Skip to main content
Erschienen in: Current Cardiology Reports 3/2024

10.02.2024 | Cardiac Biomarkers (AA Quyyumi, Section Editor)

Lysophosphatidic Acid-Mediated Inflammation at the Heart of Heart Failure

verfasst von: Rajesh Chaudhary, Tahra Suhan, Mahmud W. Tarhuni, Ahmed Abdel-Latif

Erschienen in: Current Cardiology Reports | Ausgabe 3/2024

Einloggen, um Zugang zu erhalten

Abstract

Purpose of Review

The primary aim of this review is to provide an in-depth examination of the role bioactive lipids—namely lysophosphatidic acid (LPA) and ceramides—play in inflammation-mediated cardiac remodeling during heart failure. With the global prevalence of heart failure on the rise, it is critical to understand the underlying molecular mechanisms contributing to its pathogenesis. Traditional studies have emphasized factors such as oxidative stress and neurohormonal activation, but emerging research has shed light on bioactive lipids as central mediators in heart failure pathology. By elucidating these intricacies, this review aims to:
  • Bridge the gap between basic research and clinical practice by highlighting clinically relevant pathways contributing to the pathogenesis and prognosis of heart failure.
  • Provide a foundation for the development of targeted therapies that could mitigate the effects of LPA and ceramides on heart failure.
  • Serve as a comprehensive resource for clinicians and researchers interested in the molecular biology of heart failure, aiding in better diagnostic and therapeutic decisions.

Recent Findings

Recent findings have shed light on the central role of bioactive lipids, specifically lysophosphatidic acid (LPA) and ceramides, in heart failure pathology. Traditional studies have emphasized factors such as hypoxia-mediated cardiomyocyte loss and neurohormonal activation in the development of heart failure. Emerging research has elucidated the intricacies of bioactive lipid-mediated inflammation in cardiac remodeling and the development of heart failure. Studies have shown that LPA and ceramides contribute to the pathogenesis of heart failure by promoting inflammation, fibrosis, and apoptosis in cardiac cells. Additionally, recent studies have identified potential targeted therapies that could mitigate the effects of bioactive lipids on heart failure, including LPA receptor antagonists and ceramide synthase inhibitors. These recent findings provide a promising avenue for the development of targeted therapies that could improve the diagnosis and treatment of heart failure.

Summary

In this review, we highlight the pivotal role of inflammation induced by bioactive lipid signaling and its influence on the pathogenesis of heart failure. By critically assessing the existing literature, we provide a comprehensive resource for clinicians and researchers interested in the molecular mechanisms of heart failure. Our review aims to bridge the gap between basic research and clinical practice by providing actionable insights and a foundation for the development of targeted therapies that could mitigate the effects of bioactive lipids on heart failure. We hope that this review will aid in better diagnostic and therapeutic decisions, further advancing our collective understanding and management of heart failure.
Literatur
1.
Zurück zum Zitat Virani SS, et al. Heart disease and stroke statistics-2020 update: a report from the American Heart Association. Circulation. 2020;141(9):e139–596.PubMedCrossRef Virani SS, et al. Heart disease and stroke statistics-2020 update: a report from the American Heart Association. Circulation. 2020;141(9):e139–596.PubMedCrossRef
2.
Zurück zum Zitat McDonagh TA, et al. focused update of the 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2023;2023. McDonagh TA, et al. focused update of the 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2023;2023.
3.
Zurück zum Zitat Tyminska A, et al. Ischemic cardiomyopathy versus non-ischemic dilated cardiomyopathy in patients with reduced ejection fraction- clinical characteristics and prognosis depending on heart failure etiology (data from European Society of Cardiology Heart Failure Registries). Biology (Basel). 2022;11(2). Tyminska A, et al. Ischemic cardiomyopathy versus non-ischemic dilated cardiomyopathy in patients with reduced ejection fraction- clinical characteristics and prognosis depending on heart failure etiology (data from European Society of Cardiology Heart Failure Registries). Biology (Basel). 2022;11(2).
4.
Zurück zum Zitat Zhu J, et al. The incidence of acute myocardial infarction in relation to overweight and obesity: a meta-analysis. Arch Med Sci. 2014;10(5):855–62.PubMedPubMedCentralCrossRef Zhu J, et al. The incidence of acute myocardial infarction in relation to overweight and obesity: a meta-analysis. Arch Med Sci. 2014;10(5):855–62.PubMedPubMedCentralCrossRef
5.
Zurück zum Zitat Rieckmann M, et al. Myocardial infarction triggers cardioprotective antigen-specific T helper cell responses. J Clin Invest. 2019;129(11):4922–36.PubMedPubMedCentralCrossRef Rieckmann M, et al. Myocardial infarction triggers cardioprotective antigen-specific T helper cell responses. J Clin Invest. 2019;129(11):4922–36.PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Yue R, et al. NLRP3-mediated pyroptosis aggravates pressure overload-induced cardiac hypertrophy, fibrosis, and dysfunction in mice: cardioprotective role of irisin. Cell Death Discov. 2021;7(1):50.PubMedPubMedCentralCrossRef Yue R, et al. NLRP3-mediated pyroptosis aggravates pressure overload-induced cardiac hypertrophy, fibrosis, and dysfunction in mice: cardioprotective role of irisin. Cell Death Discov. 2021;7(1):50.PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Xu S, et al. Excessive inflammation impairs heart regeneration in zebrafish breakdance mutant after cryoinjury. Fish Shellfish Immunol. 2019;89:117–26.PubMedCrossRef Xu S, et al. Excessive inflammation impairs heart regeneration in zebrafish breakdance mutant after cryoinjury. Fish Shellfish Immunol. 2019;89:117–26.PubMedCrossRef
8.
Zurück zum Zitat Lee JW, et al. Lysophosphatidic acid receptor 4 is transiently expressed during cardiac differentiation and critical for repair of the damaged heart. Mol Ther. 2021;29(3):1151–63.PubMedCrossRef Lee JW, et al. Lysophosphatidic acid receptor 4 is transiently expressed during cardiac differentiation and critical for repair of the damaged heart. Mol Ther. 2021;29(3):1151–63.PubMedCrossRef
9.
Zurück zum Zitat Wang F, et al. LPA(3)-mediated lysophosphatidic acid signaling promotes postnatal heart regeneration in mice. Theranostics. 2020;10(24):10892–907.PubMedPubMedCentralCrossRef Wang F, et al. LPA(3)-mediated lysophosphatidic acid signaling promotes postnatal heart regeneration in mice. Theranostics. 2020;10(24):10892–907.PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Yang J, et al. Lysophosphatidic acid is associated with cardiac dysfunction and hypertrophy by suppressing autophagy via the LPA3/AKT/mTOR pathway. Front Physiol. 2018;9:1315.PubMedPubMedCentralCrossRef Yang J, et al. Lysophosphatidic acid is associated with cardiac dysfunction and hypertrophy by suppressing autophagy via the LPA3/AKT/mTOR pathway. Front Physiol. 2018;9:1315.PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Wen H, et al. Higher serum lysophosphatidic acids predict left ventricular reverse remodeling in pediatric dilated cardiomyopathy. Front Pediatr. 2021;9: 710720.PubMedPubMedCentralCrossRef Wen H, et al. Higher serum lysophosphatidic acids predict left ventricular reverse remodeling in pediatric dilated cardiomyopathy. Front Pediatr. 2021;9: 710720.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Brown A, et al. Lysophosphatidic acid receptor mRNA levels in heart and white adipose tissue are associated with obesity in mice and humans. PLoS ONE. 2017;12(12): e0189402.PubMedPubMedCentralCrossRef Brown A, et al. Lysophosphatidic acid receptor mRNA levels in heart and white adipose tissue are associated with obesity in mice and humans. PLoS ONE. 2017;12(12): e0189402.PubMedPubMedCentralCrossRef
13.
14.
Zurück zum Zitat Berwick ML, et al. The role of ceramide 1-phosphate in inflammation, cellular proliferation, and wound healing. Adv Exp Med Biol. 2019;1159:65–77.PubMedCrossRef Berwick ML, et al. The role of ceramide 1-phosphate in inflammation, cellular proliferation, and wound healing. Adv Exp Med Biol. 2019;1159:65–77.PubMedCrossRef
15.
Zurück zum Zitat Geraldo LHM, et al. Role of lysophosphatidic acid and its receptors in health and disease: novel therapeutic strategies. Signal Transduct Target Ther. 2021;6(1):45.PubMedPubMedCentralCrossRef Geraldo LHM, et al. Role of lysophosphatidic acid and its receptors in health and disease: novel therapeutic strategies. Signal Transduct Target Ther. 2021;6(1):45.PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat Tokumura A, et al. Identification of human plasma lysophospholipase D, a lysophosphatidic acid-producing enzyme, as autotaxin, a multifunctional phosphodiesterase. J Biol Chem. 2002;277(42):39436–42.PubMedCrossRef Tokumura A, et al. Identification of human plasma lysophospholipase D, a lysophosphatidic acid-producing enzyme, as autotaxin, a multifunctional phosphodiesterase. J Biol Chem. 2002;277(42):39436–42.PubMedCrossRef
17.
Zurück zum Zitat Spohr TC, et al. LPA-primed astrocytes induce axonal outgrowth of cortical progenitors by activating PKA signaling pathways and modulating extracellular matrix proteins. Front Cell Neurosci. 2014;8:296.PubMedPubMedCentralCrossRef Spohr TC, et al. LPA-primed astrocytes induce axonal outgrowth of cortical progenitors by activating PKA signaling pathways and modulating extracellular matrix proteins. Front Cell Neurosci. 2014;8:296.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Fukushima N, Weiner JA, Chun J. Lysophosphatidic acid (LPA) is a novel extracellular regulator of cortical neuroblast morphology. Dev Biol. 2000;228(1):6–1.PubMedCrossRef Fukushima N, Weiner JA, Chun J. Lysophosphatidic acid (LPA) is a novel extracellular regulator of cortical neuroblast morphology. Dev Biol. 2000;228(1):6–1.PubMedCrossRef
19.
Zurück zum Zitat McIntyre TM, et al. Identification of an intracellular receptor for lysophosphatidic acid (LPA): LPA is a transcellular PPARgamma agonist. Proc Natl Acad Sci USA. 2003;100(1):131–6.PubMedCrossRef McIntyre TM, et al. Identification of an intracellular receptor for lysophosphatidic acid (LPA): LPA is a transcellular PPARgamma agonist. Proc Natl Acad Sci USA. 2003;100(1):131–6.PubMedCrossRef
20.
Zurück zum Zitat Choi JW, et al. LPA receptors: subtypes and biological actions. Annu Rev Pharmacol Toxicol. 2010;50:157–86.PubMedCrossRef Choi JW, et al. LPA receptors: subtypes and biological actions. Annu Rev Pharmacol Toxicol. 2010;50:157–86.PubMedCrossRef
21.
Zurück zum Zitat Ray R, et al. Lysophosphatidic acid-RAGE axis promotes lung and mammary oncogenesis via protein kinase B and regulating tumor microenvironment. Cell Commun Signal. 2020;18(1):170.PubMedPubMedCentralCrossRef Ray R, et al. Lysophosphatidic acid-RAGE axis promotes lung and mammary oncogenesis via protein kinase B and regulating tumor microenvironment. Cell Commun Signal. 2020;18(1):170.PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Li N, et al. Lysophosphatidic acid enhances human umbilical cord mesenchymal stem cell viability without differentiation via LPA receptor mediating manner. Apoptosis. 2017;22(10):1296–309.PubMedPubMedCentralCrossRef Li N, et al. Lysophosphatidic acid enhances human umbilical cord mesenchymal stem cell viability without differentiation via LPA receptor mediating manner. Apoptosis. 2017;22(10):1296–309.PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Tigyi G, et al. Revisiting the role of lysophosphatidic acid in stem cell biology. Exp Biol Med (Maywood). 2021;246(16):1802–9.PubMedCrossRef Tigyi G, et al. Revisiting the role of lysophosphatidic acid in stem cell biology. Exp Biol Med (Maywood). 2021;246(16):1802–9.PubMedCrossRef
24.
Zurück zum Zitat Pan X, et al. Lysophosphatidic acid may be a novel biomarker for early acute aortic dissection. Front Surg. 2021;8: 789992.PubMedCrossRef Pan X, et al. Lysophosphatidic acid may be a novel biomarker for early acute aortic dissection. Front Surg. 2021;8: 789992.PubMedCrossRef
25.
Zurück zum Zitat Axelsson Raja A, et al. Ablation of lysophosphatidic acid receptor 1 attenuates hypertrophic cardiomyopathy in a mouse model. Proc Natl Acad Sci USA. 2022;119(28): e2204174119.PubMedPubMedCentralCrossRef Axelsson Raja A, et al. Ablation of lysophosphatidic acid receptor 1 attenuates hypertrophic cardiomyopathy in a mouse model. Proc Natl Acad Sci USA. 2022;119(28): e2204174119.PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Wu L, et al. Lysophosphatidic acid mediates fibrosis in injured joints by regulating collagen type I biosynthesis. Osteoarthritis Cartilage. 2015;23(2):308–18.PubMedCrossRef Wu L, et al. Lysophosphatidic acid mediates fibrosis in injured joints by regulating collagen type I biosynthesis. Osteoarthritis Cartilage. 2015;23(2):308–18.PubMedCrossRef
27.
Zurück zum Zitat Cao P, et al. Autocrine lysophosphatidic acid signaling activates beta-catenin and promotes lung allograft fibrosis. J Clin Invest. 2017;127(4):1517–30.PubMedPubMedCentralCrossRef Cao P, et al. Autocrine lysophosphatidic acid signaling activates beta-catenin and promotes lung allograft fibrosis. J Clin Invest. 2017;127(4):1517–30.PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Tang N, et al. Lysophosphatidic acid accelerates lung fibrosis by inducing differentiation of mesenchymal stem cells into myofibroblasts. J Cell Mol Med. 2014;18(1):156–69.PubMedCrossRef Tang N, et al. Lysophosphatidic acid accelerates lung fibrosis by inducing differentiation of mesenchymal stem cells into myofibroblasts. J Cell Mol Med. 2014;18(1):156–69.PubMedCrossRef
29.
Zurück zum Zitat Bot M, et al. Lysophosphatidic acid triggers mast cell-driven atherosclerotic plaque destabilization by increasing vascular inflammation. J Lipid Res. 2013;54(5):1265–74.PubMedPubMedCentralCrossRef Bot M, et al. Lysophosphatidic acid triggers mast cell-driven atherosclerotic plaque destabilization by increasing vascular inflammation. J Lipid Res. 2013;54(5):1265–74.PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Kritikou E, et al. Inhibition of lysophosphatidic acid receptors 1 and 3 attenuates atherosclerosis development in LDL-receptor deficient mice. Sci Rep. 2016;6:37585.PubMedPubMedCentralCrossRef Kritikou E, et al. Inhibition of lysophosphatidic acid receptors 1 and 3 attenuates atherosclerosis development in LDL-receptor deficient mice. Sci Rep. 2016;6:37585.PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Aldi S, et al. Integrated human evaluation of the lysophosphatidic acid pathway as a novel therapeutic target in atherosclerosis. Mol Ther Methods Clin Dev. 2018;10:17–28.PubMedPubMedCentralCrossRef Aldi S, et al. Integrated human evaluation of the lysophosphatidic acid pathway as a novel therapeutic target in atherosclerosis. Mol Ther Methods Clin Dev. 2018;10:17–28.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Nathan S, et al. CREB-dependent LPA-induced signaling initiates a pro-fibrotic feedback loop between small airway basal cells and fibroblasts. Respir Res. 2021;22(1):97.PubMedPubMedCentralCrossRef Nathan S, et al. CREB-dependent LPA-induced signaling initiates a pro-fibrotic feedback loop between small airway basal cells and fibroblasts. Respir Res. 2021;22(1):97.PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat • Decato BE, et al. LPA(1) antagonist BMS-986020 changes collagen dynamics and exerts antifibrotic effects in vitro and in patients with idiopathic pulmonary fibrosis. Respir Res. 2022;23(1):61. Decato et al. studied the antifibrotic effects of the LPA1 antagonist BMS-986020 in idiopathic pulmonary fibrosis (IPF), a disease with limited treatment options. This research is groundbreaking because it not only highlights the potential of targeting the LPA-LPA1 pathway in IPF treatment, but also extends our understanding of the disease's mechanisms, particularly in relation to collagen turnover, that can have a therapeutic potential in number of other disease conditions where fibrosis is one of the hallmark of disease including heart failure. • Decato BE, et al. LPA(1) antagonist BMS-986020 changes collagen dynamics and exerts antifibrotic effects in vitro and in patients with idiopathic pulmonary fibrosis. Respir Res. 2022;23(1):61. Decato et al. studied the antifibrotic effects of the LPA1 antagonist BMS-986020 in idiopathic pulmonary fibrosis (IPF), a disease with limited treatment options. This research is groundbreaking because it not only highlights the potential of targeting the LPA-LPA1 pathway in IPF treatment, but also extends our understanding of the disease's mechanisms, particularly in relation to collagen turnover, that can have a therapeutic potential in number of other disease conditions where fibrosis is one of the hallmark of disease including heart failure.
34.
Zurück zum Zitat Palmer SM, et al. Randomized, double-blind, placebo-controlled, phase 2 trial of BMS-986020, a lysophosphatidic acid receptor antagonist for the treatment of idiopathic pulmonary fibrosis. Chest. 2018;154(5):1061–9.PubMedCrossRef Palmer SM, et al. Randomized, double-blind, placebo-controlled, phase 2 trial of BMS-986020, a lysophosphatidic acid receptor antagonist for the treatment of idiopathic pulmonary fibrosis. Chest. 2018;154(5):1061–9.PubMedCrossRef
35.
Zurück zum Zitat Corte TJ, et al. Phase 2 trial design of BMS-986278, a lysophosphatidic acid receptor 1 (LPA(1)) antagonist, in patients with idiopathic pulmonary fibrosis (IPF) or progressive fibrotic interstitial lung disease (PF-ILD). BMJ Open Respir Res. 2021;8(1). Corte TJ, et al. Phase 2 trial design of BMS-986278, a lysophosphatidic acid receptor 1 (LPA(1)) antagonist, in patients with idiopathic pulmonary fibrosis (IPF) or progressive fibrotic interstitial lung disease (PF-ILD). BMJ Open Respir Res. 2021;8(1).
37.
Zurück zum Zitat Mozaffarian D, et al. Heart disease and stroke statistics–2015 update: a report from the American Heart Association. Circulation. 2015;131(4):e29–32.PubMed Mozaffarian D, et al. Heart disease and stroke statistics–2015 update: a report from the American Heart Association. Circulation. 2015;131(4):e29–32.PubMed
38.
Zurück zum Zitat Zouggari Y, et al. B lymphocytes trigger monocyte mobilization and impair heart function after acute myocardial infarction. Nat Med. 2013;19(10):1273–80.PubMedPubMedCentralCrossRef Zouggari Y, et al. B lymphocytes trigger monocyte mobilization and impair heart function after acute myocardial infarction. Nat Med. 2013;19(10):1273–80.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Abo-Aly M, et al. Prognostic significance of activated monocytes in patients with ST-elevation myocardial infarction. Int J Mol Sci. 2023;24(14). Abo-Aly M, et al. Prognostic significance of activated monocytes in patients with ST-elevation myocardial infarction. Int J Mol Sci. 2023;24(14).
40.
Zurück zum Zitat Maekawa Y, et al. Prognostic significance of peripheral monocytosis after reperfused acute myocardial infarction:a possible role for left ventricular remodeling. J Am Coll Cardiol. 2002;39(2):241–6.PubMedCrossRef Maekawa Y, et al. Prognostic significance of peripheral monocytosis after reperfused acute myocardial infarction:a possible role for left ventricular remodeling. J Am Coll Cardiol. 2002;39(2):241–6.PubMedCrossRef
41.
44.
Zurück zum Zitat Shen JL, Xie XJ. Insight into the pro-inflammatory and profibrotic role of macrophage in heart failure with preserved ejection fraction. J Cardiovasc Pharmacol. 2020;76(3):276–85.PubMedCrossRef Shen JL, Xie XJ. Insight into the pro-inflammatory and profibrotic role of macrophage in heart failure with preserved ejection fraction. J Cardiovasc Pharmacol. 2020;76(3):276–85.PubMedCrossRef
45.
Zurück zum Zitat Yasuda D, et al. Lysophosphatidic acid-induced YAP/TAZ activation promotes developmental angiogenesis by repressing Notch ligand Dll4. J Clin Invest. 2019;129(10):4332–49.PubMedPubMedCentralCrossRef Yasuda D, et al. Lysophosphatidic acid-induced YAP/TAZ activation promotes developmental angiogenesis by repressing Notch ligand Dll4. J Clin Invest. 2019;129(10):4332–49.PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Pei J, et al. LPA(2) Contributes to vascular endothelium homeostasis and cardiac remodeling after myocardial infarction. Circ Res. 2022;131(5):388–93.PubMedCrossRef Pei J, et al. LPA(2) Contributes to vascular endothelium homeostasis and cardiac remodeling after myocardial infarction. Circ Res. 2022;131(5):388–93.PubMedCrossRef
47.
Zurück zum Zitat Chen X, et al. Serum lysophosphatidic acid concentrations measured by dot immunogold filtration assay in patients with acute myocardial infarction. Scand J Clin Lab Invest. 2003;63(7–8):497–503.PubMedCrossRef Chen X, et al. Serum lysophosphatidic acid concentrations measured by dot immunogold filtration assay in patients with acute myocardial infarction. Scand J Clin Lab Invest. 2003;63(7–8):497–503.PubMedCrossRef
48.
Zurück zum Zitat •• Tripathi H, et al. Autotaxin inhibition reduces cardiac inflammation and mitigates adverse cardiac remodeling after myocardial infarction. J Mol Cell Cardiol. 2020;149:95-1. The study by Tripathi et al. uncovers the pivotal role of autotaxin inhibition in reducing cardiac inflammation and adverse remodeling after myocardial infarction, offering a novel therapeutic approach for heart disease. This research is important in cardiac research as it underscores the fact that targeting the ATX/LPA signaling nexus can significantly improve cardiac recovery and function post-infarction, a major advancement in treating heart failure. •• Tripathi H, et al. Autotaxin inhibition reduces cardiac inflammation and mitigates adverse cardiac remodeling after myocardial infarction. J Mol Cell Cardiol. 2020;149:95-1. The study by Tripathi et al. uncovers the pivotal role of autotaxin inhibition in reducing cardiac inflammation and adverse remodeling after myocardial infarction, offering a novel therapeutic approach for heart disease. This research is important in cardiac research as it underscores the fact that targeting the ATX/LPA signaling nexus can significantly improve cardiac recovery and function post-infarction, a major advancement in treating heart failure.
49.
Zurück zum Zitat Murphy AJ, et al. ApoE regulates hematopoietic stem cell proliferation, monocytosis, and monocyte accumulation in atherosclerotic lesions in mice. J Clin Invest. 2011;121(10):4138–49.PubMedPubMedCentralCrossRef Murphy AJ, et al. ApoE regulates hematopoietic stem cell proliferation, monocytosis, and monocyte accumulation in atherosclerotic lesions in mice. J Clin Invest. 2011;121(10):4138–49.PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat •• Tripathi H, et al. Myeloid-Specific Deletion of Lipid Plpp3 (Phosphate Phosphatase 3) Increases Cardiac Inflammation After Myocardial Infarction. Arterioscler Thromb Vasc Biol. 2023;43(2):379-81. Tripathi et al and coauthors examined the role of lipid phosphate phosphatase 3 (LPP3) in myeolid cells in cardiac inflammation after myocardial infarction. The studies used loss of function genetic animal model that confirmed that deletion of LPP3 results in unopposed lysophosphatidic acid signaling which exacerbates post-myocardial infarction inflammation. The heightened inflammation in LPP3 cKO mice results in worsening cardiac function and larger scar size after ischemic injury. •• Tripathi H, et al. Myeloid-Specific Deletion of Lipid Plpp3 (Phosphate Phosphatase 3) Increases Cardiac Inflammation After Myocardial Infarction. Arterioscler Thromb Vasc Biol. 2023;43(2):379-81. Tripathi et al and coauthors examined the role of lipid phosphate phosphatase 3 (LPP3) in myeolid cells in cardiac inflammation after myocardial infarction. The studies used loss of function genetic animal model that confirmed that deletion of LPP3 results in unopposed lysophosphatidic acid signaling which exacerbates post-myocardial infarction inflammation. The heightened inflammation in LPP3 cKO mice results in worsening cardiac function and larger scar size after ischemic injury.
51.
Zurück zum Zitat Sokolowska E, Blachnio-Zabielska A. The role of ceramides in insulin resistance. Front Endocrinol (Lausanne). 2019;10:577.PubMedCrossRef Sokolowska E, Blachnio-Zabielska A. The role of ceramides in insulin resistance. Front Endocrinol (Lausanne). 2019;10:577.PubMedCrossRef
52.
Zurück zum Zitat Lee SY, et al. Cardiomyocyte specific deficiency of serine palmitoyltransferase subunit 2 reduces ceramide but leads to cardiac dysfunction. J Biol Chem. 2012;287(22):18429–39.PubMedPubMedCentralCrossRef Lee SY, et al. Cardiomyocyte specific deficiency of serine palmitoyltransferase subunit 2 reduces ceramide but leads to cardiac dysfunction. J Biol Chem. 2012;287(22):18429–39.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Ji R, et al. Increased de novo ceramide synthesis and accumulation in failing myocardium. JCI Insight. 2017;2(14). Ji R, et al. Increased de novo ceramide synthesis and accumulation in failing myocardium. JCI Insight. 2017;2(14).
55.
Zurück zum Zitat Hilvo M, et al. Prediction of residual risk by ceramide-phospholipid score in patients with stable coronary heart disease on optimal medical therapy. J Am Heart Assoc. 2020;9(10): e015258.PubMedPubMedCentralCrossRef Hilvo M, et al. Prediction of residual risk by ceramide-phospholipid score in patients with stable coronary heart disease on optimal medical therapy. J Am Heart Assoc. 2020;9(10): e015258.PubMedPubMedCentralCrossRef
56.
Zurück zum Zitat Mantovani A, Dugo C. Ceramides and risk of major adverse cardiovascular events: a meta-analysis of longitudinal studies. J Clin Lipidol. 2020;14(2):176–85.PubMedCrossRef Mantovani A, Dugo C. Ceramides and risk of major adverse cardiovascular events: a meta-analysis of longitudinal studies. J Clin Lipidol. 2020;14(2):176–85.PubMedCrossRef
57.
Zurück zum Zitat Havulinna AS, et al. Circulating ceramides predict cardiovascular outcomes in the population-based FINRISK 2002 cohort. Arterioscler Thromb Vasc Biol. 2016;36(12):2424–30.PubMedCrossRef Havulinna AS, et al. Circulating ceramides predict cardiovascular outcomes in the population-based FINRISK 2002 cohort. Arterioscler Thromb Vasc Biol. 2016;36(12):2424–30.PubMedCrossRef
58.
Zurück zum Zitat Nwabuo CC, et al. Association of circulating ceramides with cardiac structure and function in the community: the framingham heart study. J Am Heart Assoc. 2019;8(19): e013050.PubMedPubMedCentralCrossRef Nwabuo CC, et al. Association of circulating ceramides with cardiac structure and function in the community: the framingham heart study. J Am Heart Assoc. 2019;8(19): e013050.PubMedPubMedCentralCrossRef
59.
60.
Zurück zum Zitat Chun L, et al. Inhibition of ceramide synthesis reverses endothelial dysfunction and atherosclerosis in streptozotocin-induced diabetic rats. Diabetes Res Clin Pract. 2011;93(1):77–85.PubMedCrossRef Chun L, et al. Inhibition of ceramide synthesis reverses endothelial dysfunction and atherosclerosis in streptozotocin-induced diabetic rats. Diabetes Res Clin Pract. 2011;93(1):77–85.PubMedCrossRef
61.
Zurück zum Zitat Cantalupo A, et al. Endothelial sphingolipid de novo synthesis controls blood pressure by regulating signal transduction and NO via ceramide. Hypertension. 2020;75(5):1279–88.PubMedCrossRef Cantalupo A, et al. Endothelial sphingolipid de novo synthesis controls blood pressure by regulating signal transduction and NO via ceramide. Hypertension. 2020;75(5):1279–88.PubMedCrossRef
62.
Zurück zum Zitat Zhang DX, Zou AP, Li PL. Ceramide-induced activation of NADPH oxidase and endothelial dysfunction in small coronary arteries. Am J Physiol Heart Circ Physiol. 2003;284(2):H605–12.PubMedCrossRef Zhang DX, Zou AP, Li PL. Ceramide-induced activation of NADPH oxidase and endothelial dysfunction in small coronary arteries. Am J Physiol Heart Circ Physiol. 2003;284(2):H605–12.PubMedCrossRef
63.
Zurück zum Zitat Zheng T, et al. Sphingomyelinase and ceramide analogs induce contraction and rises in [Ca(2+)](i) in canine cerebral vascular muscle. Am J Physiol Heart Circ Physiol. 2000;278(5):H1421–8.PubMedCrossRef Zheng T, et al. Sphingomyelinase and ceramide analogs induce contraction and rises in [Ca(2+)](i) in canine cerebral vascular muscle. Am J Physiol Heart Circ Physiol. 2000;278(5):H1421–8.PubMedCrossRef
64.
Zurück zum Zitat Li H, et al. Dual effect of ceramide on human endothelial cells: induction of oxidative stress and transcriptional upregulation of endothelial nitric oxide synthase. Circulation. 2002;106(17):2250–6.PubMedCrossRef Li H, et al. Dual effect of ceramide on human endothelial cells: induction of oxidative stress and transcriptional upregulation of endothelial nitric oxide synthase. Circulation. 2002;106(17):2250–6.PubMedCrossRef
65.
Zurück zum Zitat Zhang QJ, et al. Ceramide mediates vascular dysfunction in diet-induced obesity by PP2A-mediated dephosphorylation of the eNOS-Akt complex. Diabetes. 2012;61(7):1848–59.PubMedPubMedCentralCrossRef Zhang QJ, et al. Ceramide mediates vascular dysfunction in diet-induced obesity by PP2A-mediated dephosphorylation of the eNOS-Akt complex. Diabetes. 2012;61(7):1848–59.PubMedPubMedCentralCrossRef
66.
Zurück zum Zitat Bharath LP, et al. Ceramide-initiated protein phosphatase 2A activation contributes to arterial dysfunction in vivo. Diabetes. 2015;64(11):3914–26.PubMedPubMedCentralCrossRef Bharath LP, et al. Ceramide-initiated protein phosphatase 2A activation contributes to arterial dysfunction in vivo. Diabetes. 2015;64(11):3914–26.PubMedPubMedCentralCrossRef
67.
Zurück zum Zitat Wretlind A, et al. Ceramides are decreased after liraglutide treatment in people with type 2 diabetes: a post hoc analysis of two randomized clinical trials. Lipids Health Dis. 2023;22(1):160.PubMedPubMedCentralCrossRef Wretlind A, et al. Ceramides are decreased after liraglutide treatment in people with type 2 diabetes: a post hoc analysis of two randomized clinical trials. Lipids Health Dis. 2023;22(1):160.PubMedPubMedCentralCrossRef
68.
Zurück zum Zitat Presa N, et al. Regulation of cell migration and inflammation by ceramide 1-phosphate. Biochim Biophys Acta. 2016;1861(5):402–9.PubMedCrossRef Presa N, et al. Regulation of cell migration and inflammation by ceramide 1-phosphate. Biochim Biophys Acta. 2016;1861(5):402–9.PubMedCrossRef
69.
Zurück zum Zitat Arana L, et al. Ceramide 1-phosphate induces macrophage chemoattractant protein-1 release: involvement in ceramide 1-phosphate-stimulated cell migration. Am J Physiol Endocrinol Metab. 2013;304(11):E1213–26.PubMedCrossRef Arana L, et al. Ceramide 1-phosphate induces macrophage chemoattractant protein-1 release: involvement in ceramide 1-phosphate-stimulated cell migration. Am J Physiol Endocrinol Metab. 2013;304(11):E1213–26.PubMedCrossRef
70.
Zurück zum Zitat Gomez-Munoz A, et al. New insights on the role of ceramide 1-phosphate in inflammation. Biochim Biophys Acta. 2013;1831(6):1060–6.PubMedCrossRef Gomez-Munoz A, et al. New insights on the role of ceramide 1-phosphate in inflammation. Biochim Biophys Acta. 2013;1831(6):1060–6.PubMedCrossRef
71.
Zurück zum Zitat Hotamisligil GS, et al. Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J Clin Invest. 1995;95(5):2409–15.PubMedPubMedCentralCrossRef Hotamisligil GS, et al. Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J Clin Invest. 1995;95(5):2409–15.PubMedPubMedCentralCrossRef
72.
Zurück zum Zitat Ahmad R, et al. The synergy between palmitate and TNF-alpha for CCL2 production is dependent on the TRIF/IRF3 pathway: implications for metabolic inflammation. J Immunol. 2018;200(10):3599–611.PubMedPubMedCentralCrossRef Ahmad R, et al. The synergy between palmitate and TNF-alpha for CCL2 production is dependent on the TRIF/IRF3 pathway: implications for metabolic inflammation. J Immunol. 2018;200(10):3599–611.PubMedPubMedCentralCrossRef
73.
Zurück zum Zitat Wouters K, et al. Circulating classical monocytes are associated with CD11c(+) macrophages in human visceral adipose tissue. Sci Rep. 2017;7:42665.PubMedPubMedCentralCrossRef Wouters K, et al. Circulating classical monocytes are associated with CD11c(+) macrophages in human visceral adipose tissue. Sci Rep. 2017;7:42665.PubMedPubMedCentralCrossRef
75.
76.
Zurück zum Zitat Yamamoto T, Sano M. Deranged myocardial fatty acid metabolism in heart failure. Int J Mol Sci. 2022;23(2). Yamamoto T, Sano M. Deranged myocardial fatty acid metabolism in heart failure. Int J Mol Sci. 2022;23(2).
77.
Zurück zum Zitat Datta Chaudhuri R, et al. Cardiac-specific overexpression of HIF-1alpha during acute myocardial infarction ameliorates cardiomyocyte apoptosis via differential regulation of hypoxia-inducible pro-apoptotic and anti-oxidative genes. Biochem Biophys Res Commun. 2021;537:100–8.PubMedCrossRef Datta Chaudhuri R, et al. Cardiac-specific overexpression of HIF-1alpha during acute myocardial infarction ameliorates cardiomyocyte apoptosis via differential regulation of hypoxia-inducible pro-apoptotic and anti-oxidative genes. Biochem Biophys Res Commun. 2021;537:100–8.PubMedCrossRef
78.
Zurück zum Zitat Bonney S, et al. Cardiac Per2 functions as novel link between fatty acid metabolism and myocardial inflammation during ischemia and reperfusion injury of the heart. PLoS ONE. 2013;8(8): e71493.PubMedPubMedCentralCrossRef Bonney S, et al. Cardiac Per2 functions as novel link between fatty acid metabolism and myocardial inflammation during ischemia and reperfusion injury of the heart. PLoS ONE. 2013;8(8): e71493.PubMedPubMedCentralCrossRef
80.
Zurück zum Zitat Li C, et al. HIF1alpha-dependent glycolysis promotes macrophage functional activities in protecting against bacterial and fungal infection. Sci Rep. 2018;8(1):3603.PubMedPubMedCentralCrossRef Li C, et al. HIF1alpha-dependent glycolysis promotes macrophage functional activities in protecting against bacterial and fungal infection. Sci Rep. 2018;8(1):3603.PubMedPubMedCentralCrossRef
81.
82.
83.
Zurück zum Zitat Higgins DF, et al. Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-to-mesenchymal transition. J Clin Invest. 2007;117(12):3810–20.PubMedPubMedCentral Higgins DF, et al. Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-to-mesenchymal transition. J Clin Invest. 2007;117(12):3810–20.PubMedPubMedCentral
84.
Zurück zum Zitat Epstein Shochet G, et al. Hypoxia inducible factor 1A supports a pro-fibrotic phenotype loop in idiopathic pulmonary fibrosis. Int J Mol Sci. 2021;22(7). Epstein Shochet G, et al. Hypoxia inducible factor 1A supports a pro-fibrotic phenotype loop in idiopathic pulmonary fibrosis. Int J Mol Sci. 2021;22(7).
85.
Zurück zum Zitat Wang P, et al. Disruption of adipocyte HIF-1alpha improves atherosclerosis through the inhibition of ceramide generation. Acta Pharm Sin B. 2022;12(4):1899–912.PubMedCrossRef Wang P, et al. Disruption of adipocyte HIF-1alpha improves atherosclerosis through the inhibition of ceramide generation. Acta Pharm Sin B. 2022;12(4):1899–912.PubMedCrossRef
86.
Zurück zum Zitat Hadas Y, et al. Altering sphingolipid metabolism attenuates cell death and inflammatory response after myocardial infarction. Circulation. 2020;141(11):916–30.PubMedPubMedCentralCrossRef Hadas Y, et al. Altering sphingolipid metabolism attenuates cell death and inflammatory response after myocardial infarction. Circulation. 2020;141(11):916–30.PubMedPubMedCentralCrossRef
87.
Zurück zum Zitat Al-Rashed F, et al. Neutral sphingomyelinase 2 regulates inflammatory responses in monocytes/macrophages induced by TNF-alpha. Sci Rep. 2020;10(1):16802.PubMedPubMedCentralCrossRef Al-Rashed F, et al. Neutral sphingomyelinase 2 regulates inflammatory responses in monocytes/macrophages induced by TNF-alpha. Sci Rep. 2020;10(1):16802.PubMedPubMedCentralCrossRef
Metadaten
Titel
Lysophosphatidic Acid-Mediated Inflammation at the Heart of Heart Failure
verfasst von
Rajesh Chaudhary
Tahra Suhan
Mahmud W. Tarhuni
Ahmed Abdel-Latif
Publikationsdatum
10.02.2024
Verlag
Springer US
Erschienen in
Current Cardiology Reports / Ausgabe 3/2024
Print ISSN: 1523-3782
Elektronische ISSN: 1534-3170
DOI
https://doi.org/10.1007/s11886-024-02023-8

Weitere Artikel der Ausgabe 3/2024

Current Cardiology Reports 3/2024 Zur Ausgabe

Women and Cardiovascular Health (N Goldberg and S Lewis, Section Editors)

Spontaneous Coronary Artery Dissection (SCAD) from an Interventionalist Perspective

Cardiometabolic Disease (DM and CV) (CJ Lavie, Section Editor)

Nutritional Aspects to Cardiovascular Diseases and Type 2 Diabetes Mellitus

Echocardiography (JM Gardin and AH Waller, Section Editors)

Echogenomics: Echocardiography in Heritable Aortopathies

Nach Herzinfarkt mit Typ-1-Diabetes schlechtere Karten als mit Typ 2?

29.05.2024 Herzinfarkt Nachrichten

Bei Menschen mit Typ-2-Diabetes sind die Chancen, einen Myokardinfarkt zu überleben, in den letzten 15 Jahren deutlich gestiegen – nicht jedoch bei Betroffenen mit Typ 1.

Erhöhtes Risiko fürs Herz unter Checkpointhemmer-Therapie

28.05.2024 Nebenwirkungen der Krebstherapie Nachrichten

Kardiotoxische Nebenwirkungen einer Therapie mit Immuncheckpointhemmern mögen selten sein – wenn sie aber auftreten, wird es für Patienten oft lebensgefährlich. Voruntersuchung und Monitoring sind daher obligat.

GLP-1-Agonisten können Fortschreiten diabetischer Retinopathie begünstigen

24.05.2024 Diabetische Retinopathie Nachrichten

Möglicherweise hängt es von der Art der Diabetesmedikamente ab, wie hoch das Risiko der Betroffenen ist, dass sich sehkraftgefährdende Komplikationen verschlimmern.

TAVI versus Klappenchirurgie: Neue Vergleichsstudie sorgt für Erstaunen

21.05.2024 TAVI Nachrichten

Bei schwerer Aortenstenose und obstruktiver KHK empfehlen die Leitlinien derzeit eine chirurgische Kombi-Behandlung aus Klappenersatz plus Bypass-OP. Diese Empfehlung wird allerdings jetzt durch eine aktuelle Studie infrage gestellt – mit überraschender Deutlichkeit.

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.