance regulator (CFTR)

The CFTR protein is a cAMP-dependent ion channel localized in the apical plasma membrane of epithelial cells in different secretory organs such as airways, the pancreas and the gastrointestinal tract [41]. In these tissues, CFTR-mediated transport of chloride or bicarbonate anions is the critical step of transepithelial fluid secretion and thus fluid hydration as well as regulation of fluid pH [42]. Genetic alterations in the CFTR gene can lead to various clinical phenotypes. The corresponding phenotype of two CFTR alleles with severe mutations, which results in complete CFTR dysfunction, is cystic fibrosis (CF), a monogenetic disorder characterized by progressive lung disease, pancreatic insufficiency, and a variety of other organ manifestations [43]. When a severely mutated allele is compounded by a mild variant and CFTR function is preserved, atypical CF with a less pronounced phenotype is developed and typically patients remain pancreatic sufficient [43]. Furthermore, compound heterozygosity can also present with the clinical phenotype of idiopathic RAP or CP, without fulfilling the criteria for a CF diagnosis [44]. Finally, heterozygous carrier status of certain CFTR mutations increases the risk for pancreatitis development [44]. So far, around 2000 CFTR gene variants have been identified, and clinical course and severity of pancreatitis is dependent on zygosity as well as the specific variant(s) involved [45, 46]. Mechanistically, mutations in the CFTR gene can either lead to disruption of channel activity or reduction of CFTR membrane expression [43]. In the pancreatic duct, CFTR dysfunction results in reduction of intraluminal secrete alkalization, augmentation of fluid viscosity, and failure of zymogen washout, leading to intraluminal zymogen activation and pancreatic tissue digestion [47, 48], thereby causing pancreatitis.
First observations linking CFTR mutations and pancreatitis were reported in the late 1990s [49, 50]. Cohn and colleagues analyzed 27 patients with idiopathic CP and identified at least one abnormal CFTR allele in ten patients. The prevalence of having one CFTR-mutated allele was 11 times higher; the prevalence of two affected alleles was 80 times higher than in the control population, respectively. Sharer and colleagues analyzed 134 patients with classified or unclassified CP and detected CFTR mutations in about 13%, as compared to about 5% in the selected control population. Strikingly, CFTR mutation carriers were younger at initial presentation, had predominantly no history of alcohol abuse, and were more likely to be non-smokers. The concept of different CFTR variants and their association with the risk to develop pancreatitis has been supported by a large number of follow-up studies in international cohorts [5158]. When talking about specific CFTR variants, heterozygous carrier status of the severe delF508 mutation represents a small risk for CP (OR 2.5), whereas expression of the mild R117H variant increases CP risk by about fourfold [59]. The strongest risk for CP development is represented by compound heterozygous carrier state for one severe and one mild CFTR allele and may even be considered causative [56]. Interestingly, CFTR-related gene alterations have recently been demonstrated to be the most frequent mutations among all tested pancreatitis-associated gene variants in a cohort of RAP, patients with less than 35 years of age with an unexplained first episode of AP and idiopathic CP [60].
Since genetic defects in CFTR functionality have been associated with pancreatic inflammation and recent preclinical and clinical evidence also suggested that pancreatitis-causing triggers such as alcohol, smoking, or bile acids can strongly inhibit CFTR function, correction of CFTR function could be a promising therapeutic approach in pancreatitis [44, 61]. CFTR-modulating drugs have shown impressive clinical benefits in CF patients regarding respiratory function, exacerbation rate, and quality of life [62]. Two recent publications have demonstrated that risk of pancreatitis development among CF patients with pancreatic sufficiency was substantially diminished in patients treated with CFTR modulators [63, 64•], suggesting its clinical benefit. To our knowledge, there are no clinical trials investigating the role of CFTR modulation on the course of RAP and CP of different etiologies so far. Preclinical studies suggest that pharmacological rescue of ductal CFTR activity reduced tissue damage in a preclinical model of autoimmune pancreatitis and caerulein-induced AP [65, 66]. A recently published single case study reported a CFTR mutation carrier with methylmalonic acidemia and CP who was treated with the CFTR potentiator ivacaftor and subsequently experienced CP resolution [67]. Thus, initial preclinical studies and clinical observations regarding therapeutic CFTR targeting in pancreatitis are promising. Yet, further evidence is required to determine whether CFTR modulators can be effectively used as causal therapeutics to target reduction of CFTR functionality in genetic as well as other forms of RAP and CP.

Claudin-2 (CLDN2)

Claudins are a family of transmembrane proteins that represent crucial components of tight junctions between epithelial cells throughout the body, thereby regulating paracellular ion permeability and thus selectivity of the diffusion barrier [68]. CLDN2 is constitutively expressed at low levels in pancreatic duct cells and forms low-resistance cation-selective ion and water channels [6971]. Besides being constitutively expressed, CLDN2 gene expression as well as localization is extensively regulated, especially under conditions associated with stress or injury, as the CLDN2 promotor region includes a NFkB binding site [7276]. From GWAS studies we learned that several single-nucleotide polymorphisms (SNPs) in the CLDN2 locus are associated with a two-fold risk of CP [7779]. This association was most pronounced in patients suffering from alcoholic CP. So far, there is no clear explanation of the pathophysiological role of CLDN2 risk variants and their impact on CP development. As a putative pathomechanism, atypical localization of CLDN2 proteins due to CLDN2 risk genes was proposed [77]. Whether this could lead to alterations in pancreatic ductal fluid composition and/or imbalance in calcium homeostasis with consecutive augmentation of CP risk still needs to be further investigated.

Calcium-sensing receptor (CASR)

The CASR gene encodes a G-protein-coupled plasma membrane receptor particularly expressed in calcitropic tissues such as the parathyroid gland and the kidneys. Here, it regulates systemic calcium homeostasis by detection of increasing calcium concentrations, leading to downstream signaling events that result in diminished parathyroid hormone secretion and reduced renal calcium reabsorption [80]. In the exocrine pancreas, CASR is preferentially expressed in epithelial cells of the pancreatic duct, where it might respond to high pancreatic juice calcium levels by increasing ductal bicarbonate and fluid secretion, thereby preventing calcium salt precipitation, pancreatic stone formation, and pancreatitis [81, 82]. The first observation linking CASR variants and CP development arose from a family with heterozygous SPINK1 N34S polymorphism and clinical features of familial hypocalciuric hypercalcemia (FHH), a disease caused by heterozygous inactivating mutations in the CASR gene. While family members with a combination of the CASR L173P missense mutation and SPINK1 gene mutation suffered from RAP episodes and progressed to CP, family members with isolated CASR mutation remained healthy [83]. Further studies were conducted which demonstrated conflicting results regarding genetic CASR variants and their association with pancreatitis. In an US-based cohort, the CASR exon 7 R990G polymorphism was shown to be associated with an about twofold higher risk of CP development, an effect that was even stronger when patients reported moderate or heavy alcohol consumption (OR 3.12) [84]. In a more recently published French study, rare CASR variants were overrepresented in idiopathic CP and a significant association between CASR alterations and CP was identified for the A986S variant, but only in homozygous carriers [85]. Controversially, the most recent study investigating the role of different CASR variants in a Hungarian cohort of 337 patients with alcoholic and non-alcoholic CP did not identify any association between CASR variants and CP risk modification [86]. Taken together, there is no clear evidence to consider CASR variants as risk genes for the development of pancreatitis so far. It is conceivable that specific CASR gene variants modulating intrapancreatic calcium homeostasis coincide with other environmental risk factors for pancreatic inflammation, putatively resulting in an increased pancreatitis risk. Further investigation in larger cohorts is required to clarify the impact of CASR gene variants on CP pathogenesis.

Transient receptor potential vanilloid superfamily member 6 (TRPV6)

The TRPV6 gene encodes a constitutively active, highly selective calcium channel that regulates calcium absorption in different epithelial tissues, particularly in the intestine, placenta, prostate, and the exocrine pancreas [87]. In the human pancreas, TRPV6 is mainly expressed in ductal epithelial cells indicating a potential role in regulating ductal fluid calcium concentration, but its exact function has not been elucidated thus far [88, 89]. The concept that TRPV6 mutations are associated with an augmented risk of CP development is rather novel. To our knowledge, the first study pointing towards TRPV6 as CP risk gene was published in 2020 by Masamune and colleagues [90••]. They performed whole exome sequencing (WES) in a 34-year-old index patient with idiopathic CP and a history of RAP episodes with onset at the age of 25 years and compared identified gene variants with WES of his clinically unaffected parents. In doing so, they identified one rare heterozygous A210V variant inherited from the mother as well as one de novo D324N variant in the TRPV6 gene in the index patient. In large Japanese and European validation cohorts, the authors could further demonstrate that loss-of-function TRPV6 variants were strongly associated with non-alcoholic CP, which convincingly highlighted the role of TRPV6 as novel high-impact CP susceptibility gene. These findings could be confirmed in a Chinese CP cohort and most recently a German and Polish early-onset CP cohort with comparable results [91, 92]. Furthermore, defective TRPV6 variants could be detected in a significant number of patients with idiopathic, hereditary, and familial CP, with a notable cluster in hereditary and familial CP [93]. Besides confirming that TRPV6 gene variants are important contributors to CP development, this study revealed that (co-)inherited TRPV6 deficiency can also be a key driver in hereditary and familial CP. The discovery of TRPV6 as genetic handicap for CP development also offers a putative novel target for therapeutic intervention. Particularly augmentation of TRPV6 membrane expression in variants causing reduced channel expression rather than mediating structural dysfunctionality might be a promising tool [89]. The fact that TRPV6 expression is positively regulated by 1a-,25-dihydroxyvitamin D3 renders therapeutic vitamin D administration a potential medication for prevention as well as therapy of TRPV6-mediated CP [94]. Still, further studies investigating the underlying mechanism linking defective TRPV6 variants and augmented pancreatitis risk are required to profoundly understand the pathophysiology and to potentially use TRPV6 as a causal therapeutic target.

Genetic testing in diagnostic workup: current recommendations and potential future perspectives

Determining the underlying etiology in patients diagnosed with AP, RAP, and CP is critical for clinical management as well as follow-up. Unfortunately, the etiology causing pancreatitis remains unclear in a relevant amount of patients with AP (around 15%) and CP (around 20%) [3, 95]. Thus, genetic testing and identification of gene variants directly or indirectly involved in pancreatitis development can be relevant for risk stratification, establishment of diagnostic and therapeutic measures, and follow-up recommendations (Table 1). So far, there is no clear evidence for testing of special gene variants and guideline recommendations are mainly based on expert consensus. The European guideline for CP recommends genetic testing especially in patients with a positive family history, pediatric patients, and patients before 20 years of age with so far idiopathic disease, as familial accumulation and early CP onset are suggestive for an inherited cause [96]. Patients should be offered genetic testing of PRSS1 (exons 2 and 3 to cover mainly p.A16V, p.N29I, and p.R122H), SPINK1 (all four exons, mainly p.N34S and IVS3 + 2 T > C in exon 3 and intron 3), CPA1 (several variants, mainly in exons 7, 8, and 10), CTRC (especially exon 7), and CEL (hybrid allele only) and may also be screened for variants in CFTR gene [96]. The American guidelines judge genetic testing to be indicated in patients with a positive family history for pancreatic diseases, in patients with persisting disease after therapeutic intervention (e.g., RAP after clearing the biliary system), and in patients with unclear etiology, especially when the patient is young (e.g., less than 35 years of age) [97]. They recommend evaluation of at least PRSS1, SPINK1, CFTR, and CTRC gene mutations. According to the recently updated German pancreatitis guideline, genetic testing can be performed in patients with a positive family history (at least one first-degree relative or two second-degree relatives) or patients with early disease onset (before 30 years of age) if no other etiology could be established [95]. The guideline recommends initial testing for PRSS1 (exons 2 and 3), SPINK1 (exon 3), and CPA1 (exons 7, 8, and 10) gene variants, with potential subsequent testing of other potential risk genes (e.g., CTRC, CEL, PNLIP, and CFTR) [95].
Table 1
Summary of risk genes implicated in pancreatitis development (adapted from [96])
Pathogenic gene
Molecular/functional consequence
Clinical manifestations/phenotype
Acinar risk genes
  PRSS1
CTRC-dependent stimulation of trypsinogen activation, inhibition of CTRC-dependent trypsinogen degradation, and misfolding resulting in ER stress
Commonest mutation in hereditary CP (prevalence), elevation of risk for CP development and pancreatic cancer, cumulative life time risk up to 40%
  CPA1
ER stress caused by protein misfolding and intracellular accumulation
Susceptibility gene. Elevated risk for CP development
  CEL-HYPB1
Hybrid gene with reduced secretion of encoded protein resulting in intracellular accumulation and ER stress via misfolding pathway
Susceptibility gene. Elevated risk of CP development, especially non-alcoholic CP
  SPINK1
Gene encoding for most prevailing trypsin inhibitor; hypothesis that reduced expression and/or activity leads to trypsinogen mediated autodigestion, precise effect not known to date
In homozygous carriers causative of CP (sometimes termed hereditary pancreatitis), in heterozygous carriers increased risk of CP
  CTRC
Decreased secretion, inactive protein, or reduced enzyme activity of chymotrypsinogen
Elevated risk of CP and alcoholic CP, depending on site of mutation
Ductal risk genes
  CFTR
Channel dysfunction with reduction of secrete alkalization, augmented fluid viscosity, failure of zymogen washout, and intraluminal zymogen activation
Various phenotypes depending on zygosity and variant, elevated risk of RAP and CP mostly in pancreatic sufficient subjects
  CLDN2
Unknown; possible imbalance in pancreatic fluid composition or intraluminal calcium homeostasis
Elevated risk of CP, especially alcoholic CP. Conflicting data from GWAS analysis
  CASR
Imbalance in intraluminal calcium levels, calcium salt precipitation, pancreatic stone formation
Potential risk elevation of RAP and CP
  TRPV6
Unknown; potential regulation of ductal fluid calcium concentration
Elevated risk of non-alcoholic, familial, and hereditary CP
AP acute pancreatitis, RAP recurrent acute pancreatitis, CP chronic pancreatitis; gene abbreviations: CTRC chymotrypsinogen C, PRSS1 cationic trypsinogen, CPA1 carboxypeptidase 1, SPINK 1 serine protease inhibitor Kazal-type 1, CEL-HYPB1 carboxyl ester lipase hybrid allele, CFTR cystic fibrosis transmembrane conductance regulator, CLDN2 claudin-2, CASR calcium sensing receptor, TRPV6 transient receptor potential vanilloid superfamily member 6
Since there is no clear definition for positive family history or early disease onset in the context of pancreatitis and since RCTs investigating the role of genetic testing in pancreatitis are lacking, the aforementioned recommendations are expert-based. Yet, there is a broad expert consensus to perform genetic testing in a certain subset of patients with idiopathic pancreatitis (young patients, positive family history) after other established causes and pancreatic cancer have been ruled out as underlying etiology. So far, identification of pancreatitis etiology may not necessarily lead to immediate therapeutic consequences, but still, performance of genetic testing and identification of potential risk genes can be important during diagnostics for many reasons. First of all, when common pancreatitis causes have been excluded, the identification of known pancreatitis-related risk genes can terminate or prevent other invasive and expensive diagnostic procedures. Furthermore, from a patient’s point of view, resolution of the probable underlying cause of an initially undefined syndrome might support disease acceptance and mental health. Additionally, identification of high-impact gene variants associated with familial pancreatitis risk for carriers might also help family members and their physicians making clinical decisions and starting preventive measures such as nicotine and alcohol abstinence. Ultimately, genetic testing might help defining the underlying pathogenetic disease mechanism and could thereby support the identification of potential therapeutic targets.
With regard to future perspectives, due to recent technological advances especially in next-generation sequencing (NGS), genetic testing of more variants than currently recommended seems to be meaningful, as many recently identified high-impact pancreatitis risk genes such as TRPV6 are not reflected by the current recommendations and also other rare genetic variants could exert clinical relevance as treatment targets. Potentially, the establishment of polygenetic risk scores for pancreatitis development could be a potent tool for pancreatitis risk stratification once risk variants will be determined in an untargeted gene analysis approach such as NGS [95]. NGS-based sequencing can nowadays be performed quite cost-effectively and be used for analysis of pancreatitis-related risk gene variants throughout the whole human genome. Since also NGS-based genome analysis may have its pitfalls, careful confirmation of results by Sanger sequencing might be of value [98]. In summary, it seems rational to extend genetic testing in young patients with RAP or CP of so far unknown etiology by performing NGS in the future to identify underlying genetic and pathophysiological pathways, to improve clinical and preventive reasoning and to potentially benefit in terms of novel therapeutic targets in this subset of patients.

Conclusions

Genetic testing still is no routine diagnostic measure in patients with AP, RAP, and CP, since only a minority of pancreatitis cases can be directly explained by genetic variants. However, as more and more susceptibility genes have emerged and been linked to pancreatitis risk, particularly younger patients with unknown etiology and patients with family history for pancreatitis should trigger screening and counseling for genetic risk variants. In the future, due to modern sequencing technologies, genetic screening of pancreatitis patients might become even more relevant in understanding the underlying pathophysiology and potentially identifying possible therapeutic targets.

Declarations

Conflict of Interest

Ignazio Piseddu declares that he has no conflict of interest. Jakob Vielhauer declares that he has no conflict of interest. Julia Mayerle declares that she has no conflict of interest.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Jetzt e.Med zum Sonderpreis bestellen!

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

Jetzt bestellen und 100 € sparen!

e.Med Innere Medizin

Kombi-Abonnement

Mit e.Med Innere Medizin erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Innere Medizin, den Premium-Inhalten der internistischen Fachzeitschriften, inklusive einer gedruckten internistischen Zeitschrift Ihrer Wahl.

Jetzt bestellen und 100 € sparen!

e.Med Allgemeinmedizin

Kombi-Abonnement

Mit e.Med Allgemeinmedizin erhalten Sie Zugang zu allen CME-Fortbildungen und Premium-Inhalten der allgemeinmedizinischen Zeitschriften, inklusive einer gedruckten Allgemeinmedizin-Zeitschrift Ihrer Wahl.

Jetzt bestellen und 100 € sparen!

Literatur
1.
Zurück zum Zitat Whitcomb DC, Frulloni L, Garg P, et al. Chronic pancreatitis: an international draft consensus proposal for a new mechanistic definition. Pancreatology. 2016;16:218–24.PubMedCrossRef Whitcomb DC, Frulloni L, Garg P, et al. Chronic pancreatitis: an international draft consensus proposal for a new mechanistic definition. Pancreatology. 2016;16:218–24.PubMedCrossRef
3.
Zurück zum Zitat Beyer G, Habtezion A, Werner J, Lerch MM, Mayerle J. Chronic pancreatitis. Lancet. 2020;396:499–512.PubMedCrossRef Beyer G, Habtezion A, Werner J, Lerch MM, Mayerle J. Chronic pancreatitis. Lancet. 2020;396:499–512.PubMedCrossRef
4.
Zurück zum Zitat Boxhoorn L, Voermans RP, Bouwense SA, et al. Acute pancreatitis. The Lancet. 2020;396:726–34.CrossRef Boxhoorn L, Voermans RP, Bouwense SA, et al. Acute pancreatitis. The Lancet. 2020;396:726–34.CrossRef
6.
Zurück zum Zitat Rosendahl J, Witt H. Pathogenese der chronischen Pankreatitis. Der Internist. 2021;62:1007–14.PubMedCrossRef Rosendahl J, Witt H. Pathogenese der chronischen Pankreatitis. Der Internist. 2021;62:1007–14.PubMedCrossRef
7.
Zurück zum Zitat Lukas J, Pospech J, Oppermann C, et al. Role of endoplasmic reticulum stress and protein misfolding in disorders of the liver and pancreas. Adv Med Sci. 2019;64:315–23.PubMedCrossRef Lukas J, Pospech J, Oppermann C, et al. Role of endoplasmic reticulum stress and protein misfolding in disorders of the liver and pancreas. Adv Med Sci. 2019;64:315–23.PubMedCrossRef
8.
Zurück zum Zitat Howes N, Lerch MM, Greenhalf W, et al. Clinical and genetic characteristics of hereditary pancreatitis in Europe. Clin Gastroenterol Hepatol. 2004;2:252–61.PubMedCrossRef Howes N, Lerch MM, Greenhalf W, et al. Clinical and genetic characteristics of hereditary pancreatitis in Europe. Clin Gastroenterol Hepatol. 2004;2:252–61.PubMedCrossRef
9.
Zurück zum Zitat Sahin-Tóth M, Tóth M. Gain-of-function mutations associated with hereditary pancreatitis enhance autoactivation of human cationic trypsinogen. Biochem Biophys Res Commun. 2000;278:286–9.PubMedCrossRef Sahin-Tóth M, Tóth M. Gain-of-function mutations associated with hereditary pancreatitis enhance autoactivation of human cationic trypsinogen. Biochem Biophys Res Commun. 2000;278:286–9.PubMedCrossRef
10.
Zurück zum Zitat Geisz A, Hegyi P, Sahin-Tóth M. Robust autoactivation, chymotrypsin C independence and diminished secretion define a subset of hereditary pancreatitis-associated cationic trypsinogen mutants. Febs j. 2013;280:2888–99.PubMedPubMedCentralCrossRef Geisz A, Hegyi P, Sahin-Tóth M. Robust autoactivation, chymotrypsin C independence and diminished secretion define a subset of hereditary pancreatitis-associated cationic trypsinogen mutants. Febs j. 2013;280:2888–99.PubMedPubMedCentralCrossRef
11.•
Zurück zum Zitat Schnúr A, Beer S, Witt H, Hegyi P, Sahin-Tóth M. Functional effects of 13 rare PRSS1 variants presumed to cause chronic pancreatitis. Gut 2014;63:337–43. This study functionally reveals misfolding-dependent hereditary pancreatitis. Schnúr A, Beer S, Witt H, Hegyi P, Sahin-Tóth M. Functional effects of 13 rare PRSS1 variants presumed to cause chronic pancreatitis. Gut 2014;63:337–43. This study functionally reveals misfolding-dependent hereditary pancreatitis.
12.
Zurück zum Zitat Kereszturi E, Szmola R, Kukor Z, et al. Hereditary pancreatitis caused by mutation-induced misfolding of human cationic trypsinogen: a novel disease mechanism. Hum Mutat. 2009;30:575–82.PubMedPubMedCentralCrossRef Kereszturi E, Szmola R, Kukor Z, et al. Hereditary pancreatitis caused by mutation-induced misfolding of human cationic trypsinogen: a novel disease mechanism. Hum Mutat. 2009;30:575–82.PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Hegyi E, Cierna I, Vavrova L, Ilencikova D, Konecny M, Kovacs L. Chronic pancreatitis associated with the p.G208A variant of PRSS1 gene in a European patient. Jop. 2014;15:49–52.PubMed Hegyi E, Cierna I, Vavrova L, Ilencikova D, Konecny M, Kovacs L. Chronic pancreatitis associated with the p.G208A variant of PRSS1 gene in a European patient. Jop. 2014;15:49–52.PubMed
14.
Zurück zum Zitat Masamune A, Nakano E, Kume K, Takikawa T, Kakuta Y, Shimosegawa T. PRSS1 c.623G>C (p.G208A) variant is associated with pancreatitis in Japan. Gut. 2014;63:366.PubMedCrossRef Masamune A, Nakano E, Kume K, Takikawa T, Kakuta Y, Shimosegawa T. PRSS1 c.623G>C (p.G208A) variant is associated with pancreatitis in Japan. Gut. 2014;63:366.PubMedCrossRef
15.
Zurück zum Zitat Gui F, Zhang Y, Wan J, et al. Trypsin activity governs increased susceptibility to pancreatitis in mice expressing human PRSS1R122H. J Clin Invest. 2020;130:189–202.PubMedCrossRef Gui F, Zhang Y, Wan J, et al. Trypsin activity governs increased susceptibility to pancreatitis in mice expressing human PRSS1R122H. J Clin Invest. 2020;130:189–202.PubMedCrossRef
16.
Zurück zum Zitat Németh BC, Sahin-Tóth M. Human cationic trypsinogen (PRSS1) variants and chronic pancreatitis. Am J Physiol Gastrointest Liver Physiol. 2014;306:G466–73.PubMedPubMedCentralCrossRef Németh BC, Sahin-Tóth M. Human cationic trypsinogen (PRSS1) variants and chronic pancreatitis. Am J Physiol Gastrointest Liver Physiol. 2014;306:G466–73.PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat Witt H, Sahin-Tóth M, Landt O, et al. A degradation-sensitive anionic trypsinogen (PRSS2) variant protects against chronic pancreatitis. Nat Genet. 2006;38:668–73.PubMedPubMedCentralCrossRef Witt H, Sahin-Tóth M, Landt O, et al. A degradation-sensitive anionic trypsinogen (PRSS2) variant protects against chronic pancreatitis. Nat Genet. 2006;38:668–73.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Kume K, Masamune A, Takagi Y, et al. A loss-of-function p.G191R variant in the anionic trypsinogen (PRSS2) gene in Japanese patients with pancreatic disorders. Gut. 2009;58:820–4.PubMedCrossRef Kume K, Masamune A, Takagi Y, et al. A loss-of-function p.G191R variant in the anionic trypsinogen (PRSS2) gene in Japanese patients with pancreatic disorders. Gut. 2009;58:820–4.PubMedCrossRef
19.
Zurück zum Zitat Witt H, Luck W, Hennies HC, et al. Mutations in the gene encoding the serine protease inhibitor, Kazal type 1 are associated with chronic pancreatitis. Nat Genet. 2000;25:213–6.PubMedCrossRef Witt H, Luck W, Hennies HC, et al. Mutations in the gene encoding the serine protease inhibitor, Kazal type 1 are associated with chronic pancreatitis. Nat Genet. 2000;25:213–6.PubMedCrossRef
20.
Zurück zum Zitat Kulke M, Nagel F, Schulig L, et al. A hypothesized mechanism for chronic pancreatitis caused by the N34S mutation of serine protease inhibitor Kazal-type 1 based on conformational studies. J Inflamm Res. 2021;14:2111–9.PubMedPubMedCentralCrossRef Kulke M, Nagel F, Schulig L, et al. A hypothesized mechanism for chronic pancreatitis caused by the N34S mutation of serine protease inhibitor Kazal-type 1 based on conformational studies. J Inflamm Res. 2021;14:2111–9.PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Buchholz I, Nagel F, Klein A, et al. The impact of physiological stress conditions on protein structure and trypsin inhibition of serine protease inhibitor Kazal type 1 (SPINK1) and its N34S variant. Biochim Biophys Acta Proteins Proteom. 2020;1868: 140281.PubMedPubMedCentralCrossRef Buchholz I, Nagel F, Klein A, et al. The impact of physiological stress conditions on protein structure and trypsin inhibition of serine protease inhibitor Kazal type 1 (SPINK1) and its N34S variant. Biochim Biophys Acta Proteins Proteom. 2020;1868: 140281.PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Szabó A, Toldi V, Gazda LD, Demcsák A, Tőzsér J, Sahin-Tóth M. Defective binding of SPINK1 variants is an uncommon mechanism for impaired trypsin inhibition in chronic pancreatitis. J Biol Chem. 2021;296: 100343.PubMedPubMedCentralCrossRef Szabó A, Toldi V, Gazda LD, Demcsák A, Tőzsér J, Sahin-Tóth M. Defective binding of SPINK1 variants is an uncommon mechanism for impaired trypsin inhibition in chronic pancreatitis. J Biol Chem. 2021;296: 100343.PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Di Leo M, Bianco M, Zuppardo RA, et al. Meta-analysis of the impact of SPINK1 p.N34S gene variation in Caucasic patients with chronic pancreatitis. An update Dig Liver Dis. 2017;49:847–53.PubMedCrossRef Di Leo M, Bianco M, Zuppardo RA, et al. Meta-analysis of the impact of SPINK1 p.N34S gene variation in Caucasic patients with chronic pancreatitis. An update Dig Liver Dis. 2017;49:847–53.PubMedCrossRef
25.
Zurück zum Zitat Vendrell J, Querol E, Avilés FX. Metallocarboxypeptidases and their protein inhibitors. Structure, function and biomedical properties. Biochim Biophys Acta. 2000;1477:284–98.PubMedCrossRef Vendrell J, Querol E, Avilés FX. Metallocarboxypeptidases and their protein inhibitors. Structure, function and biomedical properties. Biochim Biophys Acta. 2000;1477:284–98.PubMedCrossRef
26.
Zurück zum Zitat Witt H, Beer S, Rosendahl J, et al. Variants in CPA1 are strongly associated with early onset chronic pancreatitis. Nat Genet. 2013;45:1216–20.PubMedPubMedCentralCrossRef Witt H, Beer S, Rosendahl J, et al. Variants in CPA1 are strongly associated with early onset chronic pancreatitis. Nat Genet. 2013;45:1216–20.PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Hegyi E, Sahin-Tóth M. Human CPA1 mutation causes digestive enzyme misfolding and chronic pancreatitis in mice. Gut. 2019;68:301–12.PubMedCrossRef Hegyi E, Sahin-Tóth M. Human CPA1 mutation causes digestive enzyme misfolding and chronic pancreatitis in mice. Gut. 2019;68:301–12.PubMedCrossRef
28.
Zurück zum Zitat Rosendahl J, Witt H, Szmola R, et al. Chymotrypsin C (CTRC) variants that diminish activity or secretion are associated with chronic pancreatitis. Nat Genet. 2008;40:78–82.PubMedCrossRef Rosendahl J, Witt H, Szmola R, et al. Chymotrypsin C (CTRC) variants that diminish activity or secretion are associated with chronic pancreatitis. Nat Genet. 2008;40:78–82.PubMedCrossRef
29.•
Zurück zum Zitat Beer S, Zhou J, Szabó A, et al. Comprehensive functional analysis of chymotrypsin C (CTRC) variants reveals distinct loss-of-function mechanisms associated with pancreatitis risk. Gut 2013;62:1616–24. This study describes distinct CTRC-dependent pancreatitis-causing mechanisms. Beer S, Zhou J, Szabó A, et al. Comprehensive functional analysis of chymotrypsin C (CTRC) variants reveals distinct loss-of-function mechanisms associated with pancreatitis risk. Gut 2013;62:1616–24. This study describes distinct CTRC-dependent pancreatitis-causing mechanisms.
30.
Zurück zum Zitat Rosendahl J, Landt O, Bernadova J, et al. CFTR, SPINK1, CTRC and PRSS1 variants in chronic pancreatitis: is the role of mutated CFTR overestimated? Gut. 2013;62:582–92.PubMedCrossRef Rosendahl J, Landt O, Bernadova J, et al. CFTR, SPINK1, CTRC and PRSS1 variants in chronic pancreatitis: is the role of mutated CFTR overestimated? Gut. 2013;62:582–92.PubMedCrossRef
31.
Zurück zum Zitat Masson E, Chen JM, Scotet V, Le Maréchal C, Férec C. Association of rare chymotrypsinogen C (CTRC) gene variations in patients with idiopathic chronic pancreatitis. Hum Genet. 2008;123:83–91.PubMedCrossRef Masson E, Chen JM, Scotet V, Le Maréchal C, Férec C. Association of rare chymotrypsinogen C (CTRC) gene variations in patients with idiopathic chronic pancreatitis. Hum Genet. 2008;123:83–91.PubMedCrossRef
32.
Zurück zum Zitat Grabarczyk AM, Oracz G, Wertheim-Tysarowska K, et al. Chymotrypsinogen C genetic variants, including c.180TT, are strongly associated with chronic pancreatitis in pediatric patients. J Pediatr Gastroenterol Nutr. 2017;65:652–7.PubMedCrossRef Grabarczyk AM, Oracz G, Wertheim-Tysarowska K, et al. Chymotrypsinogen C genetic variants, including c.180TT, are strongly associated with chronic pancreatitis in pediatric patients. J Pediatr Gastroenterol Nutr. 2017;65:652–7.PubMedCrossRef
33.
Zurück zum Zitat Paliwal S, Bhaskar S, Mani KR, et al. Comprehensive screening of chymotrypsin C (CTRC) gene in tropical calcific pancreatitis identifies novel variants. Gut. 2013;62:1602–6.PubMedCrossRef Paliwal S, Bhaskar S, Mani KR, et al. Comprehensive screening of chymotrypsin C (CTRC) gene in tropical calcific pancreatitis identifies novel variants. Gut. 2013;62:1602–6.PubMedCrossRef
34.
Zurück zum Zitat Johansson BB, Fjeld K, El Jellas K, et al. The role of the carboxyl ester lipase (CEL) gene in pancreatic disease. Pancreatology. 2018;18:12–9.PubMedCrossRef Johansson BB, Fjeld K, El Jellas K, et al. The role of the carboxyl ester lipase (CEL) gene in pancreatic disease. Pancreatology. 2018;18:12–9.PubMedCrossRef
35.•
Zurück zum Zitat Fjeld K, Weiss FU, Lasher D, et al. A recombined allele of the lipase gene CEL and its pseudogene CELP confers susceptibility to chronic pancreatitis. Nat Genet 2015;47:518–22. This publication was the first to identify CEL as a novel risk gene for chronic pancreatitis. Fjeld K, Weiss FU, Lasher D, et al. A recombined allele of the lipase gene CEL and its pseudogene CELP confers susceptibility to chronic pancreatitis. Nat Genet 2015;47:518–22. This publication was the first to identify CEL as a novel risk gene for chronic pancreatitis.
36.
Zurück zum Zitat Zou WB, Boulling A, Masamune A, et al. No association between CEL-HYB hybrid allele and chronic pancreatitis in Asian populations. Gastroenterology. 2016;150:1558-60.e5.PubMedCrossRef Zou WB, Boulling A, Masamune A, et al. No association between CEL-HYB hybrid allele and chronic pancreatitis in Asian populations. Gastroenterology. 2016;150:1558-60.e5.PubMedCrossRef
37.
Zurück zum Zitat Weiss FU, Schurmann C, Guenther A, et al. Fucosyltransferase 2 (FUT2) non-secretor status and blood group B are associated with elevated serum lipase activity in asymptomatic subjects, and an increased risk for chronic pancreatitis: a genetic association study. Gut. 2015;64:646–56.PubMedCrossRef Weiss FU, Schurmann C, Guenther A, et al. Fucosyltransferase 2 (FUT2) non-secretor status and blood group B are associated with elevated serum lipase activity in asymptomatic subjects, and an increased risk for chronic pancreatitis: a genetic association study. Gut. 2015;64:646–56.PubMedCrossRef
38.
Zurück zum Zitat Kirsten H, Scholz M, Kovacs P, et al. Genetic variants of lipase activity in chronic pancreatitis. Gut. 2016;65:184–5.PubMedCrossRef Kirsten H, Scholz M, Kovacs P, et al. Genetic variants of lipase activity in chronic pancreatitis. Gut. 2016;65:184–5.PubMedCrossRef
39.
Zurück zum Zitat Greer JB, LaRusch J, Brand RE, O’Connell MR, Yadav D, Whitcomb DC. ABO blood group and chronic pancreatitis risk in the NAPS2 cohort. Pancreas. 2011;40:1188–94.PubMedPubMedCentralCrossRef Greer JB, LaRusch J, Brand RE, O’Connell MR, Yadav D, Whitcomb DC. ABO blood group and chronic pancreatitis risk in the NAPS2 cohort. Pancreas. 2011;40:1188–94.PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Teich N, Bokemeyer B, Mohl W, et al. Blood group B is associated with azathioprine-induced acute pancreatitis in patients with IBD. Gut. 2017;66:1531–2.PubMedCrossRef Teich N, Bokemeyer B, Mohl W, et al. Blood group B is associated with azathioprine-induced acute pancreatitis in patients with IBD. Gut. 2017;66:1531–2.PubMedCrossRef
41.
42.
Zurück zum Zitat Lee MG, Ohana E, Park HW, Yang D, Muallem S. Molecular mechanism of pancreatic and salivary gland fluid and HCO3 secretion. Physiol Rev. 2012;92:39–74.PubMedCrossRef Lee MG, Ohana E, Park HW, Yang D, Muallem S. Molecular mechanism of pancreatic and salivary gland fluid and HCO3 secretion. Physiol Rev. 2012;92:39–74.PubMedCrossRef
44.
Zurück zum Zitat Hegyi P, Wilschanski M, Muallem S, et al. CFTR: a new horizon in the pathomechanism and treatment of pancreatitis. Rev Physiol Biochem Pharmacol. 2016;170:37–66.PubMedPubMedCentralCrossRef Hegyi P, Wilschanski M, Muallem S, et al. CFTR: a new horizon in the pathomechanism and treatment of pancreatitis. Rev Physiol Biochem Pharmacol. 2016;170:37–66.PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Hasan A, Moscoso DI, Kastrinos F. The role of genetics in pancreatitis. Gastrointest Endosc Clin N Am. 2018;28:587–603.PubMedCrossRef Hasan A, Moscoso DI, Kastrinos F. The role of genetics in pancreatitis. Gastrointest Endosc Clin N Am. 2018;28:587–603.PubMedCrossRef
46.
Zurück zum Zitat Ooi CY, Dorfman R, Cipolli M, et al. Type of CFTR mutation determines risk of pancreatitis in patients with cystic fibrosis. Gastroenterology. 2011;140:153–61.PubMedCrossRef Ooi CY, Dorfman R, Cipolli M, et al. Type of CFTR mutation determines risk of pancreatitis in patients with cystic fibrosis. Gastroenterology. 2011;140:153–61.PubMedCrossRef
47.
48.
Zurück zum Zitat Ooi CY, Durie PR. Cystic fibrosis transmembrane conductance regulator (CFTR) gene mutations in pancreatitis. J Cyst Fibros. 2012;11:355–62.PubMedCrossRef Ooi CY, Durie PR. Cystic fibrosis transmembrane conductance regulator (CFTR) gene mutations in pancreatitis. J Cyst Fibros. 2012;11:355–62.PubMedCrossRef
49.
Zurück zum Zitat Sharer N, Schwarz M, Malone G, et al. Mutations of the cystic fibrosis gene in patients with chronic pancreatitis. N Engl J Med. 1998;339:645–52.PubMedCrossRef Sharer N, Schwarz M, Malone G, et al. Mutations of the cystic fibrosis gene in patients with chronic pancreatitis. N Engl J Med. 1998;339:645–52.PubMedCrossRef
50.
Zurück zum Zitat Cohn JA, Friedman KJ, Noone PG, Knowles MR, Silverman LM, Jowell PS. Relation between mutations of the cystic fibrosis gene and idiopathic pancreatitis. N Engl J Med. 1998;339:653–8.PubMedCrossRef Cohn JA, Friedman KJ, Noone PG, Knowles MR, Silverman LM, Jowell PS. Relation between mutations of the cystic fibrosis gene and idiopathic pancreatitis. N Engl J Med. 1998;339:653–8.PubMedCrossRef
51.
Zurück zum Zitat Choudari CP, Imperiale TF, Sherman S, Fogel E, Lehman GA. Risk of pancreatitis with mutation of the cystic fibrosis gene. Am J Gastroenterol. 2004;99:1358–63.PubMedCrossRef Choudari CP, Imperiale TF, Sherman S, Fogel E, Lehman GA. Risk of pancreatitis with mutation of the cystic fibrosis gene. Am J Gastroenterol. 2004;99:1358–63.PubMedCrossRef
52.
Zurück zum Zitat Castellani C, Bonizzato A, Rolfini R, Frulloni L, Cavallini GC, Mastella G. Increased prevalence of mutations of the cystic fibrosis gene in idiopathic chronic and recurrent pancreatitis. Am J Gastroenterol. 1999;94:1993–5.PubMedCrossRef Castellani C, Bonizzato A, Rolfini R, Frulloni L, Cavallini GC, Mastella G. Increased prevalence of mutations of the cystic fibrosis gene in idiopathic chronic and recurrent pancreatitis. Am J Gastroenterol. 1999;94:1993–5.PubMedCrossRef
53.
Zurück zum Zitat Cohn JA, Neoptolemos JP, Feng J, et al. Increased risk of idiopathic chronic pancreatitis in cystic fibrosis carriers. Hum Mutat. 2005;26:303–7.PubMedCrossRef Cohn JA, Neoptolemos JP, Feng J, et al. Increased risk of idiopathic chronic pancreatitis in cystic fibrosis carriers. Hum Mutat. 2005;26:303–7.PubMedCrossRef
54.
Zurück zum Zitat Bishop MD, Freedman SD, Zielenski J, et al. The cystic fibrosis transmembrane conductance regulator gene and ion channel function in patients with idiopathic pancreatitis. Hum Genet. 2005;118:372–81.PubMedCrossRef Bishop MD, Freedman SD, Zielenski J, et al. The cystic fibrosis transmembrane conductance regulator gene and ion channel function in patients with idiopathic pancreatitis. Hum Genet. 2005;118:372–81.PubMedCrossRef
55.
Zurück zum Zitat Noone PG, Zhou Z, Silverman LM, Jowell PS, Knowles MR, Cohn JA. Cystic fibrosis gene mutations and pancreatitis risk: relation to epithelial ion transport and trypsin inhibitor gene mutations. Gastroenterology. 2001;121:1310–9.PubMedCrossRef Noone PG, Zhou Z, Silverman LM, Jowell PS, Knowles MR, Cohn JA. Cystic fibrosis gene mutations and pancreatitis risk: relation to epithelial ion transport and trypsin inhibitor gene mutations. Gastroenterology. 2001;121:1310–9.PubMedCrossRef
56.
Zurück zum Zitat Masson E, Chen JM, Audrézet MP, Cooper DN, Férec C. A conservative assessment of the major genetic causes of idiopathic chronic pancreatitis: data from a comprehensive analysis of PRSS1, SPINK1, CTRC and CFTR genes in 253 young French patients. PLoS ONE. 2013;8: e73522.PubMedPubMedCentralCrossRef Masson E, Chen JM, Audrézet MP, Cooper DN, Férec C. A conservative assessment of the major genetic causes of idiopathic chronic pancreatitis: data from a comprehensive analysis of PRSS1, SPINK1, CTRC and CFTR genes in 253 young French patients. PLoS ONE. 2013;8: e73522.PubMedPubMedCentralCrossRef
57.
Zurück zum Zitat LaRusch J, Jung J, General IJ, et al. Mechanisms of CFTR functional variants that impair regulated bicarbonate permeation and increase risk for pancreatitis but not for cystic fibrosis. PLoS Genet. 2014;10: e1004376.PubMedPubMedCentralCrossRef LaRusch J, Jung J, General IJ, et al. Mechanisms of CFTR functional variants that impair regulated bicarbonate permeation and increase risk for pancreatitis but not for cystic fibrosis. PLoS Genet. 2014;10: e1004376.PubMedPubMedCentralCrossRef
58.
Zurück zum Zitat Weiss FU, Simon P, Bogdanova N, et al. Complete cystic fibrosis transmembrane conductance regulator gene sequencing in patients with idiopathic chronic pancreatitis and controls. Gut. 2005;54:1456–60.PubMedPubMedCentralCrossRef Weiss FU, Simon P, Bogdanova N, et al. Complete cystic fibrosis transmembrane conductance regulator gene sequencing in patients with idiopathic chronic pancreatitis and controls. Gut. 2005;54:1456–60.PubMedPubMedCentralCrossRef
59.
Zurück zum Zitat Mayerle J, Sendler M, Hegyi E, Beyer G, Lerch MM, Sahin-Tóth M. Genetics, Cell Biology, and Pathophysiology of Pancreatitis. Gastroenterology. 2019;156:1951-68.e1.PubMedCrossRef Mayerle J, Sendler M, Hegyi E, Beyer G, Lerch MM, Sahin-Tóth M. Genetics, Cell Biology, and Pathophysiology of Pancreatitis. Gastroenterology. 2019;156:1951-68.e1.PubMedCrossRef
60.
Zurück zum Zitat Jalaly NY, Moran RA, Fargahi F, et al. An evaluation of factors associated with pathogenic PRSS1, SPINK1, CTFR, and/or CTRC genetic variants in patients with idiopathic pancreatitis. Am J Gastroenterol. 2017;112:1320–9.PubMedCrossRef Jalaly NY, Moran RA, Fargahi F, et al. An evaluation of factors associated with pathogenic PRSS1, SPINK1, CTFR, and/or CTRC genetic variants in patients with idiopathic pancreatitis. Am J Gastroenterol. 2017;112:1320–9.PubMedCrossRef
61.
Zurück zum Zitat Trapp S, Aghdassi AA, Glaubitz J, et al. Pancreatitis severity in mice with impaired CFTR function but pancreatic sufficiency is mediated via ductal and inflammatory cells-Not acinar cells. J Cell Mol Med. 2021;25:4658–70.PubMedPubMedCentralCrossRef Trapp S, Aghdassi AA, Glaubitz J, et al. Pancreatitis severity in mice with impaired CFTR function but pancreatic sufficiency is mediated via ductal and inflammatory cells-Not acinar cells. J Cell Mol Med. 2021;25:4658–70.PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat Shteinberg M, Haq IJ, Polineni D, Davies JC. Cystic fibrosis. The Lancet. 2021;397:2195–211.CrossRef Shteinberg M, Haq IJ, Polineni D, Davies JC. Cystic fibrosis. The Lancet. 2021;397:2195–211.CrossRef
63.
Zurück zum Zitat Akshintala VS, Kamal A, Faghih M, et al. Cystic fibrosis transmembrane conductance regulator modulators reduce the risk of recurrent acute pancreatitis among adult patients with pancreas sufficient cystic fibrosis. Pancreatology. 2019;19:1023–6.PubMedCrossRef Akshintala VS, Kamal A, Faghih M, et al. Cystic fibrosis transmembrane conductance regulator modulators reduce the risk of recurrent acute pancreatitis among adult patients with pancreas sufficient cystic fibrosis. Pancreatology. 2019;19:1023–6.PubMedCrossRef
64.•
Zurück zum Zitat Ramsey ML, Gokun Y, Sobotka LA, et al. Cystic fibrosis transmembrane conductance regulator modulator use is associated with reduced pancreatitis hospitalizations in patients with cystic fibrosis. Am J Gastroenterol 2021. This study highlights the putative role of CTFR modulators in the treatment of chronic pancreatitis. Ramsey ML, Gokun Y, Sobotka LA, et al. Cystic fibrosis transmembrane conductance regulator modulator use is associated with reduced pancreatitis hospitalizations in patients with cystic fibrosis. Am J Gastroenterol 2021. This study highlights the putative role of CTFR modulators in the treatment of chronic pancreatitis.
65.
Zurück zum Zitat Zeng M, Szymczak M, Ahuja M, et al. Restoration of CFTR activity in ducts rescues acinar cell function and reduces inflammation in pancreatic and salivary glands of mice. Gastroenterology. 2017;153:1148–59.PubMedCrossRef Zeng M, Szymczak M, Ahuja M, et al. Restoration of CFTR activity in ducts rescues acinar cell function and reduces inflammation in pancreatic and salivary glands of mice. Gastroenterology. 2017;153:1148–59.PubMedCrossRef
66.
Zurück zum Zitat Fűr G, Bálint ER, Orján EM, et al. Mislocalization of CFTR expression in acute pancreatitis and the beneficial effect of VX-661 + VX-770 treatment on disease severity. J Physiol. 2021;599:4955–71.PubMedCrossRef Fűr G, Bálint ER, Orján EM, et al. Mislocalization of CFTR expression in acute pancreatitis and the beneficial effect of VX-661 + VX-770 treatment on disease severity. J Physiol. 2021;599:4955–71.PubMedCrossRef
67.
Zurück zum Zitat Tang TY, Cruz VB, Konczal LL. Idiopathic chronic pancreatitis treated with ivacaftor in a CFTR carrier with methylmalonic acidemia. J Cyst Fibros. 2021;S1569–1993(21):02174–3. Tang TY, Cruz VB, Konczal LL. Idiopathic chronic pancreatitis treated with ivacaftor in a CFTR carrier with methylmalonic acidemia. J Cyst Fibros. 2021;S1569–1993(21):02174–3.
68.
Zurück zum Zitat Zihni C, Mills C, Matter K, Balda MS. Tight junctions: from simple barriers to multifunctional molecular gates. Nat Rev Mol Cell Biol. 2016;17:564–80.PubMedCrossRef Zihni C, Mills C, Matter K, Balda MS. Tight junctions: from simple barriers to multifunctional molecular gates. Nat Rev Mol Cell Biol. 2016;17:564–80.PubMedCrossRef
69.
Zurück zum Zitat Westmoreland JJ, Drosos Y, Kelly J, et al. Dynamic distribution of claudin proteins in pancreatic epithelia undergoing morphogenesis or neoplastic transformation. Dev Dyn. 2012;241:583–94.PubMedPubMedCentralCrossRef Westmoreland JJ, Drosos Y, Kelly J, et al. Dynamic distribution of claudin proteins in pancreatic epithelia undergoing morphogenesis or neoplastic transformation. Dev Dyn. 2012;241:583–94.PubMedPubMedCentralCrossRef
70.
Zurück zum Zitat Van Itallie CM, Holmes J, Bridges A, et al. The density of small tight junction pores varies among cell types and is increased by expression of claudin-2. J Cell Sci. 2008;121:298–305.PubMedCrossRef Van Itallie CM, Holmes J, Bridges A, et al. The density of small tight junction pores varies among cell types and is increased by expression of claudin-2. J Cell Sci. 2008;121:298–305.PubMedCrossRef
71.
Zurück zum Zitat Amasheh S, Meiri N, Gitter AH, et al. Claudin-2 expression induces cation-selective channels in tight junctions of epithelial cells. J Cell Sci. 2002;115:4969–76.PubMedCrossRef Amasheh S, Meiri N, Gitter AH, et al. Claudin-2 expression induces cation-selective channels in tight junctions of epithelial cells. J Cell Sci. 2002;115:4969–76.PubMedCrossRef
72.
Zurück zum Zitat Sakaguchi T, Gu X, Golden HM, Suh E, Rhoads DB, Reinecker HC. Cloning of the human claudin-2 5’-flanking region revealed a TATA-less promoter with conserved binding sites in mouse and human for caudal-related homeodomain proteins and hepatocyte nuclear factor-1alpha. J Biol Chem. 2002;277:21361–70.PubMedCrossRef Sakaguchi T, Gu X, Golden HM, Suh E, Rhoads DB, Reinecker HC. Cloning of the human claudin-2 5’-flanking region revealed a TATA-less promoter with conserved binding sites in mouse and human for caudal-related homeodomain proteins and hepatocyte nuclear factor-1alpha. J Biol Chem. 2002;277:21361–70.PubMedCrossRef
73.
Zurück zum Zitat Mankertz J, Amasheh M, Krug SM, et al. TNFalpha up-regulates claudin-2 expression in epithelial HT-29/B6 cells via phosphatidylinositol-3-kinase signaling. Cell Tissue Res. 2009;336:67–77.PubMedCrossRef Mankertz J, Amasheh M, Krug SM, et al. TNFalpha up-regulates claudin-2 expression in epithelial HT-29/B6 cells via phosphatidylinositol-3-kinase signaling. Cell Tissue Res. 2009;336:67–77.PubMedCrossRef
74.
Zurück zum Zitat Suzuki T, Yoshinaga N, Tanabe S. Interleukin-6 (IL-6) regulates claudin-2 expression and tight junction permeability in intestinal epithelium. J Biol Chem. 2011;286:31263–71.PubMedPubMedCentralCrossRef Suzuki T, Yoshinaga N, Tanabe S. Interleukin-6 (IL-6) regulates claudin-2 expression and tight junction permeability in intestinal epithelium. J Biol Chem. 2011;286:31263–71.PubMedPubMedCentralCrossRef
75.
Zurück zum Zitat Mankertz J, Hillenbrand B, Tavalali S, Huber O, Fromm M, Schulzke JD. Functional crosstalk between Wnt signaling and Cdx-related transcriptional activation in the regulation of the claudin-2 promoter activity. Biochem Biophys Res Commun. 2004;314:1001–7.PubMedCrossRef Mankertz J, Hillenbrand B, Tavalali S, Huber O, Fromm M, Schulzke JD. Functional crosstalk between Wnt signaling and Cdx-related transcriptional activation in the regulation of the claudin-2 promoter activity. Biochem Biophys Res Commun. 2004;314:1001–7.PubMedCrossRef
76.
Zurück zum Zitat Dukes JD, Whitley P, Chalmers AD. The PIKfyve inhibitor YM201636 blocks the continuous recycling of the tight junction proteins claudin-1 and claudin-2 in MDCK cells. PLoS ONE. 2012;7: e28659.PubMedPubMedCentralCrossRef Dukes JD, Whitley P, Chalmers AD. The PIKfyve inhibitor YM201636 blocks the continuous recycling of the tight junction proteins claudin-1 and claudin-2 in MDCK cells. PLoS ONE. 2012;7: e28659.PubMedPubMedCentralCrossRef
77.
Zurück zum Zitat Whitcomb DC, LaRusch J, Krasinskas AM, et al. Common genetic variants in the CLDN2 and PRSS1-PRSS2 loci alter risk for alcohol-related and sporadic pancreatitis. Nat Genet. 2012;44:1349–54.PubMedPubMedCentralCrossRef Whitcomb DC, LaRusch J, Krasinskas AM, et al. Common genetic variants in the CLDN2 and PRSS1-PRSS2 loci alter risk for alcohol-related and sporadic pancreatitis. Nat Genet. 2012;44:1349–54.PubMedPubMedCentralCrossRef
78.
Zurück zum Zitat Derikx MH, Kovacs P, Scholz M, et al. Polymorphisms at PRSS1-PRSS2 and CLDN2-MORC4 loci associate with alcoholic and non-alcoholic chronic pancreatitis in a European replication study. Gut. 2015;64:1426–33.PubMedCrossRef Derikx MH, Kovacs P, Scholz M, et al. Polymorphisms at PRSS1-PRSS2 and CLDN2-MORC4 loci associate with alcoholic and non-alcoholic chronic pancreatitis in a European replication study. Gut. 2015;64:1426–33.PubMedCrossRef
79.
Zurück zum Zitat Rosendahl J, Kirsten H, Hegyi E, et al. Genome-wide association study identifies inversion in the CTRB1-CTRB2 locus to modify risk for alcoholic and non-alcoholic chronic pancreatitis. Gut. 2018;67:1855–63.PubMedCrossRef Rosendahl J, Kirsten H, Hegyi E, et al. Genome-wide association study identifies inversion in the CTRB1-CTRB2 locus to modify risk for alcoholic and non-alcoholic chronic pancreatitis. Gut. 2018;67:1855–63.PubMedCrossRef
80.
Zurück zum Zitat Hannan FM, Kallay E, Chang W, Brandi ML, Thakker RV. The calcium-sensing receptor in physiology and in calcitropic and noncalcitropic diseases. Nat Rev Endocrinol. 2019;15:33–51.CrossRef Hannan FM, Kallay E, Chang W, Brandi ML, Thakker RV. The calcium-sensing receptor in physiology and in calcitropic and noncalcitropic diseases. Nat Rev Endocrinol. 2019;15:33–51.CrossRef
81.
Zurück zum Zitat Rácz GZ, Kittel A, Riccardi D, Case RM, Elliott AC, Varga G. Extracellular calcium sensing receptor in human pancreatic cells. Gut. 2002;51:705–11.PubMedPubMedCentralCrossRef Rácz GZ, Kittel A, Riccardi D, Case RM, Elliott AC, Varga G. Extracellular calcium sensing receptor in human pancreatic cells. Gut. 2002;51:705–11.PubMedPubMedCentralCrossRef
82.
Zurück zum Zitat Bruce JI, Yang X, Ferguson CJ, et al. Molecular and functional identification of a Ca2+ (polyvalent cation)-sensing receptor in rat pancreas. J Biol Chem. 1999;274:20561–8.PubMedCrossRef Bruce JI, Yang X, Ferguson CJ, et al. Molecular and functional identification of a Ca2+ (polyvalent cation)-sensing receptor in rat pancreas. J Biol Chem. 1999;274:20561–8.PubMedCrossRef
83.
Zurück zum Zitat Felderbauer P, Hoffmann P, Einwächter H, et al. A novel mutation of the calcium sensing receptor gene is associated with chronic pancreatitis in a family with heterozygous SPINK1 mutations. BMC Gastroenterol. 2003;3:34.PubMedPubMedCentralCrossRef Felderbauer P, Hoffmann P, Einwächter H, et al. A novel mutation of the calcium sensing receptor gene is associated with chronic pancreatitis in a family with heterozygous SPINK1 mutations. BMC Gastroenterol. 2003;3:34.PubMedPubMedCentralCrossRef
84.
Zurück zum Zitat Muddana V, Lamb J, Greer JB, et al. Association between calcium sensing receptor gene polymorphisms and chronic pancreatitis in a US population: role of serine protease inhibitor Kazal 1type and alcohol. World J Gastroenterol. 2008;14:4486–91.PubMedPubMedCentralCrossRef Muddana V, Lamb J, Greer JB, et al. Association between calcium sensing receptor gene polymorphisms and chronic pancreatitis in a US population: role of serine protease inhibitor Kazal 1type and alcohol. World J Gastroenterol. 2008;14:4486–91.PubMedPubMedCentralCrossRef
85.
Zurück zum Zitat Masson E, Chen JM, Férec C. Overrepresentation of rare CASR coding variants in a sample of young French patients with idiopathic chronic pancreatitis. Pancreas. 2015;44:996–8.PubMedCrossRef Masson E, Chen JM, Férec C. Overrepresentation of rare CASR coding variants in a sample of young French patients with idiopathic chronic pancreatitis. Pancreas. 2015;44:996–8.PubMedCrossRef
86.
Zurück zum Zitat Takáts A, Berke G, Szentesi A, et al. Common calcium-sensing receptor (CASR) gene variants do not modify risk for chronic pancreatitis in a Hungarian cohort. Pancreatology. 2021;21:1305–10.PubMedCrossRef Takáts A, Berke G, Szentesi A, et al. Common calcium-sensing receptor (CASR) gene variants do not modify risk for chronic pancreatitis in a Hungarian cohort. Pancreatology. 2021;21:1305–10.PubMedCrossRef
87.
Zurück zum Zitat Fecher-Trost C, Wissenbach U, Weissgerber P. TRPV6: from identification to function. Cell Calcium. 2017;67:116–22.PubMedCrossRef Fecher-Trost C, Wissenbach U, Weissgerber P. TRPV6: from identification to function. Cell Calcium. 2017;67:116–22.PubMedCrossRef
88.
Zurück zum Zitat Segerstolpe Å, Palasantza A, Eliasson P, et al. Single-cell transcriptome profiling of human pancreatic islets in health and type 2 diabetes. Cell Metab. 2016;24:593–607.PubMedPubMedCentralCrossRef Segerstolpe Å, Palasantza A, Eliasson P, et al. Single-cell transcriptome profiling of human pancreatic islets in health and type 2 diabetes. Cell Metab. 2016;24:593–607.PubMedPubMedCentralCrossRef
89.
Zurück zum Zitat Sahin-Tóth M. Channelopathy of the pancreas causes chronic pancreatitis. Gastroenterology. 2020;158:1538–40.PubMedCrossRef Sahin-Tóth M. Channelopathy of the pancreas causes chronic pancreatitis. Gastroenterology. 2020;158:1538–40.PubMedCrossRef
90.••
Zurück zum Zitat Masamune A, Kotani H, Sörgel FL, et al. Variants that affect function of calcium channel TRPV6 are associated with early-onset chronic pancreatitis. Gastroenterology 2020;158:1626–41.e8. This article newly identified TRPV6 variants as important pancreatitis-causing gene alterations. Masamune A, Kotani H, Sörgel FL, et al. Variants that affect function of calcium channel TRPV6 are associated with early-onset chronic pancreatitis. Gastroenterology 2020;158:1626–41.e8. This article newly identified TRPV6 variants as important pancreatitis-causing gene alterations.
91.
Zurück zum Zitat Zou WB, Wang YC, Ren XL, et al. TRPV6 variants confer susceptibility to chronic pancreatitis in the Chinese population. Hum Mutat. 2020;41:1351–7.PubMedCrossRef Zou WB, Wang YC, Ren XL, et al. TRPV6 variants confer susceptibility to chronic pancreatitis in the Chinese population. Hum Mutat. 2020;41:1351–7.PubMedCrossRef
92.
Zurück zum Zitat Oracz G, Zaród M, Ewers M, et al. Loss of function TRPV6 variants are associated with chronic pancreatitis in nonalcoholic early-onset Polish and German patients. Pancreatology. 2021;21:1434–42.PubMedCrossRef Oracz G, Zaród M, Ewers M, et al. Loss of function TRPV6 variants are associated with chronic pancreatitis in nonalcoholic early-onset Polish and German patients. Pancreatology. 2021;21:1434–42.PubMedCrossRef
93.
Zurück zum Zitat Hamada S, Masson E, Chen JM, et al. Functionally deficient TRPV6 variants contribute to hereditary and familial chronic pancreatitis. Hum Mutat 2021. Hamada S, Masson E, Chen JM, et al. Functionally deficient TRPV6 variants contribute to hereditary and familial chronic pancreatitis. Hum Mutat 2021.
94.
Zurück zum Zitat van de Graaf SF, Boullart I, Hoenderop JG, Bindels RJ. Regulation of the epithelial Ca2+ channels TRPV5 and TRPV6 by 1alpha,25-dihydroxy Vitamin D3 and dietary Ca2+. J Steroid Biochem Mol Biol. 2004;89–90:303–8.PubMedCrossRef van de Graaf SF, Boullart I, Hoenderop JG, Bindels RJ. Regulation of the epithelial Ca2+ channels TRPV5 and TRPV6 by 1alpha,25-dihydroxy Vitamin D3 and dietary Ca2+. J Steroid Biochem Mol Biol. 2004;89–90:303–8.PubMedCrossRef
96.
Zurück zum Zitat Löhr JM, Dominguez-Munoz E, Rosendahl J, et al. United European Gastroenterology evidence-based guidelines for the diagnosis and therapy of chronic pancreatitis (HaPanEU). United European Gastroenterol J. 2017;5:153–99.PubMedPubMedCentralCrossRef Löhr JM, Dominguez-Munoz E, Rosendahl J, et al. United European Gastroenterology evidence-based guidelines for the diagnosis and therapy of chronic pancreatitis (HaPanEU). United European Gastroenterol J. 2017;5:153–99.PubMedPubMedCentralCrossRef
97.
Zurück zum Zitat Gardner TB, Adler DG, Forsmark CE, Sauer BG, Taylor JR, Whitcomb DC. ACG clinical guideline: chronic pancreatitis. Official journal of the American College of Gastroenterology | ACG. 2020;115:322–39.CrossRef Gardner TB, Adler DG, Forsmark CE, Sauer BG, Taylor JR, Whitcomb DC. ACG clinical guideline: chronic pancreatitis. Official journal of the American College of Gastroenterology | ACG. 2020;115:322–39.CrossRef
98.
Zurück zum Zitat Weiss FU, Laemmerhirt F, Lerch MM. Next generation sequencing pitfalls in diagnosing trypsinogen (PRSS1) mutations in chronic pancreatitis. Gut 2020. Weiss FU, Laemmerhirt F, Lerch MM. Next generation sequencing pitfalls in diagnosing trypsinogen (PRSS1) mutations in chronic pancreatitis. Gut 2020.
Metadaten
Titel
Genetic Testing in Acute and Chronic Pancreatitis
verfasst von
Ignazio Piseddu, MD
Jakob Vielhauer, MD
Julia Mayerle, Prof
Publikationsdatum
04.07.2022
Verlag
Springer US
Erschienen in
Current Treatment Options in Gastroenterology / Ausgabe 3/2022
Print ISSN: 1092-8472
Elektronische ISSN: 1534-309X
DOI
https://doi.org/10.1007/s11938-022-00383-0

Weitere Artikel der Ausgabe 3/2022

Current Treatment Options in Gastroenterology 3/2022 Zur Ausgabe

Liver (E B Tapper, Section Editor)

Management of AKI in Patients with Cirrhosis

Liver (E Tapper, Section Editor)

Exercise Interventions for Cirrhosis

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

Nach Herzinfarkt mit Typ-1-Diabetes schlechtere Karten als mit Typ 2?

29.05.2024 Herzinfarkt Nachrichten

Bei Menschen mit Typ-2-Diabetes sind die Chancen, einen Myokardinfarkt zu überleben, in den letzten 15 Jahren deutlich gestiegen – nicht jedoch bei Betroffenen mit Typ 1.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.