Skip to main content
Erschienen in: Head and Neck Pathology 1/2023

07.11.2022 | Review

Homeobox Genes in Odontogenic Lesions: A Scoping Review

verfasst von: Erica Pey Wen Hii, Anand Ramanathan, Anitha Krishnan Pandarathodiyil, Gou Rean Wong, E. V. Soma Sekhar, Rozaidah Binti Talib, Zuraiza Mohamad Zaini, Rosnah Binti Zain

Erschienen in: Head and Neck Pathology | Ausgabe 1/2023

Einloggen, um Zugang zu erhalten

Abstract

Background

Homeobox genes play crucial roles in tooth morphogenesis and development and thus mutations in homeobox genes cause developmental disorders such as odontogenic lesions. The aim of this scoping review is to identify and compile available data from the literatures on the topic of homeobox gene expression in odontogenic lesions.

Method

An electronic search to collate all the information on studies on homeobox gene expression in odontogenic lesions was carried out in four databases (PubMed, EBSCO host, Web of Science and Cochrane Library) with selected keywords. All papers which reported expression of homeobox genes in odontogenic lesions were considered.

Results

A total of eleven (11) papers describing expression of homeobox genes in odontogenic lesions were identified. Methods of studies included next generation sequencing, microarray analysis, RT-PCR, Western blotting, in situ hybridization, and immunohistochemistry. The homeobox reported in odontogenic lesions includes LHX8 and DLX3 in odontoma; PITX2, MSX1, MSX2, DLX, DLX2, DLX3, DLX4, DLX5, DLX6, ISL1, OCT4 and HOX C in ameloblastoma; OCT4 in adenomatoid odontogenic tumour; PITX2 and MSX2 in primordial odontogenic tumour; PAX9 and BARX1 in odontogenic keratocyst; PITX2, ZEB1 and MEIS2 in ameloblastic carcinoma while there is absence of DLX2, DLX3 and MSX2 in clear cell odontogenic carcinoma.

Conclusions

This paper summarized and reviews the possible link between homeobox gene expression in odontogenic lesions. Based on the current available data, there are insufficient evidence to support any definite role of homeobox gene in odontogenic lesions.
Literatur
2.
3.
Zurück zum Zitat Mark M, Rijli FM, Chambon P. Homeobox genes in embryogenesis and pathogenesis. Pediatr Res. 1997;42(4):421–9.PubMedCrossRef Mark M, Rijli FM, Chambon P. Homeobox genes in embryogenesis and pathogenesis. Pediatr Res. 1997;42(4):421–9.PubMedCrossRef
4.
Zurück zum Zitat Seppala M, et al. Sonic Hedgehog Signaling and Development of the Dentition. J Dev Biol, 2017. 5(2). Seppala M, et al. Sonic Hedgehog Signaling and Development of the Dentition. J Dev Biol, 2017. 5(2).
5.
Zurück zum Zitat Balic A, Thesleff I. Chapter Seven - Tissue Interactions Regulating Tooth Development and Renewal, in Current Topics in Developmental Biology, Y. Chai, Editor. 2015, Academic Press. p.157–186. Balic A, Thesleff I. Chapter Seven - Tissue Interactions Regulating Tooth Development and Renewal, in Current Topics in Developmental Biology, Y. Chai, Editor. 2015, Academic Press. p.157–186.
6.
Zurück zum Zitat Ramanathan A, et al. Homeobox genes and tooth development: Understanding the biological pathways and applications in regenerative dental science. Arch Oral Biol. 2018;85:23–39.PubMedCrossRef Ramanathan A, et al. Homeobox genes and tooth development: Understanding the biological pathways and applications in regenerative dental science. Arch Oral Biol. 2018;85:23–39.PubMedCrossRef
7.
Zurück zum Zitat Chen H, Sukumar S. Role of homeobox genes in normal mammary gland development and breast tumorigenesis. J Mammary Gland Biol Neoplasia. 2003;8(2):159–75.PubMedCrossRef Chen H, Sukumar S. Role of homeobox genes in normal mammary gland development and breast tumorigenesis. J Mammary Gland Biol Neoplasia. 2003;8(2):159–75.PubMedCrossRef
8.
Zurück zum Zitat De Vita G, et al. Expression of homeobox-containing genes in primary and metastatic colorectal cancer. Eur J Cancer, 1993. 29a(6): p. 887 – 93. De Vita G, et al. Expression of homeobox-containing genes in primary and metastatic colorectal cancer. Eur J Cancer, 1993. 29a(6): p. 887 – 93.
9.
Zurück zum Zitat Holmquist Mengelbier L, et al. The Iroquois homeobox proteins IRX3 and IRX5 have distinct roles in Wilms tumour development and human nephrogenesis. J Pathol. 2019;247(1):86–98.PubMedCrossRef Holmquist Mengelbier L, et al. The Iroquois homeobox proteins IRX3 and IRX5 have distinct roles in Wilms tumour development and human nephrogenesis. J Pathol. 2019;247(1):86–98.PubMedCrossRef
10.
Zurück zum Zitat Homminga I, Pieters R, Meijerink JP. NKL homeobox genes in leukemia. Leukemia. 2012;26(4):572–81.PubMedCrossRef Homminga I, Pieters R, Meijerink JP. NKL homeobox genes in leukemia. Leukemia. 2012;26(4):572–81.PubMedCrossRef
11.
Zurück zum Zitat Abate-Shen C. Deregulated homeobox gene expression in cancer: cause or consequence? Nat Rev Cancer. 2002;2(10):777–85.PubMedCrossRef Abate-Shen C. Deregulated homeobox gene expression in cancer: cause or consequence? Nat Rev Cancer. 2002;2(10):777–85.PubMedCrossRef
12.
Zurück zum Zitat Little J, et al. STrengthening the REporting of Genetic Association Studies (STREGA)—an extension of the STROBE statement. Genetic Epidemiology: The Official Publication of the International Genetic Epidemiology Society. 2009;33(7):581–98.CrossRef Little J, et al. STrengthening the REporting of Genetic Association Studies (STREGA)—an extension of the STROBE statement. Genetic Epidemiology: The Official Publication of the International Genetic Epidemiology Society. 2009;33(7):581–98.CrossRef
13.
Zurück zum Zitat Isola G, et al. Association Between Odontoma and Impacted Teeth. J Craniofac Surg. 2017;28(3):755–8.PubMedCrossRef Isola G, et al. Association Between Odontoma and Impacted Teeth. J Craniofac Surg. 2017;28(3):755–8.PubMedCrossRef
15.
Zurück zum Zitat Astekar M, et al. Histopathological insight of complex odontoma associated with a dentigerous cyst. BMJ Case Rep, 2014. 2014. Astekar M, et al. Histopathological insight of complex odontoma associated with a dentigerous cyst. BMJ Case Rep, 2014. 2014.
16.
Zurück zum Zitat de França GM, et al. Analysis of Protein Immunoexpression and Its Interrelationship in the Pathogenesis of Odontomas and Ameloblastic Fibro-Odontomas: A Systematic Review. Head Neck Pathol. 2021;15(3):12.CrossRef de França GM, et al. Analysis of Protein Immunoexpression and Its Interrelationship in the Pathogenesis of Odontomas and Ameloblastic Fibro-Odontomas: A Systematic Review. Head Neck Pathol. 2021;15(3):12.CrossRef
17.
Zurück zum Zitat Kim J-Y, et al. Comparative study of LHX8 expression between odontoma and dental tissue-derived stem cells. J Oral Pathol Med. 2011;40(3):250–6.PubMedCrossRef Kim J-Y, et al. Comparative study of LHX8 expression between odontoma and dental tissue-derived stem cells. J Oral Pathol Med. 2011;40(3):250–6.PubMedCrossRef
18.
Zurück zum Zitat Grigoriou M, et al. Expression and regulation of Lhx6 and Lhx7, a novel subfamily of LIM homeodomain encoding genes, suggests a role in mammalian head development. Development. 1998;125(11):2063–74.PubMedCrossRef Grigoriou M, et al. Expression and regulation of Lhx6 and Lhx7, a novel subfamily of LIM homeodomain encoding genes, suggests a role in mammalian head development. Development. 1998;125(11):2063–74.PubMedCrossRef
19.
Zurück zum Zitat Shibaguchi T, et al. Expression and role of Lhx8 in murine tooth development. Arch Histol Cytol. 2003;66(1):95–108.PubMedCrossRef Shibaguchi T, et al. Expression and role of Lhx8 in murine tooth development. Arch Histol Cytol. 2003;66(1):95–108.PubMedCrossRef
21.
Zurück zum Zitat Hatano H, et al. Establishment of mesenchymal cell line derived from human developing odontoma. Oral Dis. 2012;18(8):756–62.PubMedCrossRef Hatano H, et al. Establishment of mesenchymal cell line derived from human developing odontoma. Oral Dis. 2012;18(8):756–62.PubMedCrossRef
22.
Zurück zum Zitat Qiu M, et al. Role of the Dlx Homeobox Genes in Proximodistal Patterning of the Branchial Arches: Mutations of Dlx-1, Dlx-2, and Dlx-1 and – 2 Alter Morphogenesis of Proximal Skeletal and Soft Tissue Structures Derived from the First and Second Arches. Dev Biol. 1997;185(2):165–84.PubMedCrossRef Qiu M, et al. Role of the Dlx Homeobox Genes in Proximodistal Patterning of the Branchial Arches: Mutations of Dlx-1, Dlx-2, and Dlx-1 and – 2 Alter Morphogenesis of Proximal Skeletal and Soft Tissue Structures Derived from the First and Second Arches. Dev Biol. 1997;185(2):165–84.PubMedCrossRef
23.
Zurück zum Zitat Tucker AS, Matthews KL, Sharpe PT. Transformation of Tooth Type Induced by Inhibition of BMP Signaling. Science. 1998;282(5391):1136–8.PubMedCrossRef Tucker AS, Matthews KL, Sharpe PT. Transformation of Tooth Type Induced by Inhibition of BMP Signaling. Science. 1998;282(5391):1136–8.PubMedCrossRef
24.
Zurück zum Zitat Zhao Z, et al. Expression of Dlx genes during the development of the murine dentition. Dev Genes Evol. 2000;210(5):270–5.PubMedCrossRef Zhao Z, et al. Expression of Dlx genes during the development of the murine dentition. Dev Genes Evol. 2000;210(5):270–5.PubMedCrossRef
25.
Zurück zum Zitat Robinson GW, Mahon KA. Differential and overlapping expression domains of Dlx-2 and Dlx-3 suggest distinct roles for Distal-less homeobox genes in craniofacial development. Mech Dev. 1994;48(3):199–215.PubMedCrossRef Robinson GW, Mahon KA. Differential and overlapping expression domains of Dlx-2 and Dlx-3 suggest distinct roles for Distal-less homeobox genes in craniofacial development. Mech Dev. 1994;48(3):199–215.PubMedCrossRef
26.
Zurück zum Zitat Zhou YL, Lei Y, Snead ML. Functional antagonism between Msx2 and CCAAT/enhancer-binding protein alpha in regulating the mouse amelogenin gene expression is mediated by protein-protein interaction. J Biol Chem. 2000;275(37):29066–75.PubMedCrossRef Zhou YL, Lei Y, Snead ML. Functional antagonism between Msx2 and CCAAT/enhancer-binding protein alpha in regulating the mouse amelogenin gene expression is mediated by protein-protein interaction. J Biol Chem. 2000;275(37):29066–75.PubMedCrossRef
27.
Zurück zum Zitat Duverger O, Morasso MI. Role of homeobox genes in the patterning, specification, and differentiation of ectodermal appendages in mammals. J Cell Physiol. 2008;216(2):337–46.PubMedPubMedCentralCrossRef Duverger O, Morasso MI. Role of homeobox genes in the patterning, specification, and differentiation of ectodermal appendages in mammals. J Cell Physiol. 2008;216(2):337–46.PubMedPubMedCentralCrossRef
29.
Zurück zum Zitat El-Naggar A, et al. Odontogenic and maxillofacial bone tumours. WHO Classif Head Neck Tumors. 2017;9:204–60. El-Naggar A, et al. Odontogenic and maxillofacial bone tumours. WHO Classif Head Neck Tumors. 2017;9:204–60.
30.
Zurück zum Zitat Heikinheimo K, et al. Early dental epithelial transcription factors distinguish ameloblastoma from keratocystic odontogenic tumor. J Dent Res. 2015;94(1):101–11.PubMedCrossRef Heikinheimo K, et al. Early dental epithelial transcription factors distinguish ameloblastoma from keratocystic odontogenic tumor. J Dent Res. 2015;94(1):101–11.PubMedCrossRef
31.
Zurück zum Zitat Lim J, et al. Oligonucleotide microarray analysis of ameloblastoma compared with dentigerous cyst. J Oral Pathol Med. 2006;35(5):278–85.PubMedCrossRef Lim J, et al. Oligonucleotide microarray analysis of ameloblastoma compared with dentigerous cyst. J Oral Pathol Med. 2006;35(5):278–85.PubMedCrossRef
32.
Zurück zum Zitat García-Muñoz A, et al. Expression of the transcription factor PITX2 in ameloblastic carcinoma. Arch Oral Biol. 2015;60(6):799–803.PubMedCrossRef García-Muñoz A, et al. Expression of the transcription factor PITX2 in ameloblastic carcinoma. Arch Oral Biol. 2015;60(6):799–803.PubMedCrossRef
33.
Zurück zum Zitat Mucchielli ML, et al. Mouse Otlx2/RIEG expression in the odontogenic epithelium precedes tooth initiation and requires mesenchyme-derived signals for its maintenance. Dev Biol. 1997;189(2):275–84.PubMedCrossRef Mucchielli ML, et al. Mouse Otlx2/RIEG expression in the odontogenic epithelium precedes tooth initiation and requires mesenchyme-derived signals for its maintenance. Dev Biol. 1997;189(2):275–84.PubMedCrossRef
34.
Zurück zum Zitat Zhang Z, et al. The LIM homeodomain transcription factor LHX6: a transcriptional repressor that interacts with pituitary homeobox 2 (PITX2) to regulate odontogenesis. J Biol Chem. 2013;288(4):2485–500.PubMedCrossRef Zhang Z, et al. The LIM homeodomain transcription factor LHX6: a transcriptional repressor that interacts with pituitary homeobox 2 (PITX2) to regulate odontogenesis. J Biol Chem. 2013;288(4):2485–500.PubMedCrossRef
35.
Zurück zum Zitat Intarak N, et al. A novel PITX2 mutation in non-syndromic orodental anomalies. Oral Dis. 2018;24(4):611–8.PubMedCrossRef Intarak N, et al. A novel PITX2 mutation in non-syndromic orodental anomalies. Oral Dis. 2018;24(4):611–8.PubMedCrossRef
36.
Zurück zum Zitat Fan Z, et al. Novel PITX2 mutations identified in Axenfeld-Rieger syndrome and the pattern of PITX2-related tooth agenesis. Oral Dis. 2019;25(8):2010–9.PubMedCrossRef Fan Z, et al. Novel PITX2 mutations identified in Axenfeld-Rieger syndrome and the pattern of PITX2-related tooth agenesis. Oral Dis. 2019;25(8):2010–9.PubMedCrossRef
37.
Zurück zum Zitat Yuan G, et al. The non-canonical BMP and Wnt/β-catenin signaling pathways orchestrate early tooth development. Development. 2015;142(1):128–39.PubMedPubMedCentralCrossRef Yuan G, et al. The non-canonical BMP and Wnt/β-catenin signaling pathways orchestrate early tooth development. Development. 2015;142(1):128–39.PubMedPubMedCentralCrossRef
38.
39.
Zurück zum Zitat Ruhin-Poncet B, et al. Msx and Dlx homeogene expression in epithelial odontogenic tumors. J Histochem cytochemistry: official J Histochem Soc. 2009;57(1):69–78.CrossRef Ruhin-Poncet B, et al. Msx and Dlx homeogene expression in epithelial odontogenic tumors. J Histochem cytochemistry: official J Histochem Soc. 2009;57(1):69–78.CrossRef
40.
Zurück zum Zitat Thomas BL, et al. The Spatial Localization of Dlx-2 during Tooth Development. Connect Tissue Res. 1995;32(1–4):27–34.PubMedCrossRef Thomas BL, et al. The Spatial Localization of Dlx-2 during Tooth Development. Connect Tissue Res. 1995;32(1–4):27–34.PubMedCrossRef
41.
Zurück zum Zitat Jowett AK, et al. Epithelial-mesenchymal interactions are required for msx 1 and msx 2 gene expression in the developing murine molar tooth. Development. 1993;117(2):461–70.PubMedCrossRef Jowett AK, et al. Epithelial-mesenchymal interactions are required for msx 1 and msx 2 gene expression in the developing murine molar tooth. Development. 1993;117(2):461–70.PubMedCrossRef
43.
44.
Zurück zum Zitat Sonoda A, et al. Critical role of heparin binding domains of ameloblastin for dental epithelium cell adhesion and ameloblastoma proliferation. J Biol Chem. 2009;284(40):27176–84.PubMedPubMedCentralCrossRef Sonoda A, et al. Critical role of heparin binding domains of ameloblastin for dental epithelium cell adhesion and ameloblastoma proliferation. J Biol Chem. 2009;284(40):27176–84.PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Lézot F, et al. Physiological implications of DLX homeoproteins in enamel formation. J Cell Physiol. 2008;216(3):688–97.PubMedCrossRef Lézot F, et al. Physiological implications of DLX homeoproteins in enamel formation. J Cell Physiol. 2008;216(3):688–97.PubMedCrossRef
46.
Zurück zum Zitat Lézot F, et al. Biomineralization, life-time of odontogenic cells and differential expression of the two homeobox genes MSX-1 and DLX-2 in transgenic mice. J Bone Miner Res. 2000;15(3):430–41.PubMedCrossRef Lézot F, et al. Biomineralization, life-time of odontogenic cells and differential expression of the two homeobox genes MSX-1 and DLX-2 in transgenic mice. J Bone Miner Res. 2000;15(3):430–41.PubMedCrossRef
47.
Zurück zum Zitat Naveau A, et al. Isl1 Controls Patterning and Mineralization of Enamel in the Continuously Renewing Mouse Incisor. J Bone Miner Res. 2017;32(11):2219–31.PubMedCrossRef Naveau A, et al. Isl1 Controls Patterning and Mineralization of Enamel in the Continuously Renewing Mouse Incisor. J Bone Miner Res. 2017;32(11):2219–31.PubMedCrossRef
48.
Zurück zum Zitat Mitsiadis TA, et al. Role of Islet1 in the patterning of murine dentition. Development. 2003;130(18):4451–60.PubMedCrossRef Mitsiadis TA, et al. Role of Islet1 in the patterning of murine dentition. Development. 2003;130(18):4451–60.PubMedCrossRef
49.
Zurück zum Zitat Schiavo G, et al. Deregulated HOX genes in ameloblastomas are located in physical contiguity to keratin genes. J Cell Biochem. 2011;112(11):3206–15.PubMedCrossRef Schiavo G, et al. Deregulated HOX genes in ameloblastomas are located in physical contiguity to keratin genes. J Cell Biochem. 2011;112(11):3206–15.PubMedCrossRef
50.
Zurück zum Zitat Mallo M. Reassessing the Role of Hox Genes during Vertebrate Development and Evolution. Trends Genet. 2018;34(3):209–17.PubMedCrossRef Mallo M. Reassessing the Role of Hox Genes during Vertebrate Development and Evolution. Trends Genet. 2018;34(3):209–17.PubMedCrossRef
51.
Zurück zum Zitat James CT, et al. Tooth development is independent of a Hox patterning programme. Dev Dyn. 2002;225(3):332–5.PubMedCrossRef James CT, et al. Tooth development is independent of a Hox patterning programme. Dev Dyn. 2002;225(3):332–5.PubMedCrossRef
52.
Zurück zum Zitat Thomas BL, Sharpe PT. Patterning of the murine dentition by homeobox genes. Eur J Oral Sci. 1998;106(Suppl 1):48–54.PubMedCrossRef Thomas BL, Sharpe PT. Patterning of the murine dentition by homeobox genes. Eur J Oral Sci. 1998;106(Suppl 1):48–54.PubMedCrossRef
53.
Zurück zum Zitat D’Antò V, et al. The HOX genes are expressed, in vivo, in human tooth germs: in vitro cAMP exposure of dental pulp cells results in parallel HOX network activation and neuronal differentiation. J Cell Biochem. 2006;97(4):836–48.PubMedCrossRef D’Antò V, et al. The HOX genes are expressed, in vivo, in human tooth germs: in vitro cAMP exposure of dental pulp cells results in parallel HOX network activation and neuronal differentiation. J Cell Biochem. 2006;97(4):836–48.PubMedCrossRef
54.
Zurück zum Zitat Monroy EAC, et al. Oct-4 and CD44 in epithelial stem cells like of benign odontogenic lesions. Histochem Cell Biol. 2018;150(4):371–7.PubMedCrossRef Monroy EAC, et al. Oct-4 and CD44 in epithelial stem cells like of benign odontogenic lesions. Histochem Cell Biol. 2018;150(4):371–7.PubMedCrossRef
55.
Zurück zum Zitat da Cunha JM, et al. Pluripotent stem cell transcription factors during human odontogenesis. Cell Tissue Res. 2013;353(3):435–41.PubMedCrossRef da Cunha JM, et al. Pluripotent stem cell transcription factors during human odontogenesis. Cell Tissue Res. 2013;353(3):435–41.PubMedCrossRef
56.
Zurück zum Zitat Kero D, et al. Expression of Ki-67, Oct-4, γ-tubulin and α-tubulin in human tooth development. Arch Oral Biol. 2014;59(11):1119–29.PubMedCrossRef Kero D, et al. Expression of Ki-67, Oct-4, γ-tubulin and α-tubulin in human tooth development. Arch Oral Biol. 2014;59(11):1119–29.PubMedCrossRef
57.
Zurück zum Zitat El-Naggar AK, et al. The fourth edition of the head and neck World Health Organization blue book: editors’ perspectives. Hum Pathol. 2017;66:10–2.PubMedCrossRef El-Naggar AK, et al. The fourth edition of the head and neck World Health Organization blue book: editors’ perspectives. Hum Pathol. 2017;66:10–2.PubMedCrossRef
58.
Zurück zum Zitat Mikami T, et al. Pathogenesis of primordial odontogenic tumour based on tumourigenesis and odontogenesis. Oral Dis. 2018;24(7):1226–34.PubMedCrossRef Mikami T, et al. Pathogenesis of primordial odontogenic tumour based on tumourigenesis and odontogenesis. Oral Dis. 2018;24(7):1226–34.PubMedCrossRef
59.
Zurück zum Zitat Mosqueda-Taylor A, Neville B. Primordial odontogenic tumour. World Health Organization Classification of Head and Neck Tumours. IARC: Lyon; 2017. pp. 223–4. Mosqueda-Taylor A, Neville B. Primordial odontogenic tumour. World Health Organization Classification of Head and Neck Tumours. IARC: Lyon; 2017. pp. 223–4.
60.
Zurück zum Zitat Amer H, et al. Case Report: A Primordial odontogenic tumor. F1000Res. 2018;9(7):562.CrossRef Amer H, et al. Case Report: A Primordial odontogenic tumor. F1000Res. 2018;9(7):562.CrossRef
61.
Zurück zum Zitat Bologna-Molina R, et al., Primordial odontogenic tumor: An immunohistochemical profile. Medicina oral, patologia oral y cirugia bucal, 2017. 22(3): p. e314-e323. Bologna-Molina R, et al., Primordial odontogenic tumor: An immunohistochemical profile. Medicina oral, patologia oral y cirugia bucal, 2017. 22(3): p. e314-e323.
62.
Zurück zum Zitat Odell EW, Muller S, Richardson M, Ameloblastic Carcinoma in WHO Classification of Head and Neck Tumours A.K. El-Naggar, et al., Editors. 2017, International Agency for Research on Cancer Lyon. p. 206–207. Odell EW, Muller S, Richardson M, Ameloblastic Carcinoma in WHO Classification of Head and Neck Tumours A.K. El-Naggar, et al., Editors. 2017, International Agency for Research on Cancer Lyon. p. 206–207.
63.
Zurück zum Zitat Duarte-Andrade FF, et al. A review of the molecular profile of benign and malignant odontogenic lesions. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 2020. 129(4): p. 357–368. Duarte-Andrade FF, et al. A review of the molecular profile of benign and malignant odontogenic lesions. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 2020. 129(4): p. 357–368.
64.
Zurück zum Zitat Brunner P, et al. BRAF p.V600E mutations are not unique to ameloblastoma and are shared by other odontogenic tumors with ameloblastic morphology. Oral Oncol. 2015;51(10):e77-8.PubMedCrossRef Brunner P, et al. BRAF p.V600E mutations are not unique to ameloblastoma and are shared by other odontogenic tumors with ameloblastic morphology. Oral Oncol. 2015;51(10):e77-8.PubMedCrossRef
65.
Zurück zum Zitat Basu M, Roy SS. Wnt/β-catenin pathway is regulated by PITX2 homeodomain protein and thus contributes to the proliferation of human ovarian adenocarcinoma cell, SKOV-3. J Biol Chem. 2013;288(6):4355–67.PubMedCrossRef Basu M, Roy SS. Wnt/β-catenin pathway is regulated by PITX2 homeodomain protein and thus contributes to the proliferation of human ovarian adenocarcinoma cell, SKOV-3. J Biol Chem. 2013;288(6):4355–67.PubMedCrossRef
66.
Zurück zum Zitat Yoshimoto S, et al. Hypoxia-induced HIF-1α and ZEB1 are critical for the malignant transformation of ameloblastoma via TGF-β-dependent EMT. Cancer Med. 2019;8(18):7822–32.PubMedPubMedCentralCrossRef Yoshimoto S, et al. Hypoxia-induced HIF-1α and ZEB1 are critical for the malignant transformation of ameloblastoma via TGF-β-dependent EMT. Cancer Med. 2019;8(18):7822–32.PubMedPubMedCentralCrossRef
67.
Zurück zum Zitat Guastaldi FPS, et al. Clear cell odontogenic carcinoma: a rare jaw tumor. A summary of 107 reported cases. Int J Oral Maxillofac Surg. 2019;48(11):1405–10.PubMedPubMedCentralCrossRef Guastaldi FPS, et al. Clear cell odontogenic carcinoma: a rare jaw tumor. A summary of 107 reported cases. Int J Oral Maxillofac Surg. 2019;48(11):1405–10.PubMedPubMedCentralCrossRef
68.
Zurück zum Zitat Yin Y, et al. The FBXW2-MSX2-SOX2 axis regulates stem cell property and drug resistance of cancer cells. Proc Natl Acad Sci U S A. 2019;116(41):20528–38.PubMedPubMedCentralCrossRef Yin Y, et al. The FBXW2-MSX2-SOX2 axis regulates stem cell property and drug resistance of cancer cells. Proc Natl Acad Sci U S A. 2019;116(41):20528–38.PubMedPubMedCentralCrossRef
69.
Zurück zum Zitat Wu Q, et al. MSX2 mediates entry of human pluripotent stem cells into mesendoderm by simultaneously suppressing SOX2 and activating NODAL signaling. Cell Res. 2015;25(12):1314–32.PubMedPubMedCentralCrossRef Wu Q, et al. MSX2 mediates entry of human pluripotent stem cells into mesendoderm by simultaneously suppressing SOX2 and activating NODAL signaling. Cell Res. 2015;25(12):1314–32.PubMedPubMedCentralCrossRef
70.
Zurück zum Zitat Chacham M, et al. Expression of stem cell markers in stroma of odontogenic cysts and tumors. J Oral Pathol Med. 2020;49(10):1068–77.PubMedCrossRef Chacham M, et al. Expression of stem cell markers in stroma of odontogenic cysts and tumors. J Oral Pathol Med. 2020;49(10):1068–77.PubMedCrossRef
71.
Zurück zum Zitat Szemes M, et al. A Wnt-BMP4 Signaling Axis Induces MSX and NOTCH Proteins and Promotes Growth Suppression and Differentiation in Neuroblastoma. Cells, 2020. 9(3). Szemes M, et al. A Wnt-BMP4 Signaling Axis Induces MSX and NOTCH Proteins and Promotes Growth Suppression and Differentiation in Neuroblastoma. Cells, 2020. 9(3).
72.
Zurück zum Zitat Zhai Y, et al. MSX2 is an oncogenic downstream target of activated WNT signaling in ovarian endometrioid adenocarcinoma. Oncogene. 2011;30(40):4152–62.PubMedPubMedCentralCrossRef Zhai Y, et al. MSX2 is an oncogenic downstream target of activated WNT signaling in ovarian endometrioid adenocarcinoma. Oncogene. 2011;30(40):4152–62.PubMedPubMedCentralCrossRef
73.
Zurück zum Zitat Duarte-Medrano G, et al. Analysis of circulating blood and tissue biopsy PDX1 and MSX2 gene expression in patients with pancreatic cancer: A case-control experimental study. Med (Baltim). 2019;98(26):e15954.CrossRef Duarte-Medrano G, et al. Analysis of circulating blood and tissue biopsy PDX1 and MSX2 gene expression in patients with pancreatic cancer: A case-control experimental study. Med (Baltim). 2019;98(26):e15954.CrossRef
74.
Zurück zum Zitat Raja E, et al. Bone morphogenetic protein signaling mediated by ALK-2 and DLX2 regulates apoptosis in glioma-initiating cells. Oncogene. 2017;36(35):4963–74.PubMedCrossRef Raja E, et al. Bone morphogenetic protein signaling mediated by ALK-2 and DLX2 regulates apoptosis in glioma-initiating cells. Oncogene. 2017;36(35):4963–74.PubMedCrossRef
75.
Zurück zum Zitat Dell’Orto C. M., et al. Down-regulation of DLX3 expression in MLL-AF4 childhood lymphoblastic leukemias is mediated by promoter region hypermethylation. Oncol Rep. 2007;18(2):417–23. Dell’Orto C. M., et al. Down-regulation of DLX3 expression in MLL-AF4 childhood lymphoblastic leukemias is mediated by promoter region hypermethylation. Oncol Rep. 2007;18(2):417–23.
76.
Zurück zum Zitat Ferrari N, et al. Induction of apoptosis by fenretinide in tumor cell lines correlates with DLX2, DLX3 and DLX4 gene expression. Oncol Rep. 2003;10(4):973–7.PubMed Ferrari N, et al. Induction of apoptosis by fenretinide in tumor cell lines correlates with DLX2, DLX3 and DLX4 gene expression. Oncol Rep. 2003;10(4):973–7.PubMed
77.
Zurück zum Zitat Tang P, et al. Increased expression of DLX2 correlates with advanced stage of gastric adenocarcinoma. World J Gastroenterol. 2013;19(17):2697–703.PubMedPubMedCentralCrossRef Tang P, et al. Increased expression of DLX2 correlates with advanced stage of gastric adenocarcinoma. World J Gastroenterol. 2013;19(17):2697–703.PubMedPubMedCentralCrossRef
78.
Zurück zum Zitat Zhang H, et al. Knockdown of circ_HIPK3 inhibits tumorigenesis of hepatocellular carcinoma via the miR-582-3p/DLX2 axis. Biochem Biophys Res Commun. 2020;533(3):501–9.PubMedCrossRef Zhang H, et al. Knockdown of circ_HIPK3 inhibits tumorigenesis of hepatocellular carcinoma via the miR-582-3p/DLX2 axis. Biochem Biophys Res Commun. 2020;533(3):501–9.PubMedCrossRef
79.
Zurück zum Zitat Liu J, et al. Overexpression of DLX2 is associated with poor prognosis and sorafenib resistance in hepatocellular carcinoma. Exp Mol Pathol. 2016;101(1):58–65.PubMedCrossRef Liu J, et al. Overexpression of DLX2 is associated with poor prognosis and sorafenib resistance in hepatocellular carcinoma. Exp Mol Pathol. 2016;101(1):58–65.PubMedCrossRef
80.
Zurück zum Zitat Speight PM, et al, Odontogenic Keratocyst in WHO Classification of Head and Neck Tumours A.K. El-Naggar, et al., Editors. 2017, International Agency for Research on Cancer (IARC): Lyon p.235–236. Speight PM, et al, Odontogenic Keratocyst in WHO Classification of Head and Neck Tumours A.K. El-Naggar, et al., Editors. 2017, International Agency for Research on Cancer (IARC): Lyon p.235–236.
81.
Zurück zum Zitat Neubüser A, et al. Antagonistic interactions between FGF and BMP signaling pathways: a mechanism for positioning the sites of tooth formation. Cell. 1997;90(2):247–55.PubMedCrossRef Neubüser A, et al. Antagonistic interactions between FGF and BMP signaling pathways: a mechanism for positioning the sites of tooth formation. Cell. 1997;90(2):247–55.PubMedCrossRef
82.
Zurück zum Zitat Mitsui SN, et al. Novel PAX9 mutations cause non-syndromic tooth agenesis. J Dent Res. 2014;93(3):245–9.PubMedCrossRef Mitsui SN, et al. Novel PAX9 mutations cause non-syndromic tooth agenesis. J Dent Res. 2014;93(3):245–9.PubMedCrossRef
83.
Zurück zum Zitat Peters H, Neubüser A, Balling R. Pax genes and organogenesis: Pax9 meets tooth development. Eur J Oral Sci. 1998;106(S1):38–43.PubMedCrossRef Peters H, Neubüser A, Balling R. Pax genes and organogenesis: Pax9 meets tooth development. Eur J Oral Sci. 1998;106(S1):38–43.PubMedCrossRef
84.
Zurück zum Zitat Xiong Z, et al. PAX9 regulates squamous cell differentiation and carcinogenesis in the oro-oesophageal epithelium. J Pathol. 2018;244(2):164–75.PubMedCrossRef Xiong Z, et al. PAX9 regulates squamous cell differentiation and carcinogenesis in the oro-oesophageal epithelium. J Pathol. 2018;244(2):164–75.PubMedCrossRef
85.
Zurück zum Zitat Gerber JK, et al. Progressive loss of PAX9 expression correlates with increasing malignancy of dysplastic and cancerous epithelium of the human oesophagus. J Pathol. 2002;197(3):293–7.PubMedCrossRef Gerber JK, et al. Progressive loss of PAX9 expression correlates with increasing malignancy of dysplastic and cancerous epithelium of the human oesophagus. J Pathol. 2002;197(3):293–7.PubMedCrossRef
86.
Zurück zum Zitat Speight PM, Takata T. New tumour entities in the 4th edition of the World Health Organization Classification of Head and Neck tumours: odontogenic and maxillofacial bone tumours. Virchows Arch. 2018;472(3):331–9.PubMedCrossRef Speight PM, Takata T. New tumour entities in the 4th edition of the World Health Organization Classification of Head and Neck tumours: odontogenic and maxillofacial bone tumours. Virchows Arch. 2018;472(3):331–9.PubMedCrossRef
87.
Zurück zum Zitat Stoelinga PJW. Keratocystic odontogenic tumour (KCOT) has again been renamed odontogenic keratocyst (OKC). Int J Oral Maxillofac Surg. 2019;48(3):415–6.PubMedCrossRef Stoelinga PJW. Keratocystic odontogenic tumour (KCOT) has again been renamed odontogenic keratocyst (OKC). Int J Oral Maxillofac Surg. 2019;48(3):415–6.PubMedCrossRef
89.
Zurück zum Zitat Martínez-Martínez M, et al. Primary intraosseous squamous cell carcinoma arising in an odontogenic keratocyst previously treated with marsupialization: case report and immunohistochemical study. Oral Surg Oral Med Oral Pathol Oral Radiol. 2016;121(4):e87–95.PubMedCrossRef Martínez-Martínez M, et al. Primary intraosseous squamous cell carcinoma arising in an odontogenic keratocyst previously treated with marsupialization: case report and immunohistochemical study. Oral Surg Oral Med Oral Pathol Oral Radiol. 2016;121(4):e87–95.PubMedCrossRef
90.
Zurück zum Zitat Kumchai H, Champion AF, Gates JC, Carcinomatous Transformation of Odontogenic Keratocyst and Primary Intraosseous Carcinoma: A Systematic Review and Report of a Case. J Oral Maxillofac Surg, 2021. 79(5): p.1081.e1-1081.e9. Kumchai H, Champion AF, Gates JC, Carcinomatous Transformation of Odontogenic Keratocyst and Primary Intraosseous Carcinoma: A Systematic Review and Report of a Case. J Oral Maxillofac Surg, 2021. 79(5): p.1081.e1-1081.e9.
Metadaten
Titel
Homeobox Genes in Odontogenic Lesions: A Scoping Review
verfasst von
Erica Pey Wen Hii
Anand Ramanathan
Anitha Krishnan Pandarathodiyil
Gou Rean Wong
E. V. Soma Sekhar
Rozaidah Binti Talib
Zuraiza Mohamad Zaini
Rosnah Binti Zain
Publikationsdatum
07.11.2022
Verlag
Springer US
Erschienen in
Head and Neck Pathology / Ausgabe 1/2023
Elektronische ISSN: 1936-0568
DOI
https://doi.org/10.1007/s12105-022-01481-2

Weitere Artikel der Ausgabe 1/2023

Head and Neck Pathology 1/2023 Zur Ausgabe

Special Issue: Top Ten Head and Neck Differentials

Top 10 Differential Diagnoses for Desmoplastic Melanoma

Neu im Fachgebiet Pathologie

Assistierter Suizid durch Infusion von Thiopental

Thiopental Originalie

Als Folge des Urteils des Bundesverfassungsgerichts zur Sterbehilfe im Jahr 2020 wurde in den Jahren 2021–2023 eine Reihe (n = 23) von assistierten Suiziden im Landesinstitut für gerichtliche und soziale Medizin Berlin mit jeweils identischen …

Molekularpathologische Untersuchungen im Wandel der Zeit

Open Access Biomarker Leitthema

Um auch an kleinen Gewebeproben zuverlässige und reproduzierbare Ergebnisse zu gewährleisten ist eine strenge Qualitätskontrolle in jedem Schritt des Arbeitsablaufs erforderlich. Eine nicht ordnungsgemäße Prüfung oder Behandlung des …

Vergleichende Pathologie in der onkologischen Forschung

Pathologie Leitthema

Die vergleichende experimentelle Pathologie („comparative experimental pathology“) ist ein Fachbereich an der Schnittstelle von Human- und Veterinärmedizin. Sie widmet sich der vergleichenden Erforschung von Gemeinsamkeiten und Unterschieden von …

Gastrointestinale Stromatumoren

Open Access GIST CME-Artikel

Gastrointestinale Stromatumoren (GIST) stellen seit über 20 Jahren ein Paradigma für die zielgerichtete Therapie mit Tyrosinkinaseinhibitoren dar. Eine elementare Voraussetzung für eine mögliche neoadjuvante oder adjuvante Behandlung bei …