Skip to main content
Erschienen in: Italian Journal of Pediatrics 1/2020

Open Access 01.12.2020 | Research

High-throughput screening reveals novel mutations in spinal muscular atrophy patients

verfasst von: Ruiping Zhang, Chunyu Gu, Linjie Pu, Yingtao Meng, Jianbo Shu, Chunquan Cai

Erschienen in: Italian Journal of Pediatrics | Ausgabe 1/2020

Abstract

Background

Spinal muscular atrophy (SMA) is an autosomal recessive hereditary disease associated with severe muscle atrophy and weakness in the limbs and trunk. The discovery of mutated genes is helpful in diagnosis and treatment for SMA.

Methods

Eighty-three whole blood samples were collected from 28 core families of clinically suspected SMA, and multiplex ligation probe amplification (MLPA) was performed. Afterwards, the complete gene sequence of SMN1 gene was detected. Furthermore, 20 SMA patients were selected from the 28 probands, and 5 non SMA children as controls. The Life Technologies SOLiD™ technology with mate-pair chemistry was utilized to conduct the whole exome high-throughput sequencing.

Results

Twenty-two probands were SMA patients, 3 probands carriers, and 3 probands normal individuals. Moreover, 2 parents from 2 SMA families were with 3 SMN1 exon7 copies. Six SMN1 single nucleotide variants (SNVs) were identified in the 83 samples, and c.[84C > T], c.[271C > T], c.[−39A > G] and g.[70240639G > C] were novel. Compared with control group, 9102 mutation were selected out in SMA patients. SPTA1 mutation c.[−41_-40insCTCT], FUT5 SNV c.[1001A > G], and MCCC2 SNV c.[−117A > G] were the 3 most frequent mutations in SMA group (95, 85 and 75%, respectively).

Conclusions

We identified some mutations in both SMN1 and other genes, and c.[271C > T], c.[−41_-40insCTCT], c.[1001A > G] and c.[−117A > G] might be associated with the onset of SMA.
Hinweise
Ruiping Zhang, Chunyu Gu and Linjie Pu contributed equally to this work.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
SMA
Spinal muscular atrophy
MLPA
Multiplex ligation probe amplification
SNVs
Single nucleotide variants
SMN
Survival of motor neuron
NAIP
Neuronal apoptosis inhibitory protein
GATK
Genome analysis toolkit
MCCβ
Methylcrotonyl CoA carboxylase β

Background

Spinal muscular atrophy (SMA) is an autosomal recessive hereditary disease characterized by degeneration of spinal cord motor neurons, atrophy of skeletal muscles, and generalized weakness [1]. It affects 1 in 10,000 live births, and often leads to early death [2]. SMA manifests over a wide range of severity, affecting infants through adults. According to the onset time and severity of the disease, SMA is divided into 4 types (SMA1, SMA2, SMA3 and SMA4), and SMA 1, with onset before age 6 months; SMA 2, with onset between age 6 and 18 months; SMA 3, with onset in childhood after age 12 months; and SMA 4, with adult onset [3]. Nusinersen (trade name: Spinraza) is the only approved drug to treat spinal muscular atrophy, which is administered directly to the central nervous system using an intrathecal injection [4], but it’s mandatory to have a specific diagnosis in quick time. The genetic profile is essential for the quick and accurate diagnosis of SMA.
SMA is caused by homozygous disruption of the survival motor neuron 1 (SMN1) gene by deletion, conversion, or mutation [1]. Since SMA is one of the most common lethal genetic disorders, with a carrier frequency of 1 in 40 to 1 in 60, direct carrier dosage testing has been beneficial to many families [5]. About 96% SMA are caused by a homozygous deletion of SMN1 exon7, and the remaining 4% of cases are caused either by compound heterozygosity with a point mutation in one allele and a deletion in the other or by compound heterozygous point mutations in SMN1 [6]. SMN2 is a homologous gene of SMN1 and functions as a SMA modifier. In general, the copy number of SMN2 is substantial variation in SMA patients, and a high SMN2 copy number tends to a milder type [7]. Furthermore, more and more new genes or novel mutations have been reported to be related to the morbidity, severity, treatment and prognosis of SMA with the development of gene sequencing technology. A study revealed seven different mutations of SMN1, and among them, c.824G > C, and c.825-2A > T were described for the first time [8]. Another study found the NAIP copy number was inversely correlated with the clinical severity of SMA [9]. GTF2H2 and H4F5 have been proved to be associated with the onset and type of SMA [10]. It is important to understand the genetic characteristics of SMA pathology in order to better understand and diagnose it, so as to implement the nursing care of more and more affected patients.
The severity of SMA varies from infancy to adulthood, which is reflected in the clinical classification system of type 1–4. In addition, a recent study reported that the copy number of SMN genes may determine the pathological type of SMA patients. Cao et al. [11] found that in different copy numbers of SMN2, the distribution of type I and type 2/3 was significantly different (P < 0.001): when the copy number of SMN2 in parents was 1, 75% of SMA progenies were type 1 and 25% were type 2/3. However, when the parents carried three copies of SMN2, their SMA progenies were all 2/3 type. Therefore, it is very important to understand the pathological genetic characteristics of patients, which directly affects the diagnosis and treatment of patients.
To further improve our understanding of genetic variation in patients with SMA, in this study, multiplex ligation probe amplification (MLPA) was firstly used for preliminary diagnosis in 28 core families of suspected SMA patients, and then the complete gene sequence of SMN1 gene was detected by high-throughput sequencing to find more mutations in the 28 core families. Afterwards, 20 children diagnosed with SMA and 5 children diagnosed with non SMA were enrolled, and the whole exome screening of other related genes was performed to explore more genes and mutations involved in the onset of SMA.

Methods

Patients and samples

From December 2013 to May 2017, 28 probands of clinically suspected SMA, 15 males and 13 females, were accepted by our hospital (Tianjin Children’s Hospital, Tianjin, China) because of unstable walking, and their age ranging from 1 month to 12 years. The phenotypes of their parents were normal. 3–5 ml peripheral blood samples from the 83 enrolled cases (probands and their parents) were collected. All the subjects signed the informed consent forms for genetic testing routinely, and all procedures were in accordance with the ethical standards of the institutional and/or national research committee.

MLPA

Extracted Genomic DNA with the salting out method. The nucleic acid quantitative instrument NADO DROP 2000 (Thermo Fisher Scientific Inc., Waltham, USA) was utilized to determine the quality and quantity of the extracted DNA. MLPA was performed using a SALSA MLPA Kit P021 (MRC-Holland, Amsterdam, Netherlands) according to the manufacturer’s protocol. MLPA products were run on an ABI PRISM 3130 genetic analyzer (Applied Biosystems International Inc., California, USA). The evaluation criteria were based on the kit instructions: in normal individuals, SMN1 exon7 is 2 copies; the SMN1 gene of patients with homozygous deletion and carriers with heterozygous deletion is 0 copies and 1copy, respectively [12, 13].

SMN1 gene screening by high-throughput sequencing

The complete genome sequence of SMN1 gene was detected from above 83 enrolled cases via high-throughput sequencing. Firstly, high-molecular-weight genomic DNAs were extracted with the DNeasy Blood and Tissue kit (QIAGEN, Dusseldorf, Germany) and 10 μg genomic DNA was used for library generation according to the manufacturer’s recommendations. Secondly, the Illumina HiSeq-2500 platform (Illumina, California, USA) was used to conduct the sequencing reaction based on the manufacturer’s protocol. The average sequencing depth was 100×, and more than 96% regions was up to 20×. Thirdly, the raw data were compared with human genome (NCBI build 36, hg18), and marked repeated reads and filtered out low-quality data. Fourthly, the base quality of reads was calibrated again by the genome analysis toolkit (GATK) algorithm, and ultimately all the a single base of DNA (point mutation) or a loss of base pairs (deletion) were screened out with the GATK software V3.0 (Eli and Edythe L. Broad Institute, Massachusetts, USA) [14]. The QC30 of the raw data was more than 85% in all samples, and the allele frequency of all mutations was more than 20%.

The whole exome screening by high-throughput sequencing

Based on previous results, 20 SMA patients with homozygous deletion of SMN1 exon7 were selected from the 28 probands, and 5 non SMA children were as controls (2 children carried with heterozygous deletion of SMN1 exon7 and 3 children with 2 SMN1 exon7 copies). Whole exome high-throughput sequencing was performed by The Life Technologies SOLiD™ (version 3) technology with mate-pair chemistry. 20 μg high-molecular-weight genomic DNAs was used for library generation. The raw data were analyzed with GATK software. The average sequencing depth was 100×, and more than 96% regions was up to 20×. The QC30 of the raw data was more than 85% in all samples, and the allele frequency of all mutations was more than 40%.

Results

MLPA

MLPA results showed that 22 probands were with homozygous deletion of SMN1 exon7 (SMA patients), 3 probands carried with heterozygous deletion of SMN1 exon7 (carriers), and 3 probands with 2 SMN1 copies (normal individuals). However, the mother of a SMA patient had 3 SMN1 exon7 copies and the father was carrier, and the father of another SMA patient had 3 SMN1 exon7 copies and the mother was carrier. Here, we recorded the above 2 SMA patients as Proband-1 and Proband-2, respectively. Furthermore, 1 carrier, a 2-year old girl, had some clinical features that correspond to SMA, such as atrophy of skeletal muscles, generalized weakness and extensive neurogenic injury by electromyography. Here, the carrier was named as Proband-3. Besides, the father of Proband-3 was without heterozygous deletion of SMN1 exon7 and exon8, and the mother was a carrier.

Novel mutations of SMN1 in suspected SMA family

A total of 6 single nucleotide variants (SNVs) of SMN1 were identified in the 83 samples, and they were showed in Table 1. Three SNVs located in exon, 1 in UTR5 and 2 in intron; c.[84C > T], c.[271C > T], c.[−39A > G] and g.[70240639G > C] were firstly reported here; c.[84C > T] and c.[462A > G] were synonymous mutations, and c.[271C > T] were stop-gain; c.[271C > T] caused changes in encoded amino acids. Furthermore, c.[271C > T] was found in Proband-3 and her father, and c.[462A > G] was occurred in 17 SMA patients, 2 carrier and 2 normal individuals. In addition, 1 carrier was with c.[84C > T], 1 SMA patient with c.[−39A > G], and 1 SMA patient with g.[70240639G > C].
Table 1
Mutations in SMN1
Position
MT
Ex-In
Function
REF > ALT
dbSNP
cHGVS
AAChange
Frequency
70,234,668
snv
exon2
synonymous
C > T
NA
c.[84C > T]
NA
3.61% (3/83)
70,220,892
snv
exon3
stop-gain
C > T
NA
c.[271C > T]
p.[Gln91X]
2.41% (2/83)
70,238,373
snv
exon4
synonymous
A > G
rs4915
c.[462A > G]
NA
83.13% (69/83)
70,220,892
snv
UTR5
unknown
A > G
NA
c.[−39A > G]
NA
4.82% (4/83)
70,240,639
snv
intron
unknown
G > C
NA
g.[70240639G > C]
NA
8.43% (7/83)
70,247,937
snv
intron
unknown
A > C
rs200563560
g.[70247937A > C]
NA
1.20% (1/83)
MT Mutation type, Ex-In Exon or intron, snv Single nucleotide variant, NA No report or no change, X Unknown amino acids, Frequency Frequency in all samples

Novel mutations occurred in only SMA patients

Compared with control group, a total of 9102 mutation were selected out in SMA patients with homozygous deletion of SMN1 exon7. They were located in the exon region, and occurred only in SMA patients not in carriers and normal individuals. Among them, 2415 genes and some indefinite genes were included, and 8619 SNVs, 267 deletions and 216 inserts were contained. Here, the indefinite genes were removed, and the 30 most frequent mutations were showed in Table 2 (Frequency ≥ 50%). It was obvious from Table 2 that only the MCCC2 missense mutation c.[1001A > G] located on chromosome 5q13, which was the same location as SMN1 and SMN2. The others were unlinked to 5q13.
Table 2
The 30 most frequent mutations in SMA patients
Gene
Position
MapLoc
MT
ExID
Function
cHGVS
AAChange
dbSNP
Frequency
SPTA1
158,656,347
1q23.1
ins
EX1
utr-5
c.[−41_-40insCTCT]
NA
rs111674514
95%(19/20)
FUT5
5,866,736
19p13.3
snv
EX2E
missense
c.[1001A > G]
p.[His334Arg]
rs778984
85%(17/20)
MCCC2
70,883,136
5q13.2
snv
EX1
utr-5
c.[−117A > G]
NA
rs11746722
75%(15/20)
ARL14EP
30,352,473
11p14.1
ins
EX2
utr-5
c.[−23_-22insAG]
NA
rs75725983
70%(14/20)
GNS
65,146,532
12q14.3
snv
EX2
coding-synon
c.[198G > A]
NA
rs1147096
65%(13/20)
COL3A1
189,864,080
2q32.2
snv
EX30
missense
c.[2092G > A]
p.[Ala698Thr]
rs1800255
65%(13/20)
HSPD1
198,363,504
2q33.1
snv
EX2
coding-synon
c.[69 T > C]
NA
rs1050347
65%(13/20)
SREBF1
17,714,719
17p11.2
del
EX20E
utr-3
c.[1217_1218delTT]
NA
NA
60%(12/20)
CYP2A6
41,355,849
19q13.2
snv
EX2
coding-synon
c.[217 T > C]
NA
rs2302990
60%(12/20)
SDHAP1
195,710,975
3q29
snv
IVS5
unknown
n.[750 + 8C > T]
NA
NA
60%(12/20)
LHX4
180,199,727
1q25.2
snv
EX1
coding-synon
c.[63 T > C]
NA
rs75857235
55%(11/20)
RGPD8
113,147,159
2q13
snv
EX20
coding-synon
c.[3363C > T]
NA
rs62157473
55%(11/20)
PROM1
16,020,162
4p15.32
snv
EX8
coding-synon
c.[786G > A]
NA
rs2286455
55%(11/20)
HLA-DQB2
32,726,838
6p21.32
snv
EX3
coding-synon
c.[435G > A]
NA
rs17850863
55%(11/20)
ERCC6
50,666,808
10q11.23
snv
EX21E
utr-3
c.[*53 T > C]
NA
rs4253231
50%(10/20)
NOTCH2
120,612,004
1p11.2
del
EX1
frameshift
c.[17_18delCC]
p.[Pro6Arg]
NA
50%(10/20)
GORAB
170,521,650
1q24.2
snv
EX5E
utr-3
c.[*47 T > G]
NA
rs7552922
50%(10/20)
DYNC1H1
102,493,761
14q32.31
snv
EX46
coding-synon
c.[8928A > G]
NA
rs8010870
50%(10/20)
ACSF3
89,167,138
16q24.3
snv
EX3
missense
c.[49G > C]
p.[Ala17Pro]
rs11547019
50%(10/20)
MYO5B
47,429,022
18q21.1
snv
EX21
missense
c.[2753G > A]
p.[Arg918His]
rs2298624
50%(10/20)
MYO5B
47,500,836
18q21.1
snv
EX10
coding-synon
c.[1206C > T]
NA
rs11082795
50%(10/20)
BCL10
85,742,157
1p22.3
snv
EX1
utr-5
c.[−122C > G]
NA
rs1060843
50%(10/20)
CGB5
49,547,446
19q13.33
snv
EX1
utr-5
c.[−21G > C]
NA
rs35014217
50%(10/20)
SNRNP200
96,952,833
2q11.2
snv
EX27
coding-synon
c.[3550 T > C]
NA
rs3171927
50%(10/20)
NR3C2
149,002,017
4q31.23
del
EX9E
utr-3
c.[478delA]]
NA
rs10708334
50%(10/20)
GRM1
146,755,560
6q24.3
snv
EX9E
coding-synon
c.[3213 T > G]
NA
rs1047006
50%(10/20)
RP1L1
10,467,576
8p23.1
snv
EX4E
coding-synon
c.[4032A > G]
NA
rs4840499
50%(10/20)
RP1L1
10,467,652
8p23.1
snv
EX4E
missense
c.[3956C > G]
p.[Ala1319Gly]
rs4840501
50%(10/20)
CELP
135,961,787
9q34.2
snv
EX4
ncRNA
n.[622A > G]
NA
rs10901232
50%(10/20)
CELP
135,961,796
9q34.2
snv
EX4
ncRNA
n.[631C > T]
NA
rs10901233
50%(10/20)
MapLoc The locations on chromosome, MT Mutation type, Ex Exon, snv Single nucleotide variant, ins Insert, del deletion, NA no report or no change, Frequency Frequency in the 20 SMA samples

Discussion

Since both the clinical features and the mutation characteristics of SMA are obvious, the diagnosis of SMA is considered as relatively easy process. However, a recent review reported that the diagnostic process for SMA is not always simple, and there is usually a delay between the onset of clinical features and the diagnosis in all types of SMA [15]. At present, MLPA is the gold standard for clinical diagnosis of SMA. However, MLPA can only detect the deletion of SMN1 according to the gene copy number, not detect point mutations of SMN1. It is well known that about 4% of SMA patients bear one SMN1 copy with an intragenic mutation. Therefore, some SMA patients are inevitably misdiagnosed as carriers. In addition, the emergence of new therapies increases the need for early diagnosis of SMA, the approval of therapies and the neonatal screening programs urgently require a more detailed understanding of genetic variation [16]. In this study, Proband-3 was with one SMN1 copy and the SMN1 stop-gain mutation c.[271C > T], and the heterozygous deletion of SMN1 exon 7 was from her mother, and the SMN1 stop-gain mutation c.[271C > T] from her father. The SMN1 stop-gain mutation c.[271C > T] was never reported before, and it led to a amino acid change. Although MLPA results showed Proband-3 to be carrier, some SMA-related clinical features were occurred on her. Here, we suspected that Proband-3 might be a SMA patient caused by the heterozygous deletion of SMN1 exon 7 combined with the SMN1 stop-gain mutation c.[271C > T]. Simultaneously, c.[271C > T] might be involved in the onset of SMA. In addition, [2 + 0] genotype carriers are two SMN1 copies on one chromosome and with deletion of SMN1 on the other chromosome [17]. In this article, we found 2 patients (Proband-1 and Proband-2) whose one parent was carriers and the other parent with 3 SMN1 exon7 copies (Proband-1’s mother and Proband-2’s father). Based on our results we suspected that Proband-1’s mother and Proband-2’s father might be [2 + 0] genotype carriers.
SMN1 and SMN2 present on chromosome 5q13, and of the 5q13-linked SMA patients, 96.4% show homozygous absence of SMN1 exons 7 and 8 or exon 7 only, whereas 3.6% present a compound heterozygosity with a subtle mutation on one chromosome and a deletion/gene conversion on the other chromosome [6]. Due to the complexity of 5q chromosome structure, the mechanism of SMA has not been fully elucidated. For example, the rare variations in SMN2 have been described by several studies [1820], and some scholars believe that the variations in SMN2 locus, such as the deletion of adjacent NAIP1 gene, will affect or even change the severity of SMA [21, 22]. With the development of bioinformatics, more and more mutations have been discovered in SMN1, and some of them possess significant clinical implications. Yamamoto et al. [23] revealed 4 intragenic mutations (p.Ala2Val, p.Trp92Ser, p.Thr274TyrfsX32 and p.Tyr277Cys), and location of the mutations were associated with the clinical severity of SMA. Ronchi et al. [24] described a novel SMN1 mutation that affected the donor splice site of exon 7 and resulted in an unusually severe SMA phenotype with rapid fatal outcome in an Italian infant. In this article, we found 6 SMN1 SNVs in 28 core families of suspected SMA patients, including 4 novel mutations c.[84C > T], c.[271C > T], c.[−39A > G] and g.[70240639G > C], which had never been previously reported. Besides, we identified more mutations combined with homozygous absence of SMN1 exons7 (Table 2). The 3 most frequent mutations were the insertion mutation c.[−41_-40insCTCT] in SPTA1 exon1 (rs111674514), the SNV c.[1001A > G] in FUT5 exon2 (rs778984), and the SNV c.[−117A > G] in MCCC2 exon1 (rs11746722). SPTA1 encodes the human erythroid alpha-spectrin, which is an actin crosslinking and molecular scaffold protein that links the plasma membrane to the actin cytoskeleton, and functions in the determination of cell shape, arrangement of transmembrane proteins, and organization of organelles [25, 26]. Mutations in SPTA1 can lead to a variety of hereditary red blood cell disorders, including elliptocytosis type 2, pyropoikilocytosis, and spherocytic hemolytic anemia [27, 28]. FUT5 encodes alpha1,3-fucosyltransferase in human, the down-regulation of FUT5 reduces the expression of sialyl-Lewis antigens and the adhesion and binding capacities of gastric cancer cells [29]. Gene transfer of alpha1,3-fucosyltransferase increased tumor growth of the PC-3 human prostate cancer cell line through enhanced adhesion to prostatic stromal cells [30]. Methylcrotonyl CoA carboxylase β (MCCβ) is encoded by MCCC2, and point mutations and deletion events in MCC2 can lead to MCC deficiency [31]. MCC deficiency is a rare autosomal recessive genetic disorder whose clinical presentations range from benign to profound metabolic acidosis and death in infancy, which is has something in common with SMA in some ways. MCCC2 locates on chromosome 5q13, which was the same as SMN1. Some studies indicated that SMN1 was the causative gene, and other genes on 5q13 region acted as modifier gene (such as SMN2, NAIP and GTF2H2), which were associated with disease severity [32]. The mutations rs111674514 in SPTA1, rs778984 in FUT5 and rs11746722 in MCCC2 have been identified previously, but the clinical significance remains uncertain. In this article, we found they were widely prevalent in SMA patients, and almost nonexistent in non-patients. Therefore, it suggested they might be involved in the morbidity of SMA.
One limitation of this study is the failure to use healthy children as control. The reason is that the children involving in this study are younger (0 to 12 years old), many parents are reluctant to let their healthy children participate in the study because of insufficient understanding of genetic testing. Another objective reason is that the cost of sequencing is high, so parents of healthy children are unwilling to pay for it. However, in terms of the rationality of the entire study, we really should add healthy children as control to make our research more complete, and that is what we will improve in the follow-up related studies. In contrast, using non-SMA patients with similar clinical characteristics of SMA as a control could exclude some genetic mutations that may lead to similar clinical characteristics of children with SMA, so as to make the object of this study more accurate. Using this population as a control can exclude other mutations that may cause dyskinesia, and only retain mutations unique to SMA patients.

Conclusions

We found more mutations in both SMN1 and other genes, and some of them were associated with the onset of SMA, such as the SMN1 stop-gain mutation c.[271C > T], the SPTA1 insertion mutation c.[−41_-40insCTCT], the FUT5 SNV c.[1001A > G], and the MCCC2 SNV c.[−117A > G].

Acknowledgments

We would like to thank all the participants and their families who took part in this research.
All the subjects signed the informed consent forms for genetic testing routinely, and the study was approved by the medical ethics committee of Tianjin Children’s Hospital. A written informed consent was obtained from the parents and informed assent from the children and adolescents.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Lunn MR, Wang CH. Spinal muscular atrophy. Lancet. 2008;371:2120–33.CrossRef Lunn MR, Wang CH. Spinal muscular atrophy. Lancet. 2008;371:2120–33.CrossRef
2.
Zurück zum Zitat Sheng-Yuan Z, Xiong F, Chen YJ, Yan TZ, Zeng J, Li L, et al. Molecular characterization of SMN copy number derived from carrier screening and from core families with SMA in a Chinese population. Eur J Hum Genet. 2010;18:978–84.CrossRef Sheng-Yuan Z, Xiong F, Chen YJ, Yan TZ, Zeng J, Li L, et al. Molecular characterization of SMN copy number derived from carrier screening and from core families with SMA in a Chinese population. Eur J Hum Genet. 2010;18:978–84.CrossRef
3.
Zurück zum Zitat Kolb SJ, Kissel JT. Spinal muscular atrophy. Neurol Clin. 2015;33:831–46.CrossRef Kolb SJ, Kissel JT. Spinal muscular atrophy. Neurol Clin. 2015;33:831–46.CrossRef
4.
Zurück zum Zitat Ottesen EW. ISS-N1 makes the first FDA-approved drug for spinal muscular atrophy. Transl Neurosci. 2017;8:1–6.CrossRef Ottesen EW. ISS-N1 makes the first FDA-approved drug for spinal muscular atrophy. Transl Neurosci. 2017;8:1–6.CrossRef
5.
Zurück zum Zitat Prior TW, Nagan N. Spinal muscular atrophy: overview of molecular diagnostic approaches. Curr Protoc Hum Genet. 2016;88:9–27. Prior TW, Nagan N. Spinal muscular atrophy: overview of molecular diagnostic approaches. Curr Protoc Hum Genet. 2016;88:9–27.
6.
Zurück zum Zitat Wirth B. An update of the mutation spectrum of the survival motor neuron gene (SMN1) in autosomal recessive spinal muscular atrophy (SMA). Hum Mutat. 2000;15:228–37.CrossRef Wirth B. An update of the mutation spectrum of the survival motor neuron gene (SMN1) in autosomal recessive spinal muscular atrophy (SMA). Hum Mutat. 2000;15:228–37.CrossRef
7.
Zurück zum Zitat Stabley DL, Harris AW, Holbrook J, Chubbs NJ, Lozo KW, Crawford TO, et al. SMN1 and SMN2 copy numbers in cell lines derived from patients with spinal muscular atrophy as measured by array digital PCR. Mol Genet Genomic Med. 2015;3:248–57.CrossRef Stabley DL, Harris AW, Holbrook J, Chubbs NJ, Lozo KW, Crawford TO, et al. SMN1 and SMN2 copy numbers in cell lines derived from patients with spinal muscular atrophy as measured by array digital PCR. Mol Genet Genomic Med. 2015;3:248–57.CrossRef
8.
Zurück zum Zitat Zabnenkova VV, Dadali EL, Artemieva SB, Sharkova IV, Rudenskaya GE, Polyakov AV. SMN1 gene point mutations in type I–IV proximal spinal muscular atrophy patients with a single copy of SMN1. Genetika. 2015;51:1075–82. Zabnenkova VV, Dadali EL, Artemieva SB, Sharkova IV, Rudenskaya GE, Polyakov AV. SMN1 gene point mutations in type I–IV proximal spinal muscular atrophy patients with a single copy of SMN1. Genetika. 2015;51:1075–82.
9.
Zurück zum Zitat He J, Zhang QJ, Lin QF, Chen YF, Lin XZ, Lin MT, et al. Molecular analysis of SMN1, SMN2, NAIP, GTF2H2, and H4F5 genes in 157 Chinese patients with spinal muscular atrophy. Gene. 2013;518:325–9.CrossRef He J, Zhang QJ, Lin QF, Chen YF, Lin XZ, Lin MT, et al. Molecular analysis of SMN1, SMN2, NAIP, GTF2H2, and H4F5 genes in 157 Chinese patients with spinal muscular atrophy. Gene. 2013;518:325–9.CrossRef
10.
Zurück zum Zitat Zeng G, Zheng H, Cheng J, Chen R, Lin H, Yang J, et al. Analysis and carrier screening for copy numbers of SMN and NAIP genes in children with spinal muscular atrophy. Chinese J Med Genet. 2014;31:152–5. Zeng G, Zheng H, Cheng J, Chen R, Lin H, Yang J, et al. Analysis and carrier screening for copy numbers of SMN and NAIP genes in children with spinal muscular atrophy. Chinese J Med Genet. 2014;31:152–5.
11.
Zurück zum Zitat Cao Y, Qu Y, Bai J, Cheng M, Jin Y, Wang H, et al. Transmission characteristics of SMN from 227 spinal muscular atrophy core families in China. J Hum Genet. 2020;5:1–5. Cao Y, Qu Y, Bai J, Cheng M, Jin Y, Wang H, et al. Transmission characteristics of SMN from 227 spinal muscular atrophy core families in China. J Hum Genet. 2020;5:1–5.
12.
Zurück zum Zitat Liu Z, Zhang P, He X, Liu S, Tang S, Zhang R, et al. New multiplex real-time PCR approach to detect gene mutations for spinal muscular atrophy. BMC Neurol. 2016;16:141.CrossRef Liu Z, Zhang P, He X, Liu S, Tang S, Zhang R, et al. New multiplex real-time PCR approach to detect gene mutations for spinal muscular atrophy. BMC Neurol. 2016;16:141.CrossRef
13.
Zurück zum Zitat Sheth J, Mistri M, Bhavsar R, Pancholi D, Kamate M, Gupta N, et al. Batten disease: biochemical and molecular characterization revealing novel PPT1 and TPP1 gene mutations in Indian patients. BMC Neurol. 2018;18:203 Chen X, Tong Y, Shi Z, Chen H, Yang Z, Wang Y, et al. Noninvasive molecular diagnosis of craniopharvngioma with MRI-based radiomics approach. BMC Neurol. 2019;19:6.CrossRef Sheth J, Mistri M, Bhavsar R, Pancholi D, Kamate M, Gupta N, et al. Batten disease: biochemical and molecular characterization revealing novel PPT1 and TPP1 gene mutations in Indian patients. BMC Neurol. 2018;18:203 Chen X, Tong Y, Shi Z, Chen H, Yang Z, Wang Y, et al. Noninvasive molecular diagnosis of craniopharvngioma with MRI-based radiomics approach. BMC Neurol. 2019;19:6.CrossRef
14.
Zurück zum Zitat Chen X, Tong Y, Shi Z, Chen H, Yang Z, Wang Y, et al. Noninvasive molecular diagnosis of craniopharvngioma with MRI-based radiomics approach. BMC Neurol. 2019;19:6.CrossRef Chen X, Tong Y, Shi Z, Chen H, Yang Z, Wang Y, et al. Noninvasive molecular diagnosis of craniopharvngioma with MRI-based radiomics approach. BMC Neurol. 2019;19:6.CrossRef
15.
Zurück zum Zitat Lin CW, Kalb SJ, Yeh WS. Delay in diagnosis of spinal muscular atrophy: a systematic literature review. Pediatr Neurol. 2015;4:293–300.CrossRef Lin CW, Kalb SJ, Yeh WS. Delay in diagnosis of spinal muscular atrophy: a systematic literature review. Pediatr Neurol. 2015;4:293–300.CrossRef
16.
Zurück zum Zitat Pera MC, Coratti G, Berti B, D'Amico A, Sframeli M, Albamonte E, et al. Diagnostic journey in spinal muscular atrophy: is it still an odyssey? PLoS One. 2020;3:e0230677.CrossRef Pera MC, Coratti G, Berti B, D'Amico A, Sframeli M, Albamonte E, et al. Diagnostic journey in spinal muscular atrophy: is it still an odyssey? PLoS One. 2020;3:e0230677.CrossRef
17.
Zurück zum Zitat Ar Rochmah M, Awano H, Awaya T, Harahap NIF, Morisada N, Bouike Y, et al. Spinal muscular atrophy carriers with two SMN1 copies. Brain and Development. 2017;39:851–60.CrossRef Ar Rochmah M, Awano H, Awaya T, Harahap NIF, Morisada N, Bouike Y, et al. Spinal muscular atrophy carriers with two SMN1 copies. Brain and Development. 2017;39:851–60.CrossRef
18.
Zurück zum Zitat Wu X, Wang SH, Sun J, Krainer AR, Hua Y, Prior TW. A-44G transition in SMN2 intron 6 protects patients with spinal muscular atrophy. Hum Mol Genet. 2017;26:2768–80.CrossRef Wu X, Wang SH, Sun J, Krainer AR, Hua Y, Prior TW. A-44G transition in SMN2 intron 6 protects patients with spinal muscular atrophy. Hum Mol Genet. 2017;26:2768–80.CrossRef
19.
Zurück zum Zitat Calucho M, Bernal S, Alias L, March F, Vencesla A, Rodriguez-Alvarez FJ, et al. Correlation between SMA type and SMN2 copy number revisited: an analysis of 625 unrelated Spanish patients and a compilation of 2834 reported cases. Neuromuscul Disord. 2018;28:208–15.CrossRef Calucho M, Bernal S, Alias L, March F, Vencesla A, Rodriguez-Alvarez FJ, et al. Correlation between SMA type and SMN2 copy number revisited: an analysis of 625 unrelated Spanish patients and a compilation of 2834 reported cases. Neuromuscul Disord. 2018;28:208–15.CrossRef
20.
Zurück zum Zitat Ruhno C, McGovern VL, Avenarius MR, Snyder PJ, Prior TW, Nery FC, et al. Complete sequencing of the SMN2 gene in SMA patients detects SMN gene deletion junctions and variants in SMN2 that modify the SMA phenotype. Hum Genet. 2019;138:241–56.CrossRef Ruhno C, McGovern VL, Avenarius MR, Snyder PJ, Prior TW, Nery FC, et al. Complete sequencing of the SMN2 gene in SMA patients detects SMN gene deletion junctions and variants in SMN2 that modify the SMA phenotype. Hum Genet. 2019;138:241–56.CrossRef
21.
Zurück zum Zitat Riessland M, Kaczmarek A, Schneider S, Swoboda KJ, Lohr H, Bradler C, et al. Neurocalcin delta suppression protects against spinal muscular atrophy in humans and across species by restoring impaired endocytosis. Am J Hum Genet. 2017;100:297–315.CrossRef Riessland M, Kaczmarek A, Schneider S, Swoboda KJ, Lohr H, Bradler C, et al. Neurocalcin delta suppression protects against spinal muscular atrophy in humans and across species by restoring impaired endocytosis. Am J Hum Genet. 2017;100:297–315.CrossRef
22.
Zurück zum Zitat Wadman RI, Jansen MD, Curial CAD, Groen EJN, Stam M, Wijngaarde CA, et al. Analysis of FUS, PFN2, TDP-43, and PLS3 as potential disease severity modifiers in spinal muscular atrophy. Neurol Genet. 2020;6:e386.CrossRef Wadman RI, Jansen MD, Curial CAD, Groen EJN, Stam M, Wijngaarde CA, et al. Analysis of FUS, PFN2, TDP-43, and PLS3 as potential disease severity modifiers in spinal muscular atrophy. Neurol Genet. 2020;6:e386.CrossRef
23.
Zurück zum Zitat Yamamoto T, Sato H, Lai PS, Nurputra DK, Harahap NI, Morikawa S, et al. Intragenic mutations in SMN1 may contribute more significantly to clinical severity than SMN2 copy numbers in some spinal muscular atrophy (SMA) patients. Brain and Development. 2014;36:914–20.CrossRef Yamamoto T, Sato H, Lai PS, Nurputra DK, Harahap NI, Morikawa S, et al. Intragenic mutations in SMN1 may contribute more significantly to clinical severity than SMN2 copy numbers in some spinal muscular atrophy (SMA) patients. Brain and Development. 2014;36:914–20.CrossRef
24.
Zurück zum Zitat Ronchi D, Previtali SC, Sora MG, Barera G, Del Menico B, Corti S, et al. Novel splice-site mutation in SMN1 associated with a very severe SMA-I phenotype. J Mol Neurosci. 2015;56:212–5.CrossRef Ronchi D, Previtali SC, Sora MG, Barera G, Del Menico B, Corti S, et al. Novel splice-site mutation in SMN1 associated with a very severe SMA-I phenotype. J Mol Neurosci. 2015;56:212–5.CrossRef
25.
Zurück zum Zitat Govindaraj V, Rao AJ. Proteomic identification of non-erythrocytic alpha-spectrin-1 down-regulation in the pre-optic area of neonatally estradiol-17beta treated female adult rats. Horm Mol Biol Clin Investig. 2016;26:165–72. Govindaraj V, Rao AJ. Proteomic identification of non-erythrocytic alpha-spectrin-1 down-regulation in the pre-optic area of neonatally estradiol-17beta treated female adult rats. Horm Mol Biol Clin Investig. 2016;26:165–72.
26.
Zurück zum Zitat Speicher DW. Structural and functional features of the alpha-1 domain from human erythrocyte spectrin. Prog Clin Biol Res. 1984;165:441–56. Speicher DW. Structural and functional features of the alpha-1 domain from human erythrocyte spectrin. Prog Clin Biol Res. 1984;165:441–56.
27.
Zurück zum Zitat Niss O, Chonat S, Dagaonkar N, Almansoori MO, Kerr K, Rogers ZR, et al. Genotype-phenotype correlations in hereditary elliptocytosis and hereditary pyropoikilocytosis. Blood Cells Mol Dis. 2016;61:4–9.CrossRef Niss O, Chonat S, Dagaonkar N, Almansoori MO, Kerr K, Rogers ZR, et al. Genotype-phenotype correlations in hereditary elliptocytosis and hereditary pyropoikilocytosis. Blood Cells Mol Dis. 2016;61:4–9.CrossRef
28.
Zurück zum Zitat Han E, Kim A, Park J, Kim M, Kim Y, Han K, et al. Spectrin Tunis (Sp alpha (I/78)) in a Korean family with hereditary elliptocytosis. Ann Lab Med. 2013;33:386–9.CrossRef Han E, Kim A, Park J, Kim M, Kim Y, Han K, et al. Spectrin Tunis (Sp alpha (I/78)) in a Korean family with hereditary elliptocytosis. Ann Lab Med. 2013;33:386–9.CrossRef
29.
Zurück zum Zitat Padro M, Cobler L, Garrido M, de Bolos C. Down-regulation of FUT3 and FUT5 by shRNA alters Lewis antigens expression and reduces the adhesion capacities of gastric cancer cells. Biochim Biophys Acta. 1810;2011:1141–9. Padro M, Cobler L, Garrido M, de Bolos C. Down-regulation of FUT3 and FUT5 by shRNA alters Lewis antigens expression and reduces the adhesion capacities of gastric cancer cells. Biochim Biophys Acta. 1810;2011:1141–9.
30.
Zurück zum Zitat Inaba Y, Ohyama C, Kato T, Satoh M, Saito H, Hagisawa S, et al. Gene transfer of alpha1,3-fucosyltransferase increases tumor growth of the PC-3 human prostate cancer cell line through enhanced adhesion to prostatic stromal cells. Int J Cancer. 2003;107:949–57.CrossRef Inaba Y, Ohyama C, Kato T, Satoh M, Saito H, Hagisawa S, et al. Gene transfer of alpha1,3-fucosyltransferase increases tumor growth of the PC-3 human prostate cancer cell line through enhanced adhesion to prostatic stromal cells. Int J Cancer. 2003;107:949–57.CrossRef
31.
Zurück zum Zitat Morscher RJ, Grunert SC, Burer C, Burda P, Suormala T, Fowler B, et al. A single mutation in MCCC1 or MCCC2 as a potential cause of positive screening for 3-methylcrotonyl-CoA carboxylase deficiency. Mol Genet Metab. 2012;105:602–6.CrossRef Morscher RJ, Grunert SC, Burer C, Burda P, Suormala T, Fowler B, et al. A single mutation in MCCC1 or MCCC2 as a potential cause of positive screening for 3-methylcrotonyl-CoA carboxylase deficiency. Mol Genet Metab. 2012;105:602–6.CrossRef
32.
Zurück zum Zitat Theodorou L, Nicolaou P, Koutsou P, Georghiou A, Anastasiadou V, Tanteles G, et al. Genetic findings of Cypriot spinal muscular atrophy patients. Neurol Sci. 2015;36:1829–34.CrossRef Theodorou L, Nicolaou P, Koutsou P, Georghiou A, Anastasiadou V, Tanteles G, et al. Genetic findings of Cypriot spinal muscular atrophy patients. Neurol Sci. 2015;36:1829–34.CrossRef
Metadaten
Titel
High-throughput screening reveals novel mutations in spinal muscular atrophy patients
verfasst von
Ruiping Zhang
Chunyu Gu
Linjie Pu
Yingtao Meng
Jianbo Shu
Chunquan Cai
Publikationsdatum
01.12.2020
Verlag
BioMed Central
Erschienen in
Italian Journal of Pediatrics / Ausgabe 1/2020
Elektronische ISSN: 1824-7288
DOI
https://doi.org/10.1186/s13052-020-00925-1

Weitere Artikel der Ausgabe 1/2020

Italian Journal of Pediatrics 1/2020 Zur Ausgabe

Ähnliche Überlebensraten nach Reanimation während des Transports bzw. vor Ort

29.05.2024 Reanimation im Kindesalter Nachrichten

Laut einer Studie aus den USA und Kanada scheint es bei der Reanimation von Kindern außerhalb einer Klinik keinen Unterschied für das Überleben zu machen, ob die Wiederbelebungsmaßnahmen während des Transports in die Klinik stattfinden oder vor Ort ausgeführt werden. Jedoch gibt es dabei einige Einschränkungen und eine wichtige Ausnahme.

Alter der Mutter beeinflusst Risiko für kongenitale Anomalie

28.05.2024 Kinder- und Jugendgynäkologie Nachrichten

Welchen Einfluss das Alter ihrer Mutter auf das Risiko hat, dass Kinder mit nicht chromosomal bedingter Malformation zur Welt kommen, hat eine ungarische Studie untersucht. Sie zeigt: Nicht nur fortgeschrittenes Alter ist riskant.

Begünstigt Bettruhe der Mutter doch das fetale Wachstum?

Ob ungeborene Kinder, die kleiner als die meisten Gleichaltrigen sind, schneller wachsen, wenn die Mutter sich mehr ausruht, wird diskutiert. Die Ergebnisse einer US-Studie sprechen dafür.

Bei Amblyopie früher abkleben als bisher empfohlen?

22.05.2024 Fehlsichtigkeit Nachrichten

Bei Amblyopie ist das frühzeitige Abkleben des kontralateralen Auges in den meisten Fällen wohl effektiver als der Therapiestandard mit zunächst mehrmonatigem Brilletragen.

Update Pädiatrie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.