Skip to main content
Erschienen in: BMC Pediatrics 1/2023

Open Access 01.12.2023 | Research

Long-term effectiveness and safety of lacosamide as adjunctive therapy in children and adolescents with refractory epilepsy: a real-world study

verfasst von: Ting Zhao, Lu-hai Yu, Hui-lan Zhang, Jing Yu, Jie Feng, Ting-ting Wang, Yan Sun, Hong-jian Li

Erschienen in: BMC Pediatrics | Ausgabe 1/2023

Abstract

Purpose

The effectiveness and tolerability of lacosamide (LCM) among Chinese children and adolescents with refractory epilepsy has not yet been established. Therefore, the objective of this study was to assess the effectiveness and tolerability of LCM among children and adolescents with refractory epilepsy in Xinjiang, Northwest China.

Methods

Effectiveness was assessed by measuring changes in seizure frequency at 3, 6 and 12 months compared with baseline. Patients that achieved ≥ 50% reduction in the frequency of all seizures per month, relative to baseline, were considered to be responders.

Results

105 children and adolescents with refractory epilepsy were enrolled in the study. The responder rates were 47.6%, 39.2%, and 31.9%, respectively at 3, 6, and 12 months. Seizure freedom rates were 32.4%, 28.9%, and 23.6% at 3, 6, and 12 months, respectively. The retention rates at 3, 6, and 12 months were 92.4%, 78.1%, and 69.5%, respectively. The maintenance dose of LCM within the responder group (8.2 ± 4.5 mg·kg− 1·d− 1) was significantly higher compared to the non-responder group (7.3 ± 2.3 mg·kg− 1·d− 1) (p < 0.05). At first follow-up, 44 patients (41.9%) reported experiencing at least one treatment-emergent adverse events.

Conclusion

This real-world study of children and adolescents validated that LCM was both an effective and well-tolerated treatment option for the treatment of refractory epilepsy.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Introduction

Pediatric patients are more likely to suffer from epilepsy compared to adults, and it has been estimated that approximately 6 million pediatric patients in China suffer from epilepsy, which leads to a prevalence of approximately 7 per 10,000 Chinese pediatric patients [1]. Lacosamide (LCM), (R)-2-acetamido-N-benzyl-3-methoxy- propionamide), is a third-generation antiseizure medication (ASM) approved by the European Medicines Agency and US Food and Drug Administration [2, 3]. In China, LCM has been approved for the treatment of focal-onset seizures, with or without secondary generalization in adults, adolescents, and pediatric patients from 4 years of age. This new indication has greatly accelerated the use of LCM in children and adolescents with epilepsy over 4 years of age, which enables physicians to use more therapies for the treatment of refractory epilepsy.
Clinical studies have indicated a favorable short- and long-term effectiveness, as well as tolerability of lacosamide [47]. In regulatory randomized controlled trials conducted in adults, lacosamide has demonstrated to be an effective and safe ASM, with 40% of patients with refractory focal epilepsy achieving a 50% reduction in seizure frequency at a short period of time (3 months) [8]. The evidence of lacosamide effectiveness in Chinese paediatric patients with refractory epilepsy is scarce. Therefore, some pediatric clinicians have questioned whether LCM can be used as an add-on treatment for refractory epilepsy in children and adolescents over 4 years of age. As LCM was previously approved in China in 2018, and then approved for combined treatment of focal seizures among epilepsy patients aged 4 years and older, publishing real world experience can support the wider use of the product as it allows prescribers to learn about its profile.
Thus far, there has been limited data on the use of LCM among Chinese pediatric patients with refractory epilepsy. Therefore, the objective of this study was to assess the effectiveness and tolerability of LCM for the first time among children and adolescents with refractory epilepsy in Xinjiang, Northwest China.

Materials and methods

Collection of demographic details of the patients

This was a retrospective, observational study among children and adolescents with refractory epilepsy, conducted under normal clinical practice at two hospitals in Xinjiang, China. All children and adolescents met the diagnostic criteria for epilepsy, as issued by the International League against Epilepsy in 2017 [9].
The inclusion criteria were as follows: treatment with LCM for refractory epilepsy, and treatment with LCM for at least 2 weeks. The exclusion criteria were as follows: the lack of key research data, cognitive impairment, alcohol or drug abuse within the last 5 years, if patients had any medical or psychiatric condition.
The International League Against Epilepsy (ILAE) defines refractory epilepsy as: after a reasonable selection according to the type of epilepsy and correct use of at least 2 well-tolerated ASMs (single or combined), the patient’s seizure-free duration did not reach three times the longest seizure interval before treatment or one year (depending on whichever was longer) [9].
Anonymized information was retrospectively gathered from medical records without the involvement or participation of any other individuals, with a study cutoff date of May 2022. All methods were performed in accordance with the relevant guidelines and regulations (Declaration of Helsinki). This study was approved by the Ethics Committee of People’s Hospital of Xinjiang Uygur Autonomous Region (Xinjiang, China; Ethical Approval number: KY2019120614).
The need for informed consent was waived by the ethics committee/Institutional Review Board of People’s Hospital of Xinjiang Uygur Autonomous Region, because of the retrospective nature of the study.
Data collected included age, sex, height, weight, body mass index (BMI), age at seizure onset and duration of epilepsy, final LCM dosage and adverse events that occurred at any time during the treatment.

Effectiveness

Seizure frequency was recorded at an average per month for the past 3 months at baseline, and at each follow-up period for 3, 6, and 12 months. Effectiveness was assessed by measuring changes in seizure frequency at 3, 6 and 12 months’ follow up compared with baseline. The baseline was 3 months before the addition of LCM and the seizure frequency was based on the patients’ seizure diary. Patients that achieved ≥ 50% reduction in the frequency of all seizures per month, relative to baseline, were considered to be responders. The term “seizure-free” was defined as having complete seizure control using LCM.
Seizure frequency was assessed through documented ‘seizure diary’ and subjects or caregiver reports. Seizure frequency was classified as monthly (1–3 seizures per month) or yearly (≤ 12 seizures per year). To avoid possible influence on treatment decisions, the last documented visit had to be performed prior to initiation of the chart review. Most of the clinical records at our study did not document seizure frequency in a standardized way, such as “there was a decrease in seizures”, “no seizures since last visit”, and “four seizures since last visit”. These narrative descriptions are very inconsistent. Therefore, in addition to inquiring clinical records, we also inquired and recorded the frequency of epileptic seizures through telephone follow-up.

Safety assessments

The safety and tolerability depended on type and frequency of any one adverse event during epilepsy treatment across all patients, as well as LCM-related events that were recorded at any time from start of LCM treatment to 12 months adverse events [10]. Adverse reactions that led to LCM discontinuation were also noted. The source of the data to assess safety were “seizure diaries” and “clinical inpatient/outpatient records” recorded by families of children with epilepsy. These data specifically recorded adverse events in people with epilepsy and were categorized at the time of retrospectively. Considering safety assessment, our approach to ruling out other possible causes was whether symptoms disappearing after LCM withdrawal.
All psychiatric adverse reactions in pediatric patients were diagnosed by clinical psychologists according to the “Chinese Expert Consensus on the Diagnosis and Treatment of Epilepsy and Depression (2022 Revised Edition)”, and “Canadian Network for Mood and Anxiety Treatments (CANMAT) and International Society for Bipolar Disorders (ISBD) 2018 guidelines for the management of patients with bipolar disorder”. Psychiatric adverse events in the treatment of LCM mainly refer to depression and bipolar disorder.

Statistical analysis

Analyses were performed using SPSS version 19.0 software (version 4.0.100.1124, Chicago, IL, USA), and a p-value of < 0.05 was considered statistically significant. Descriptive statistics for clinical data presentation were applied. Comparisons between groups and response outcomes were made using the chi-square (χ2) test or Fisher’s exact test for qualitative variables and Student’s t-test or the Mann-Whitney U test for quantitative variables whose distribution was normal and nonnormal, respectively.

Results

Study population and baseline characteristics

Overall, from September 2019 to March 2022, 105 children and adolescents from two hospitals were enrolled in the study, demographics and clinical data are summarized in Table 1. The mean age at LCM treatment was 7.6 years (median: 4.5 years), and 64 patients (61.0%) were male. The mean body mass index (BMI) was 18.1 kg·m− 2 (median: 17.8). The mean epilepsy duration at LCM treatment was 3.4 years (median: 3.0 years). Median follow-up length from LCM initiation to last evaluation was 0.6 years. Thirty-two patients (30.5%) received LCM as add-on for generalized epilepsy and 12 (11.4%) for focal epilepsy, while 43 patients (41.0%) manifested both generalized and focal seizures (combined epilepsy).
The 105 patients were divided into two groups according to whether the treatment was effective or not. This included the responder group (n = 50), and the non-responder group (n = 55). The results of the Student’s t-test and chi-square (χ2) test showed no statistically significant significance between responder and non-responder groups for age, body mass index, duration of seizures, duration of seizures, duration of seizures, concomitant ASM, and maintenance LCM (p > 0.05).
However, the chi-square (χ2) test showed a significant difference in gender and the number of ASMs were used before LCM between the response group and the non-responder group, the proportion of male patients within the responder group (68.0%) was significantly higher compared to the non-responder group (54.5%) (p = 0.049), the proportion of one ASM used before LCM within the responder group (54.0%) was significantly higher compared to the non-responder group (29.1%) (p < 0.001), and the proportion of two ASMs used before LCM within the responder group (30.0%) was significantly lower compared to the non-responder group (45.5%) (p = 0.023) (Table 1). In addition, the Student’s t-test results showed that the maintenance dose of LCM within the responder group (8.2 ± 4.5 mg·kg− 1·d− 1) was significantly higher compared to the non-responder group (7.3 ± 2.3 mg·kg− 1·d− 1) (p = 0.019) (Table 1).
Table 1
Patient demographics and characteristics, as well as differences between responder group and non-responder group (mean ± standard deviations)
Category
Total population (n = 105)
Responder group
(n = 50)
Non-responder group
(n = 55)
t /χ2
p-value
Age (years)
7.6 ± 4.5
7.3 ± 4.7
7.8 ± 4.5
-0.582
0.562
Male gender, n (%)
64 (61.0)
34 (68.0)
30 (54.5)
3.882
< 0.05*
Body mass index (kg·m− 2)
18.1 ± 4.1
17.8 ± 3.4
18.3 ± 4.6
-0.657
0.513
Duration of epilepsy (years)
3.4 ± 2.8
3.1 ± 2.5
3.6 ± 2.7
-1.078
0.284
Medication time (years)
0.6 ± 0.5
0.6 ± 0.4
0.7 ± 0.5
-0.878
0.382
Type of seizure, n (%)
     
 Generalized onset
32 (30.5)
15 (30.0)
17 (30.9)
0.024
0.877
 Focal onset
12 (11.4)
6 (12.0)
6 (10.9)
0.061
0.805
 Combined generalized and focal onset
43 (41.0)
21 (42.0)
22 (40.0)
0.083
0.773
 Unknow onset
18 (17.1)
8 (16.0)
10 (18.2)
0.142
0.707
Maintenance dose (mg·kg− 1·d− 1)
7.8 ± 2.4
8.4 ± 2.4
7.3 ± 2.3
2.375
< 0.05*
Concomitant ASMs #
     
 Valproic acid
92 (38.3)
47 (41.2)
45 (35.7)
0.528
0.467
 Levetiracetam
62 (25.8)
32 (28.1)
30 (23.8)
0.416
0.519
 Oxcarbazepine
51 (21.3)
20 (17.5)
31 (24.6)
1.540
0.215
 Lamotrigine
21 (8.7)
10 (8.8)
11 (8.7)
-
1.000
 Perampanel
6 (2.5)
2 (1.7)
2 (1.6)
-
1.000
 Zonisamide
5 (2.1)
2 (1.7)
3 (2.4)
-
1.000
 Phenobarbital
2 (0.8)
0 (0)
2 (1.6)
2.020
0.155
 Topiramate
2 (0.8)
0 (0)
2 (1.6)
2.020
0.155
 Clonazepam
1 (0.4)
1 (0.9)
0 (0)
1.005
0.316
The number of ASMs were used before LCM, n (%)
     
 One ASMs
43 (41.0)
27 (54.0)
16 (29.1)
12.872
< 0.001**
 Two ASMs
40 (38.1)
15 (30.0)
25 (45.5)
5.164
< 0.05*
 Three ASMs
18 (17.1)
7 (14.0)
11 (20.0)
1.276
0.259
 Four ASMs
4 (3.8)
1 (2.0)
3 (5.4)
1.332
0.248
# One patient may have two or more ASMs
Comparison between effective cases, * p-value < 0.05; ** p-value < 0.001

Retention rates

The median length of LCM treatment administration was 7 months. A follow-up of at least 3 months was available in 105 children and adolescents. The mean maintenance dose of LCM was 8.2 mg·kg− 1·d− 1 (standard deviation: 2.4). At follow-up within 12 months, 23 patients discontinued LCM treatment (Fig. 1). The retention rates at 3, 6, and 12 months were 92.4%, 78.1%, and 69.5%, respectively.

Effectiveness and tolerability

The effectiveness of LCM therapy was evaluated in 105 children and adolescents that were enrolled in the study. Among children and adolescents that developed seizures during the baseline period, responder rates for all seizure types at 3, 6, and 12 months were 47.6%, 39.2%, and 31.9%, respectively (Fig. 2). Seizure freedom rates were 32.4%, 28.9%, and 23.6% at 3, 6, and 12 months, respectively (Fig. 2). Overall, 73 patients continued treatment with LCM for 12 months or longer.
Several variables that could potentially affect the likelihood of achieving a seizure remission during the 12-month period were analysed. Patients maintained on a three and four number of baseline ASMs at the time of LCM introduction were more likely to achieve seizure remission (p < 0.05, Fig. 3). The order of LCM introduction was a highly significant factor impacting the likelihood of seizure remission during the 12-month period (p < 0.05, Fig. 4). The earlier LCM was introduced, the higher the likelihood of achieving a remission.

Safety and tolerability

Clinical data on adverse events are summarized in Table 2. At first follow-up, 44 patients (41.9%) reported experiencing at least one treatment-emergent adverse events, with a mean daily dose of 7.8 mg·kg− 1·d− 1 (range: 2.8–14.8, standard deviation: 2.5). In most cases, these cases were rated mild. At the 12 months, 28 patients (40.6%) reported experiencing treatment-emergent adverse events at a mean daily dose of 8.3 mg·kg− 1·d− 1 (range: 3.2–10.7; standard deviation: 2.5), which, in most cases, were rated mild (Table 2).
Table 2
Characteristics of adverse drug reactions related to lacosamide at the first follow-up (n = 105) and last follow-up (n = 82)
Adverse drug reactions
At the first follow-up (n, %)
At the 12-months follow-up (n, %)
Any TEAEs
44 (41.9)
28 (34.2)
Most frequent TEAEs (≥ 5% of patients)
  
 Dizziness
24 (22.9)
18 (18.3)
 Somnolence
24 (22.9)
17 (20.7)
 Nausea/vomiting
6 (5.7)
3 (3.7)
TEAEs leading to dose adjustment
  
 Dizziness
2 (1.9)
2 (2.4)
 Nausea/vomiting
2 (1.9)
1 (1.2)
 Psychiatric
1 (0.9)
1 (1.2)
 Double vision
1 (0.9)
0 (0)
TEAEs, treatment-emergent adverse events
During the entire period of LCM treatment, there were no death or severe adverse events reported. Four patients (3.8%) experienced psychiatric adverse events, with one patient presenting with depressive symptoms and three patients with bipolar disorder. Among the nonpsychiatric adverse events, mild dizziness, somnolence, nausea/vomiting and depression were the most common, and were reported by 24, 24, 6 and 4 patients, respectively. Other adverse events included gastrointestinal discomfort in two patients, and double vision in another.

Discussion

Voltage-gated Na+ channels are an important class of therapeutic targets for many anticonvulsant drugs, including both classical anticonvulsants and third-generation ASMs [11]. One such anticonvulsant is LCM, a third-generation ASM that is approved as monotherapy or adjunctive therapy in adults with partial-onset seizures in China. Notably, although many anticonvulsants do not seem to affect Na+ channel slow inactivation markedly, LCM shows a pronounced effect on slow inactivation properties [12]. LCM is a functional amino acid that is thought to exert its distinctive anticonvulsant mechanism of action through selective enhancement of slow inactivation of voltage-gated sodium channels [12].
Determining the effectiveness, safety and optimal dosage of LCM among pediatric patients is vital for safe and rational use of LCM in clinical practice. Various endogenous factors (i.e., culture, diet, and health behaviours) and exogenous factors (i.e., race, ethnicity, and environment) can have an effect on drug pharmacokinetics [13]. In recent years, many pivotal, double-blind, placebo-controlled clinical trials have validated the effectiveness and tolerability of LCM among pediatric patients and adolescents with epilepsy [47, 1417]. There are few clinical data on LCM in Chinese pediatric patients with refractory epilepsy. Hence, its safety and effectiveness among Chinese pediatric patients with refractory epilepsy need to be further investigated. This study was conducted during the first two years of introduction of LCM in China, when the majority of physicians were starting to gain experience with this new ASM.
The children and adolescents in this study are representative of the real-world refractory epilepsy population, and despite limited clinical experience with LCM therapy for refractory epilepsy, there is a growing body of research that suggests that LCM may be useful for children and adolescents with refractory epilepsy [8, 2122]. Our study demonstrates clinical experience that was gained in the first year of LCM therapy for refractory epilepsy.
Rosati et al. discovered that 38.6% (34/88) children and adolescents were responders that received add-on LCM treatment for refractory epilepsy and nine (26.4%) of the 34 responders were seizure-free [18]. Kleist et al. discovered that 48% (38/80) patients with refractory epilepsy were documented as responders after being administered LCM treatment [19]. Meanwhile, Rüegger et al., evaluated the effectiveness of LCM among 107 patients with drug-resistant, and found that 52 (49%) children were continued LCM at last follow-up, and 55 (51%) discontinued LCM during the study period [20].
This real-world study of children and adolescents with refractory epilepsy with a follow-up period of at least 12 months demonstrated response rates of 47.6%, 39.2%, and 31.9% at 3, 6, and 12 months, respectively. In particular, the proportion of pediatric patients who achieved seizure freedom gradually decreased over time, at 32.4%, 28.9%, and 23.6% at 3, 6, and 12 months, respectively. These results were consistent with Rosati et al.,. [18] Kleist et al., [19] and Rüegger et al., [20] studies findings. Although there is no definite explanation for these results, they are thought to be related to the development of focal tolerance to the long-term treatment of LCM.
LCM was found to be relatively well tolerated, with an adverse event rate of 41.9% at the 12-months. This was consistent with the incidence of adverse events that were reported in observational studies by Del Bianco et al., [14] and Casciato et al., [21] as well as the phase III, long-term, open-label study by Ben-Menachem et al., [22] (45.9%, 50.0% and 57.5%, respectively). The most common adverse reactions consisted of dizziness, somnolence, nausea/vomiting, depression, and double vision. We did not observe any unknown adverse events that were not reported in previous studies. Additionally, most adverse events were considered mild. Hence, we did not significantly change the treatment regimen for children and adolescents with LCM.
The strengths of this study are the longer follow-up. The major limitation of this study is investigators must rely on clinical records, as well as the fact that all children and adolescents with refractory epilepsy were treated by the same physician, it could be a limitation since the cases were not discussed with others. Nonetheless, this study may provide some real-world evidence for the effectiveness and safety of long-term adjunctive use of LCM for the treatment of refractory epilepsy within the children and adolescents population. LCM was found to be well tolerated, with relatively few adverse events.
In conclusion, this real-world study of 105 children and adolescents validated that LCM was both an effective and well-tolerated treatment option for the treatment of refractory epilepsy, even at long-term follow-up and low doses. These important findings suggest that LCM is likely to become a widely-used ASM for the treatment of epilepsy in clinical practice, and in children and adolescents.

Acknowledgements

The authors thank People’s Hospital of Xinjiang Uygur Autonomous Region for approval of ethical clearance, technical and other relevant support of this study. Then, we would like to thank all study participants who participated in this study for their commitment to responding to our interviews and observations.

Declarations

The need for informed consent was waived by the ethics committee/Institutional Review Board of People’s Hospital of Xinjiang Uygur Autonomous Region, because of the retrospective nature of the study. All methods were performed in accordance with the relevant guidelines and regulations (Declaration of Helsinki). This study was approved by the Ethics Committee of People’s Hospital of Xinjiang Uygur Autonomous Region (Xinjiang, China; Ethical Approval number: KY2019120614).
Not applicable.

Competing interests

None of the authors have any conflict of interest to disclose. The authors confirm that they have read the Journal’s policy on issues involved in ethical publication, and affirm that this study is consistent with those guidelines.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Sang T, Xiang T, Zhu SN, et al. Treatment-related costs of Childhood Epilepsy in Mainland China: a preliminary study in a Tertiary Pediatric Epilepsy Center. J Child Neurol. 2019;34:68–73.CrossRefPubMed Sang T, Xiang T, Zhu SN, et al. Treatment-related costs of Childhood Epilepsy in Mainland China: a preliminary study in a Tertiary Pediatric Epilepsy Center. J Child Neurol. 2019;34:68–73.CrossRefPubMed
4.
Zurück zum Zitat Ben-Menachem E, Grebe HP, Terada K, Jensen L, Li T, De BM, et al. Long-term safety and efficacy of lacosamide and controlled-release carbamazepine monotherapy in patients with newly diagnosed epilepsy. Epilepsia. 2019;60(12):2437–47.CrossRefPubMedPubMedCentral Ben-Menachem E, Grebe HP, Terada K, Jensen L, Li T, De BM, et al. Long-term safety and efficacy of lacosamide and controlled-release carbamazepine monotherapy in patients with newly diagnosed epilepsy. Epilepsia. 2019;60(12):2437–47.CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Vossler DG, Knake S, O’Brien TJ, Watanabe M, Brock M, Steiniger-Brach B, et al. Efficacy and safety of adjunctive lacosamide in the treatment of primary generalised tonic-clonic seizures: a double-blind, randomised, placebo-controlled trial. J Neurol Neurosurg Psychiatry. 2020;91(10):1067–75.CrossRefPubMed Vossler DG, Knake S, O’Brien TJ, Watanabe M, Brock M, Steiniger-Brach B, et al. Efficacy and safety of adjunctive lacosamide in the treatment of primary generalised tonic-clonic seizures: a double-blind, randomised, placebo-controlled trial. J Neurol Neurosurg Psychiatry. 2020;91(10):1067–75.CrossRefPubMed
6.
Zurück zum Zitat Hmaimess G, Sabbagh S, Dirani M, Hotait M, Beydoun AA, Nasreddine W. Efficacy and tolerability of treatment with lacosamide in children: postmarketing experience from the Middle East. Seizure. 2020;79:75–9.CrossRefPubMed Hmaimess G, Sabbagh S, Dirani M, Hotait M, Beydoun AA, Nasreddine W. Efficacy and tolerability of treatment with lacosamide in children: postmarketing experience from the Middle East. Seizure. 2020;79:75–9.CrossRefPubMed
7.
Zurück zum Zitat Biton V, Gil-Nagel A, Isojärvi J, et al. Safety and tolerability of lacosamide as adjunctive therapy for adults with partial-onset seizures: analysis of data pooled from three randomized, double-blind, placebo-controlled clinical trials. Epilepsy Behav. 2015;52:119–27.CrossRefPubMed Biton V, Gil-Nagel A, Isojärvi J, et al. Safety and tolerability of lacosamide as adjunctive therapy for adults with partial-onset seizures: analysis of data pooled from three randomized, double-blind, placebo-controlled clinical trials. Epilepsy Behav. 2015;52:119–27.CrossRefPubMed
8.
Zurück zum Zitat Paquette V, Culley C, Greanya ED, et al. Lacosamide as adjunctive therapy in refractory epilepsy in adults: a systematic review. Seizure. 2015;25:1–17.CrossRefPubMed Paquette V, Culley C, Greanya ED, et al. Lacosamide as adjunctive therapy in refractory epilepsy in adults: a systematic review. Seizure. 2015;25:1–17.CrossRefPubMed
9.
Zurück zum Zitat Kwan P, Arzimanoglou A, Berg AT, et al. Definition of drug resistant epilepsy: Consensus proposal by the ad hoc Task Force of the ILAE Commission on therapeutic strategies. Epilepsia. 2010;51:1069–77.CrossRefPubMed Kwan P, Arzimanoglou A, Berg AT, et al. Definition of drug resistant epilepsy: Consensus proposal by the ad hoc Task Force of the ILAE Commission on therapeutic strategies. Epilepsia. 2010;51:1069–77.CrossRefPubMed
10.
Zurück zum Zitat Muñoz-Lopetegi A, López-González FJ, Rodríguez-Osorio X, et al. LACONORTE study: efficacy and security of lacosamide as first add-on therapy for focal-onset epilepsy in real-life setting. Epilepsy Res. 2018;145:51–4.CrossRefPubMed Muñoz-Lopetegi A, López-González FJ, Rodríguez-Osorio X, et al. LACONORTE study: efficacy and security of lacosamide as first add-on therapy for focal-onset epilepsy in real-life setting. Epilepsy Res. 2018;145:51–4.CrossRefPubMed
11.
12.
Zurück zum Zitat Holtkamp D, Opitz T, Niespodziany I, et al. Activity of the anticonvulsant lacosamide in experimental and human epilepsy via selective effects on slow na channel inactivation. Epilepsia. 2017;58:27–41.CrossRefPubMed Holtkamp D, Opitz T, Niespodziany I, et al. Activity of the anticonvulsant lacosamide in experimental and human epilepsy via selective effects on slow na channel inactivation. Epilepsia. 2017;58:27–41.CrossRefPubMed
13.
Zurück zum Zitat Beydoun A, D’Souza J, Hebert D, Doty P. Lacosamide: pharmacology, mechanisms of action and pooled efficacy and safety data in partial-onset seizures. Expert Rev Neurother. 2009;9:33–42.CrossRefPubMed Beydoun A, D’Souza J, Hebert D, Doty P. Lacosamide: pharmacology, mechanisms of action and pooled efficacy and safety data in partial-onset seizures. Expert Rev Neurother. 2009;9:33–42.CrossRefPubMed
14.
Zurück zum Zitat Del Bianco C, Placidi F, Liguori C, et al. Long-term efficacy and safety of lacosamide and levetiracetam monotherapy in elderly patients with focal epilepsy: a retrospective study. Epilepsy Behav. 2019;94:178–82.CrossRefPubMed Del Bianco C, Placidi F, Liguori C, et al. Long-term efficacy and safety of lacosamide and levetiracetam monotherapy in elderly patients with focal epilepsy: a retrospective study. Epilepsy Behav. 2019;94:178–82.CrossRefPubMed
15.
Zurück zum Zitat Farkas V, Steinborn B, Flamini JR, Zhang Y, Yuen N, Borghs S, Bozorg A, Daniels T, Martin P, Carney HC, Dimova S, Scheffer IE, SP0969 Study Group. Efficacy and tolerability of adjunctive lacosamide in pediatric patients with focal. seizures Neurol. 2019;93:e1212–1226.CrossRef Farkas V, Steinborn B, Flamini JR, Zhang Y, Yuen N, Borghs S, Bozorg A, Daniels T, Martin P, Carney HC, Dimova S, Scheffer IE, SP0969 Study Group. Efficacy and tolerability of adjunctive lacosamide in pediatric patients with focal. seizures Neurol. 2019;93:e1212–1226.CrossRef
16.
Zurück zum Zitat Heyman E, Lahat E, Levin N, Berkovitch M, Gandelman-Marton R. Preliminary efficacy and safety of lacosamide in children with refractory epilepsy. Eur J Paediatr Neurol. 2012;16:15–9.CrossRefPubMed Heyman E, Lahat E, Levin N, Berkovitch M, Gandelman-Marton R. Preliminary efficacy and safety of lacosamide in children with refractory epilepsy. Eur J Paediatr Neurol. 2012;16:15–9.CrossRefPubMed
17.
Zurück zum Zitat Sanmartí-Vilaplana F, Díaz-Gómez A. The effectiveness and safety of lacosamide in children with epilepsy in a clinical practice setting. Epilepsy Behav. 2018;79:130–7.CrossRefPubMed Sanmartí-Vilaplana F, Díaz-Gómez A. The effectiveness and safety of lacosamide in children with epilepsy in a clinical practice setting. Epilepsy Behav. 2018;79:130–7.CrossRefPubMed
18.
Zurück zum Zitat Rosati A, Ilvento L, Rizzi R, et al. Long-term efficacy of add-on lacosamide treatment in children and adolescents with refractory epilepsies: a single-center observational study. Epilepsia. 2018;59:1004–10.CrossRefPubMed Rosati A, Ilvento L, Rizzi R, et al. Long-term efficacy of add-on lacosamide treatment in children and adolescents with refractory epilepsies: a single-center observational study. Epilepsia. 2018;59:1004–10.CrossRefPubMed
19.
Zurück zum Zitat Kleist A, Kerling Fr, Hamer H, Winterholler M. Lacosamide in patients with intellectual disability and refractory epilepsy. Acta Neurol Belg. 2019;119:423–30.CrossRefPubMed Kleist A, Kerling Fr, Hamer H, Winterholler M. Lacosamide in patients with intellectual disability and refractory epilepsy. Acta Neurol Belg. 2019;119:423–30.CrossRefPubMed
20.
Zurück zum Zitat Rüegger AD, Freeman JL, Harvey AS. Lacosamide in children with drug-resistant epilepsy. J Paediatr Child Health. 2019;55:194–8.CrossRefPubMed Rüegger AD, Freeman JL, Harvey AS. Lacosamide in children with drug-resistant epilepsy. J Paediatr Child Health. 2019;55:194–8.CrossRefPubMed
21.
Zurück zum Zitat Casciato S, Quarato PP, Gialluisi A, et al. Lacosamide as first add-on or conversion monotherapy: a retrospective real-life study. Epilepsy Behav. 2021;122:108128.CrossRefPubMed Casciato S, Quarato PP, Gialluisi A, et al. Lacosamide as first add-on or conversion monotherapy: a retrospective real-life study. Epilepsy Behav. 2021;122:108128.CrossRefPubMed
22.
Zurück zum Zitat Ben-Menachem E, Dominguez J, Szász J, et al. Long-term safety and tolerability of lacosamide monotherapy in patients with epilepsy: results from a multicenter, open-label trial. Epilepsia Open. 2021;6:618–23.CrossRefPubMedPubMedCentral Ben-Menachem E, Dominguez J, Szász J, et al. Long-term safety and tolerability of lacosamide monotherapy in patients with epilepsy: results from a multicenter, open-label trial. Epilepsia Open. 2021;6:618–23.CrossRefPubMedPubMedCentral
Metadaten
Titel
Long-term effectiveness and safety of lacosamide as adjunctive therapy in children and adolescents with refractory epilepsy: a real-world study
verfasst von
Ting Zhao
Lu-hai Yu
Hui-lan Zhang
Jing Yu
Jie Feng
Ting-ting Wang
Yan Sun
Hong-jian Li
Publikationsdatum
01.12.2023
Verlag
BioMed Central
Erschienen in
BMC Pediatrics / Ausgabe 1/2023
Elektronische ISSN: 1471-2431
DOI
https://doi.org/10.1186/s12887-023-04039-5

Weitere Artikel der Ausgabe 1/2023

BMC Pediatrics 1/2023 Zur Ausgabe

Ähnliche Überlebensraten nach Reanimation während des Transports bzw. vor Ort

29.05.2024 Reanimation im Kindesalter Nachrichten

Laut einer Studie aus den USA und Kanada scheint es bei der Reanimation von Kindern außerhalb einer Klinik keinen Unterschied für das Überleben zu machen, ob die Wiederbelebungsmaßnahmen während des Transports in die Klinik stattfinden oder vor Ort ausgeführt werden. Jedoch gibt es dabei einige Einschränkungen und eine wichtige Ausnahme.

Alter der Mutter beeinflusst Risiko für kongenitale Anomalie

28.05.2024 Kinder- und Jugendgynäkologie Nachrichten

Welchen Einfluss das Alter ihrer Mutter auf das Risiko hat, dass Kinder mit nicht chromosomal bedingter Malformation zur Welt kommen, hat eine ungarische Studie untersucht. Sie zeigt: Nicht nur fortgeschrittenes Alter ist riskant.

Begünstigt Bettruhe der Mutter doch das fetale Wachstum?

Ob ungeborene Kinder, die kleiner als die meisten Gleichaltrigen sind, schneller wachsen, wenn die Mutter sich mehr ausruht, wird diskutiert. Die Ergebnisse einer US-Studie sprechen dafür.

Bei Amblyopie früher abkleben als bisher empfohlen?

22.05.2024 Fehlsichtigkeit Nachrichten

Bei Amblyopie ist das frühzeitige Abkleben des kontralateralen Auges in den meisten Fällen wohl effektiver als der Therapiestandard mit zunächst mehrmonatigem Brilletragen.

Update Pädiatrie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.