Skip to main content
Erschienen in: Immunologic Research 2/2023

21.10.2022 | Review

Macrophage subsets and their role: co-relation with colony-stimulating factor-1 receptor and clinical relevance

verfasst von: Shivani Yadav, Astik Priya, Diksha R. Borade, Reena Agrawal-Rajput

Erschienen in: Immunologic Research | Ausgabe 2/2023

Einloggen, um Zugang zu erhalten

Abstract

Macrophages are one of the first innate immune cells to reach the site of infection or injury. Diverse functions from the uptake of pathogen or antigen, its killing, and presentation, the release of pro- or anti-inflammatory cytokines, activation of adaptive immune cells, clearing off tissue debris, tissue repair, and maintenance of tissue homeostasis have been attributed to macrophages. Besides tissue-resident macrophages, the circulating macrophages are recruited to different tissues to get activated. These are highly plastic cells, showing a spectrum of phenotypes depending on the stimulus received from their immediate environment. The macrophage differentiation requires colony-stimulating factor-1 (CSF-1) or macrophage colony-stimulating factor (M-CSF), colony-stimulating factor-2 (CSF-2), or granulocyte–macrophage colony-stimulating factor (GM-CSF) and different stimuli activate them to different phenotypes. The richness of tissue macrophages is precisely controlled via the CSF-1 and CSF-1R axis. In this review, we have given an overview of macrophage origin via hematopoiesis/myelopoiesis, different phenotypes associated with macrophages, their clinical significance, and how they are altered in various diseases. We have specifically focused on the function of CSF-1/CSF-1R signaling in deciding macrophage fate and the outcome of aberrant CSF-1R signaling in relation to macrophage phenotype in different diseases. We further extend the review to briefly discuss the possible strategies to manipulate CSF-1R and its signaling with the recent updates.

Graphical Abstract

Literatur
1.
Zurück zum Zitat Mertens, C. et al. The macrophage iron signature in health and disease. Int. J. Mol. Sci. 22, (2021). Mertens, C. et al. The macrophage iron signature in health and disease. Int. J. Mol. Sci. 22, (2021).
2.
Zurück zum Zitat Hirayama, D., Iida, T. & Nakase, H. The Phagocytic function of macrophage-enforcing innate immunity and tissue homeostasis. Int. J. Mol. Sci. 19, (2017). Hirayama, D., Iida, T. & Nakase, H. The Phagocytic function of macrophage-enforcing innate immunity and tissue homeostasis. Int. J. Mol. Sci. 19, (2017).
4.
Zurück zum Zitat Italiani, P. & Boraschi, D. From monocytes to M1/M2 macrophages: phenotypical vs. functional differentiation. Frontiers in Immunology vol. 5 (2014). Italiani, P. & Boraschi, D. From monocytes to M1/M2 macrophages: phenotypical vs. functional differentiation. Frontiers in Immunology vol. 5 (2014).
5.
Zurück zum Zitat Benoit M, Desnues B, Mege J-L. Macrophage polarization in bacterial infections. J Immunol. 2008;181:3733–9.PubMedCrossRef Benoit M, Desnues B, Mege J-L. Macrophage polarization in bacterial infections. J Immunol. 2008;181:3733–9.PubMedCrossRef
8.
Zurück zum Zitat Mosser DM, Hamidzadeh K, Goncalves R. Macrophages and the maintenance of homeostasis. Cell Mol Immunol. 2021;18:579–87.PubMedCrossRef Mosser DM, Hamidzadeh K, Goncalves R. Macrophages and the maintenance of homeostasis. Cell Mol Immunol. 2021;18:579–87.PubMedCrossRef
9.
Zurück zum Zitat Wang WY, Tan MS, Yu JT, Tan L. Role of pro-inflammatory cytokines released from microglia in Alzheimer’s disease. Ann Transl Med. 2015;3:7–7. Wang WY, Tan MS, Yu JT, Tan L. Role of pro-inflammatory cytokines released from microglia in Alzheimer’s disease. Ann Transl Med. 2015;3:7–7.
10.
Zurück zum Zitat Shah, D. et al. Berberine mediates tumor cell death by skewing tumor-associated immunosuppressive macrophages to inflammatory macrophages. Phytomedicine 99, (2021). Shah, D. et al. Berberine mediates tumor cell death by skewing tumor-associated immunosuppressive macrophages to inflammatory macrophages. Phytomedicine 99, (2021).
11.
Zurück zum Zitat Moreira AP, et al. Serum amyloid P attenuates M2 macrophage activation and protects against fungal spore–induced allergic airway disease. J Allergy Clin Immunol. 2010;126:712-721.e7.PubMedCrossRef Moreira AP, et al. Serum amyloid P attenuates M2 macrophage activation and protects against fungal spore–induced allergic airway disease. J Allergy Clin Immunol. 2010;126:712-721.e7.PubMedCrossRef
12.
Zurück zum Zitat A-Gonzalez, N. et al. Phagocytosis imprints heterogeneity in tissue-resident macrophages. J. Exp. Med. 214, 1281–1296 (2017). A-Gonzalez, N. et al. Phagocytosis imprints heterogeneity in tissue-resident macrophages. J. Exp. Med. 214, 1281–1296 (2017).
13.
Zurück zum Zitat Zhang B, et al. Azithromycin drives alternative macrophage activation and improves recovery and tissue sparing in contusion spinal cord injury. J Neuroinflammation. 2015;12:1–13.CrossRef Zhang B, et al. Azithromycin drives alternative macrophage activation and improves recovery and tissue sparing in contusion spinal cord injury. J Neuroinflammation. 2015;12:1–13.CrossRef
16.
Zurück zum Zitat Arroyo Portilla, C., Tomas, J., Gorvel, J. P. & Lelouard, H. From species to regional and local specialization of intestinal macrophages. Front. Cell Dev. Biol. 8, (2020). Arroyo Portilla, C., Tomas, J., Gorvel, J. P. & Lelouard, H. From species to regional and local specialization of intestinal macrophages. Front. Cell Dev. Biol. 8, (2020).
17.
Zurück zum Zitat Gold KS, Brückner K. Macrophages and cellular immunity in Drosophila melanogaster. Semin Immunol. 2015;27:357.PubMedCrossRef Gold KS, Brückner K. Macrophages and cellular immunity in Drosophila melanogaster. Semin Immunol. 2015;27:357.PubMedCrossRef
18.
Zurück zum Zitat Cavaillon J-M. The historical milestones in the understanding of leukocyte biology initiated by Elie Metchnikoff. J Leukoc Biol. 2011;90:413–24.PubMedCrossRef Cavaillon J-M. The historical milestones in the understanding of leukocyte biology initiated by Elie Metchnikoff. J Leukoc Biol. 2011;90:413–24.PubMedCrossRef
19.
20.
21.
Zurück zum Zitat Gaikwad S, Naveen C, Agrawal-Rajput R. Toll-like receptor-4 antagonism mediates benefits during neuroinflammation. Neural Regen Res. 2016;11:552–3.PubMedPubMedCentralCrossRef Gaikwad S, Naveen C, Agrawal-Rajput R. Toll-like receptor-4 antagonism mediates benefits during neuroinflammation. Neural Regen Res. 2016;11:552–3.PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Hoggatt J, Kfoury Y, Scadden DT. Hematopoietic stem cell niche in health and disease. Annu Rev Pathol. 2016;11:555–81.PubMedCrossRef Hoggatt J, Kfoury Y, Scadden DT. Hematopoietic stem cell niche in health and disease. Annu Rev Pathol. 2016;11:555–81.PubMedCrossRef
24.
Zurück zum Zitat Mak, K. S., Funnell, A. P. W., Pearson, R. C. M. & Crossley, M. PU.1 and haematopoietic cell fate: dosage matters. Int. J. Cell Biol. 2011, (2011). Mak, K. S., Funnell, A. P. W., Pearson, R. C. M. & Crossley, M. PU.1 and haematopoietic cell fate: dosage matters. Int. J. Cell Biol. 2011, (2011).
25.
Zurück zum Zitat Qiu Q, et al. IRF8 regulates cell cycle of hematopoietic stem cells. Blood. 2015;126:2353–2353.CrossRef Qiu Q, et al. IRF8 regulates cell cycle of hematopoietic stem cells. Blood. 2015;126:2353–2353.CrossRef
26.
28.
Zurück zum Zitat M, M. et al. Numerous growth factors, cytokines, and chemokines are secreted by human CD34(+) cells, myeloblasts, erythroblasts, and megakaryoblasts and regulate normal hematopoiesis in an autocrine/paracrine manner. Blood 97, 3075–3085 (2001). M, M. et al. Numerous growth factors, cytokines, and chemokines are secreted by human CD34(+) cells, myeloblasts, erythroblasts, and megakaryoblasts and regulate normal hematopoiesis in an autocrine/paracrine manner. Blood 97, 3075–3085 (2001).
29.
Zurück zum Zitat Stegelmeier, A. A. et al. Myeloid cells during viral infections and inflammation. Viruses vol. 11 (2019). Stegelmeier, A. A. et al. Myeloid cells during viral infections and inflammation. Viruses vol. 11 (2019).
31.
Zurück zum Zitat Yang J, Zhang L, Yu C, Yang XF, Wang H. Monocyte and macrophage differentiation: circulation inflammatory monocyte as biomarker for inflammatory diseases. Biomark Res. 2014;2:1.PubMedPubMedCentralCrossRef Yang J, Zhang L, Yu C, Yang XF, Wang H. Monocyte and macrophage differentiation: circulation inflammatory monocyte as biomarker for inflammatory diseases. Biomark Res. 2014;2:1.PubMedPubMedCentralCrossRef
32.
33.
Zurück zum Zitat Schultze JL, Mass E, Schlitzer A. Emerging principles in myelopoiesis at homeostasis and during infection and inflammation. Immunity. 2019;50:288–301.PubMedCrossRef Schultze JL, Mass E, Schlitzer A. Emerging principles in myelopoiesis at homeostasis and during infection and inflammation. Immunity. 2019;50:288–301.PubMedCrossRef
34.
Zurück zum Zitat Boettcher S, Manz MG. Regulation of inflammation- and infection-driven hematopoiesis. Trends Immunol. 2017;38:345–57.PubMedCrossRef Boettcher S, Manz MG. Regulation of inflammation- and infection-driven hematopoiesis. Trends Immunol. 2017;38:345–57.PubMedCrossRef
35.
Zurück zum Zitat Furusawa, J. I. et al. Promotion of expansion and differentiation of hematopoietic stem cells by interleukin-27 into myeloid progenitors to control infection in emergency myelopoiesis. PLoS Pathog. 12, (2016). Furusawa, J. I. et al. Promotion of expansion and differentiation of hematopoietic stem cells by interleukin-27 into myeloid progenitors to control infection in emergency myelopoiesis. PLoS Pathog. 12, (2016).
36.
Zurück zum Zitat Kumar R, Fossati V, Israel M, Snoeck H-W. Lin-Sca1+Kit- bone marrow cells contain early lymphoid-committed precursors that are distinct from common lymphoid progenitors. J Immunol. 2008;181:7507.PubMedCrossRef Kumar R, Fossati V, Israel M, Snoeck H-W. Lin-Sca1+Kit- bone marrow cells contain early lymphoid-committed precursors that are distinct from common lymphoid progenitors. J Immunol. 2008;181:7507.PubMedCrossRef
37.
Zurück zum Zitat Martinez FO, Sica A, Mantovani A, Locati M. Macrophage activation and polarization. Front Biosci. 2008;13:453–61.PubMedCrossRef Martinez FO, Sica A, Mantovani A, Locati M. Macrophage activation and polarization. Front Biosci. 2008;13:453–61.PubMedCrossRef
38.
Zurück zum Zitat Heideveld E, et al. Methods for macrophage differentiation and in vitro generation of human tumor associated-like macrophages. Methods Enzymol. 2020;632:113–31.PubMedCrossRef Heideveld E, et al. Methods for macrophage differentiation and in vitro generation of human tumor associated-like macrophages. Methods Enzymol. 2020;632:113–31.PubMedCrossRef
40.
Zurück zum Zitat Orecchioni, M., Ghosheh, Y., Pramod, A. B. & Ley, K. Macrophage polarization: different gene signatures in M1(Lps+) vs. classically and M2(LPS-) vs. alternatively activated macrophages. Front. Immunol. 10, 1084 (2019). Orecchioni, M., Ghosheh, Y., Pramod, A. B. & Ley, K. Macrophage polarization: different gene signatures in M1(Lps+) vs. classically and M2(LPS-) vs. alternatively activated macrophages. Front. Immunol. 10, 1084 (2019).
41.
Zurück zum Zitat Zhang F, et al. TGF-β induces M2-like macrophage polarization via SNAIL-mediated suppression of a pro-inflammatory phenotype. Oncotarget. 2016;7:52294.PubMedPubMedCentralCrossRef Zhang F, et al. TGF-β induces M2-like macrophage polarization via SNAIL-mediated suppression of a pro-inflammatory phenotype. Oncotarget. 2016;7:52294.PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Makita N, Hizukuri Y, Yamashiro K, Murakawa M, Hayashi Y. IL-10 enhances the phenotype of M2 macrophages induced by IL-4 and confers the ability to increase eosinophil migration. Int Immunol. 2015;27:131–41.PubMedCrossRef Makita N, Hizukuri Y, Yamashiro K, Murakawa M, Hayashi Y. IL-10 enhances the phenotype of M2 macrophages induced by IL-4 and confers the ability to increase eosinophil migration. Int Immunol. 2015;27:131–41.PubMedCrossRef
43.
Zurück zum Zitat Melton DW, McManus LM, Gelfond JAL, Shireman PK. Temporal phenotypic features distinguish polarized macrophages in vitro. Autoimmunity. 2015;48:161–76.PubMedPubMedCentralCrossRef Melton DW, McManus LM, Gelfond JAL, Shireman PK. Temporal phenotypic features distinguish polarized macrophages in vitro. Autoimmunity. 2015;48:161–76.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Zhang M-Z, et al. IL-4/IL-13-mediated polarization of renal macrophages/dendritic cells to an M2a phenotype is essential for recovery from acute kidney injury. Kidney Int. 2017;91:375–86.PubMedCrossRef Zhang M-Z, et al. IL-4/IL-13-mediated polarization of renal macrophages/dendritic cells to an M2a phenotype is essential for recovery from acute kidney injury. Kidney Int. 2017;91:375–86.PubMedCrossRef
45.
Zurück zum Zitat Rogers KJ, et al. IL-4/IL-13 polarization of macrophages enhances Ebola virus glycoprotein-dependent infection. PLoS Negl Trop Dis. 2019;13: e0007819.PubMedPubMedCentralCrossRef Rogers KJ, et al. IL-4/IL-13 polarization of macrophages enhances Ebola virus glycoprotein-dependent infection. PLoS Negl Trop Dis. 2019;13: e0007819.PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Kumar H, Kawai T, Akira S. Pathogen recognition by the innate immune system. Int Rev Immunol. 2011;30:16–34.PubMedCrossRef Kumar H, Kawai T, Akira S. Pathogen recognition by the innate immune system. Int Rev Immunol. 2011;30:16–34.PubMedCrossRef
47.
49.
Zurück zum Zitat Challagundla N, Shah D, Yadav S, Agrawal-Rajput R. Saga of monokines in shaping tumour-immune microenvironment: origin to execution. Cytokine. 2022;157: 155948.PubMedCrossRef Challagundla N, Shah D, Yadav S, Agrawal-Rajput R. Saga of monokines in shaping tumour-immune microenvironment: origin to execution. Cytokine. 2022;157: 155948.PubMedCrossRef
51.
Zurück zum Zitat Corliss BA, Azimi MS, Munson JM, Peirce SM, Murfee WL. Macrophages: an inflammatory link between angiogenesis and lymphangiogenesis. Microcirculation. 2016;23:95.PubMedPubMedCentralCrossRef Corliss BA, Azimi MS, Munson JM, Peirce SM, Murfee WL. Macrophages: an inflammatory link between angiogenesis and lymphangiogenesis. Microcirculation. 2016;23:95.PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Medvedeva GF, Kuzmina DO, Nuzhina J, Shtil AA, Dukhinova MS. How macrophages become transcriptionally dysregulated: a hidden impact of antitumor therapy. Int J Mol Sci. 2021;22:1–27.CrossRef Medvedeva GF, Kuzmina DO, Nuzhina J, Shtil AA, Dukhinova MS. How macrophages become transcriptionally dysregulated: a hidden impact of antitumor therapy. Int J Mol Sci. 2021;22:1–27.CrossRef
53.
Zurück zum Zitat Schliefsteiner, C. et al. Human placental Hofbauer cells maintain an anti-inflammatory m2 phenotype despite the presence of gestational diabetes mellitus . Frontiers in Immunology vol. 8 (2017). Schliefsteiner, C. et al. Human placental Hofbauer cells maintain an anti-inflammatory m2 phenotype despite the presence of gestational diabetes mellitus . Frontiers in Immunology vol. 8 (2017).
54.
Zurück zum Zitat Raggi F, et al. Regulation of human macrophage M1–M2 polarization balance by hypoxia and the triggering receptor expressed on myeloid cells-1. Front Immunol. 2017;8:1–18.CrossRef Raggi F, et al. Regulation of human macrophage M1–M2 polarization balance by hypoxia and the triggering receptor expressed on myeloid cells-1. Front Immunol. 2017;8:1–18.CrossRef
56.
Zurück zum Zitat Lu J, et al. Discrete functions of M2a and M2c macrophage subsets determine their relative efficacy in treating chronic kidney disease. Kidney Int. 2013;84:745–55.PubMedCrossRef Lu J, et al. Discrete functions of M2a and M2c macrophage subsets determine their relative efficacy in treating chronic kidney disease. Kidney Int. 2013;84:745–55.PubMedCrossRef
57.
Zurück zum Zitat Rhee I. Diverse macrophages polarization in tumor microenvironment. Arch Pharm Res. 2016;39:1588–96.PubMedCrossRef Rhee I. Diverse macrophages polarization in tumor microenvironment. Arch Pharm Res. 2016;39:1588–96.PubMedCrossRef
58.
Zurück zum Zitat Wang, L. xun, Zhang, S. xi, Wu, H. juan, Rong, X. lu & Guo, J. M2b macrophage polarization and its roles in diseases. J. Leukoc. Biol. 106, 345 (2019). Wang, L. xun, Zhang, S. xi, Wu, H. juan, Rong, X. lu & Guo, J. M2b macrophage polarization and its roles in diseases. J. Leukoc. Biol. 106, 345 (2019).
59.
Zurück zum Zitat Wang, Q. et al. Fra-1 protooncogene regulates IL-6 expression in macrophages and promotes the generation of M2d macrophages. Cell Res. 2010 206 20, 701–712 (2010). Wang, Q. et al. Fra-1 protooncogene regulates IL-6 expression in macrophages and promotes the generation of M2d macrophages. Cell Res. 2010 206 20, 701–712 (2010).
60.
Zurück zum Zitat Mills CD. M1 and M2 macrophages: oracles of health and disease. Crit Rev Immunol. 2012;32:463–88.PubMedCrossRef Mills CD. M1 and M2 macrophages: oracles of health and disease. Crit Rev Immunol. 2012;32:463–88.PubMedCrossRef
61.
Zurück zum Zitat Atri, C., Guerfali, F. Z. & Laouini, D. Role of human macrophage polarization in inflammation during infectious diseases. Int. J. Mol. Sci. 19, (2018). Atri, C., Guerfali, F. Z. & Laouini, D. Role of human macrophage polarization in inflammation during infectious diseases. Int. J. Mol. Sci. 19, (2018).
62.
Zurück zum Zitat Kazankov K, et al. The role of macrophages in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Nat Rev Gastroenterol Hepatol. 2019;16:145–59.PubMedCrossRef Kazankov K, et al. The role of macrophages in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Nat Rev Gastroenterol Hepatol. 2019;16:145–59.PubMedCrossRef
63.
Zurück zum Zitat Medbury, H. J., Williams, H. & Fletcher, J. P. Clinical significance of macrophage phenotypes in cardiovascular disease. Clin. Transl. Med. 3, (2014). Medbury, H. J., Williams, H. & Fletcher, J. P. Clinical significance of macrophage phenotypes in cardiovascular disease. Clin. Transl. Med. 3, (2014).
64.
Zurück zum Zitat Huang, J., Hou, F. L., Zhang, A. Y. & Li, Z. L. Protective effect of the polarity of macrophages regulated by IL-37 on atherosclerosis. Genet. Mol. Res. 15, (2016). Huang, J., Hou, F. L., Zhang, A. Y. & Li, Z. L. Protective effect of the polarity of macrophages regulated by IL-37 on atherosclerosis. Genet. Mol. Res. 15, (2016).
65.
Zurück zum Zitat Ardura-Fabregat, A. et al. Targeting neuroinflammation to treat Alzheimer’s disease. CNS Drugs 2017 3112 31, 1057–1082 (2017). Ardura-Fabregat, A. et al. Targeting neuroinflammation to treat Alzheimer’s disease. CNS Drugs 2017 3112 31, 1057–1082 (2017).
66.
Zurück zum Zitat Zhang, Q. wen et al. Prognostic significance of tumor-associated macrophages in solid tumor: a meta-analysis of the literature. PLoS One 7, e50946 (2012). Zhang, Q. wen et al. Prognostic significance of tumor-associated macrophages in solid tumor: a meta-analysis of the literature. PLoS One 7, e50946 (2012).
67.
Zurück zum Zitat Gobejishvili, L. et al. Chronic ethanol-mediated decrease in cAMP primes macrophages to enhanced LPS-inducible NF-kappaB activity and TNF expression: relevance to alcoholic liver disease. Am. J. Physiol. Gastrointest. Liver Physiol. 291, (2006). Gobejishvili, L. et al. Chronic ethanol-mediated decrease in cAMP primes macrophages to enhanced LPS-inducible NF-kappaB activity and TNF expression: relevance to alcoholic liver disease. Am. J. Physiol. Gastrointest. Liver Physiol. 291, (2006).
68.
Zurück zum Zitat McClain CJ, Cohen DA. Increased tumor necrosis factor production by monocytes in alcoholic hepatitis. Hepatology. 1989;9:349–51.PubMedCrossRef McClain CJ, Cohen DA. Increased tumor necrosis factor production by monocytes in alcoholic hepatitis. Hepatology. 1989;9:349–51.PubMedCrossRef
70.
Zurück zum Zitat Yu S, Ge H, Li S, Qiu HJ. Modulation of macrophage polarization by viruses: turning off/on host antiviral responses. Front Microbiol. 2022;13:130. Yu S, Ge H, Li S, Qiu HJ. Modulation of macrophage polarization by viruses: turning off/on host antiviral responses. Front Microbiol. 2022;13:130.
71.
73.
Zurück zum Zitat Jimenez MDP, Walls L, Fierer J. High levels of interleukin-10 impair resistance to pulmonary coccidioidomycosis in mice in part through control of nitric oxide synthase 2 expression. Infect Immun. 2006;74:3387–95.PubMedPubMedCentralCrossRef Jimenez MDP, Walls L, Fierer J. High levels of interleukin-10 impair resistance to pulmonary coccidioidomycosis in mice in part through control of nitric oxide synthase 2 expression. Infect Immun. 2006;74:3387–95.PubMedPubMedCentralCrossRef
74.
Zurück zum Zitat Cosma NC, et al. M1/M2 polarization in major depressive disorder: disentangling state from trait effects in an individualized cell-culture-based approach. Brain Behav Immun. 2021;94:185–95.PubMedCrossRef Cosma NC, et al. M1/M2 polarization in major depressive disorder: disentangling state from trait effects in an individualized cell-culture-based approach. Brain Behav Immun. 2021;94:185–95.PubMedCrossRef
76.
Zurück zum Zitat Velazquez-Salinas L, Verdugo-Rodriguez A, Rodriguez LL, Borca MV. The role of interleukin 6 during viral infections. Front Microbiol. 2019;10:1057.PubMedPubMedCentralCrossRef Velazquez-Salinas L, Verdugo-Rodriguez A, Rodriguez LL, Borca MV. The role of interleukin 6 during viral infections. Front Microbiol. 2019;10:1057.PubMedPubMedCentralCrossRef
77.
Zurück zum Zitat Komastu T, Ireland DDC, Reiss CS. IL-12 and viral infections. Cytokine Growth Factor Rev. 1998;9:277.PubMedCrossRef Komastu T, Ireland DDC, Reiss CS. IL-12 and viral infections. Cytokine Growth Factor Rev. 1998;9:277.PubMedCrossRef
78.
Zurück zum Zitat Mattiola I, et al. Priming of human resting NK cells by autologous m1 macrophages via the engagement of IL-1β, IFN-β, and IL-15 pathways. J Immunol. 2015;195:2818–28.PubMedCrossRef Mattiola I, et al. Priming of human resting NK cells by autologous m1 macrophages via the engagement of IL-1β, IFN-β, and IL-15 pathways. J Immunol. 2015;195:2818–28.PubMedCrossRef
79.
Zurück zum Zitat Sahoo M, Ceballos-Olvera I, Del Barrio L, Re F. Role of the inflammasome, IL-1β, and IL-18 in bacterial infections. Sci World J. 2011;11:2037.CrossRef Sahoo M, Ceballos-Olvera I, Del Barrio L, Re F. Role of the inflammasome, IL-1β, and IL-18 in bacterial infections. Sci World J. 2011;11:2037.CrossRef
80.
Zurück zum Zitat Ouyang P, et al. IL-10 encoded by viruses: a remarkable example of independent acquisition of a cellular gene by viruses and its subsequent evolution in the viral genome. J Gen Virol. 2014;95:245–62.PubMedCrossRef Ouyang P, et al. IL-10 encoded by viruses: a remarkable example of independent acquisition of a cellular gene by viruses and its subsequent evolution in the viral genome. J Gen Virol. 2014;95:245–62.PubMedCrossRef
82.
Zurück zum Zitat Kwon YC, et al. Hepatitis C virus E2 envelope glycoprotein induces an immunoregulatory phenotype in macrophages. Hepatology. 2019;69:1873.PubMedCrossRef Kwon YC, et al. Hepatitis C virus E2 envelope glycoprotein induces an immunoregulatory phenotype in macrophages. Hepatology. 2019;69:1873.PubMedCrossRef
83.
Zurück zum Zitat Granja AG, Sabina P, Salas ML, Fresno M, Revilla Y. Regulation of inducible nitric oxide synthase expression by viral A238L-mediated inhibition of p65/RelA acetylation and p300 transactivation. J Virol. 2006;80:10487–96.PubMedPubMedCentralCrossRef Granja AG, Sabina P, Salas ML, Fresno M, Revilla Y. Regulation of inducible nitric oxide synthase expression by viral A238L-mediated inhibition of p65/RelA acetylation and p300 transactivation. J Virol. 2006;80:10487–96.PubMedPubMedCentralCrossRef
84.
Zurück zum Zitat Cameron CM, Barrett JW, Liu L, Lucas AR, McFadden G. Myxoma virus M141R expresses a viral CD200 (vOX-2) that is responsible for down-regulation of macrophage and T-cell activation in vivo. J Virol. 2005;79:6052–67.PubMedPubMedCentralCrossRef Cameron CM, Barrett JW, Liu L, Lucas AR, McFadden G. Myxoma virus M141R expresses a viral CD200 (vOX-2) that is responsible for down-regulation of macrophage and T-cell activation in vivo. J Virol. 2005;79:6052–67.PubMedPubMedCentralCrossRef
85.
Zurück zum Zitat Cameron CM, Barrett JW, Mann M, Lucas A, McFadden G. Myxoma virus M128L is expressed as a cell surface CD47-like virulence factor that contributes to the downregulation of macrophage activation in vivo. Virology. 2005;337:55–67.PubMedCrossRef Cameron CM, Barrett JW, Mann M, Lucas A, McFadden G. Myxoma virus M128L is expressed as a cell surface CD47-like virulence factor that contributes to the downregulation of macrophage activation in vivo. Virology. 2005;337:55–67.PubMedCrossRef
86.
Zurück zum Zitat Reichard AC, Cheemarla NR, Bigley NJ. SOCS1/3 expression levels in HSV-1-Infected, cytokine-polarized and -unpolarized macrophages. J Interf Cytokine Res. 2015;35:32.CrossRef Reichard AC, Cheemarla NR, Bigley NJ. SOCS1/3 expression levels in HSV-1-Infected, cytokine-polarized and -unpolarized macrophages. J Interf Cytokine Res. 2015;35:32.CrossRef
87.
Zurück zum Zitat Yokota SI, et al. Herpes simplex virus type 1 suppresses the interferon signaling pathway by inhibiting phosphorylation of STATs and janus kinases during an early infection stage. Virology. 2001;286:119–24.PubMedCrossRef Yokota SI, et al. Herpes simplex virus type 1 suppresses the interferon signaling pathway by inhibiting phosphorylation of STATs and janus kinases during an early infection stage. Virology. 2001;286:119–24.PubMedCrossRef
88.
Zurück zum Zitat Stumptner-Cuvelette P, et al. Human immunodeficiency virus-1 nef expression induces intracellular accumulation of multivesicular bodies and major histocompatibility complex Class II complexes: potential role of phosphatidylinositol 3-kinase. Mol Biol Cell. 2003;14:4857.PubMedPubMedCentralCrossRef Stumptner-Cuvelette P, et al. Human immunodeficiency virus-1 nef expression induces intracellular accumulation of multivesicular bodies and major histocompatibility complex Class II complexes: potential role of phosphatidylinositol 3-kinase. Mol Biol Cell. 2003;14:4857.PubMedPubMedCentralCrossRef
89.
Zurück zum Zitat Rogers KJ, et al. IL-4/IL-13 polarization of macrophages enhances Ebola virus glycoprotein-dependent infection. PLoS Negl Trop Dis. 2019;13: e0007819.PubMedPubMedCentralCrossRef Rogers KJ, et al. IL-4/IL-13 polarization of macrophages enhances Ebola virus glycoprotein-dependent infection. PLoS Negl Trop Dis. 2019;13: e0007819.PubMedPubMedCentralCrossRef
90.
Zurück zum Zitat Miller BH, et al. Mycobacteria inhibit nitric oxide synthase recruitment to phagosomes during macrophage infection. Infect Immun. 2004;72:2872–8.PubMedPubMedCentralCrossRef Miller BH, et al. Mycobacteria inhibit nitric oxide synthase recruitment to phagosomes during macrophage infection. Infect Immun. 2004;72:2872–8.PubMedPubMedCentralCrossRef
91.
Zurück zum Zitat Biswas T. Role of porin of Shigella dysenteriae type 1 in modulation of lipopolysaccharide mediated nitric oxide and interleukin-1 release by murine peritoneal macrophages. FEMS Immunol Med Microbiol. 2000;29:129–36.PubMedCrossRef Biswas T. Role of porin of Shigella dysenteriae type 1 in modulation of lipopolysaccharide mediated nitric oxide and interleukin-1 release by murine peritoneal macrophages. FEMS Immunol Med Microbiol. 2000;29:129–36.PubMedCrossRef
92.
93.
Zurück zum Zitat Zhang J, et al. NLRP3 inflammasome mediates M1 macrophage polarization and IL-1β production in inflammatory root resorption. J Clin Periodontol. 2020;47:451–60.PubMedCrossRef Zhang J, et al. NLRP3 inflammasome mediates M1 macrophage polarization and IL-1β production in inflammatory root resorption. J Clin Periodontol. 2020;47:451–60.PubMedCrossRef
95.
Zurück zum Zitat Suzuki T, et al. Differential regulation of caspase-1 activation, pyroptosis, and autophagy via Ipaf and ASC in Shigella-infected macrophages. PLoS Pathog. 2007;3:1082–91.CrossRef Suzuki T, et al. Differential regulation of caspase-1 activation, pyroptosis, and autophagy via Ipaf and ASC in Shigella-infected macrophages. PLoS Pathog. 2007;3:1082–91.CrossRef
96.
Zurück zum Zitat Cooper AM, Magram J, Ferrante J, Orme IM. Interleukin 12 (IL-12) Is crucial to the development of protective immunity in mice intravenously infected with mycobacterium tuberculosis. J Exp Med. 1997;186:39–45.PubMedPubMedCentralCrossRef Cooper AM, Magram J, Ferrante J, Orme IM. Interleukin 12 (IL-12) Is crucial to the development of protective immunity in mice intravenously infected with mycobacterium tuberculosis. J Exp Med. 1997;186:39–45.PubMedPubMedCentralCrossRef
97.
Zurück zum Zitat Huang, Z. et al. Mycobacterium tuberculosis-induced polarization of human macrophage orchestrates the formation and development of tuberculous granulomas in vitro. PLoS One 10, (2015). Huang, Z. et al. Mycobacterium tuberculosis-induced polarization of human macrophage orchestrates the formation and development of tuberculous granulomas in vitro. PLoS One 10, (2015).
99.
Zurück zum Zitat Gustot T. Multiple organ failure in sepsis: prognosis and role of systemic inflammatory response. Curr Opin Crit Care. 2011;17:153–9.PubMedCrossRef Gustot T. Multiple organ failure in sepsis: prognosis and role of systemic inflammatory response. Curr Opin Crit Care. 2011;17:153–9.PubMedCrossRef
100.
Zurück zum Zitat Chaudhry, H. et al. Role of cytokines as a double-edged sword in sepsis. in Vivo 27, 669 (2013). Chaudhry, H. et al. Role of cytokines as a double-edged sword in sepsis. in Vivo 27, 669 (2013).
101.
102.
Zurück zum Zitat Challagundla, N., Shah, D., Yadav, S. & Agrawal-rajput, R. CO. Challagundla, N., Shah, D., Yadav, S. & Agrawal-rajput, R. CO.
104.
Zurück zum Zitat Cassetta L, Cassol E, Poli G. Macrophage polarization in health and disease. Sci World J. 2011;11:2391.CrossRef Cassetta L, Cassol E, Poli G. Macrophage polarization in health and disease. Sci World J. 2011;11:2391.CrossRef
105.
Zurück zum Zitat Corthay A, et al. Primary antitumor immune response mediated by CD4+ T cells. Immunity. 2005;22:371–83.PubMedCrossRef Corthay A, et al. Primary antitumor immune response mediated by CD4+ T cells. Immunity. 2005;22:371–83.PubMedCrossRef
106.
Zurück zum Zitat Liu Y, Cao X. The origin and function of tumor-associated macrophages. Cell Mol Immunol. 2015;12:1.PubMedCrossRef Liu Y, Cao X. The origin and function of tumor-associated macrophages. Cell Mol Immunol. 2015;12:1.PubMedCrossRef
107.
Zurück zum Zitat Gamrekelashvili J, et al. Notch and TLR signaling coordinate monocyte cell fate and inflammation. Elife. 2020;9:1–19.CrossRef Gamrekelashvili J, et al. Notch and TLR signaling coordinate monocyte cell fate and inflammation. Elife. 2020;9:1–19.CrossRef
108.
Zurück zum Zitat Kong, D. H., Kim, Y. K., Kim, M. R., Jang, J. H. & Lee, S. Emerging roles of vascular cell adhesion molecule-1 (VCAM-1) in immunological disorders and cancer. Int. J. Mol. Sci. 19, (2018). Kong, D. H., Kim, Y. K., Kim, M. R., Jang, J. H. & Lee, S. Emerging roles of vascular cell adhesion molecule-1 (VCAM-1) in immunological disorders and cancer. Int. J. Mol. Sci. 19, (2018).
109.
Zurück zum Zitat Kitamura, T. et al. Monocytes differentiate to immune suppressive precursors of metastasis-associated macrophages in mouse models of metastatic breast cancer. Front. Immunol. 8, (2018). Kitamura, T. et al. Monocytes differentiate to immune suppressive precursors of metastasis-associated macrophages in mouse models of metastatic breast cancer. Front. Immunol. 8, (2018).
110.
Zurück zum Zitat He, Z. & Zhang, S. Tumor-associated macrophages and their functional transformation in the hypoxic tumor microenvironment. Front. Immunol. 12, (2021). He, Z. & Zhang, S. Tumor-associated macrophages and their functional transformation in the hypoxic tumor microenvironment. Front. Immunol. 12, (2021).
111.
Zurück zum Zitat Landry, A. P., Balas, M., Alli, S., Spears, J. & Zador, Z. Distinct regional ontogeny and activation of tumor associated macrophages in human glioblastoma. Sci. Rep. 10, (2020). Landry, A. P., Balas, M., Alli, S., Spears, J. & Zador, Z. Distinct regional ontogeny and activation of tumor associated macrophages in human glioblastoma. Sci. Rep. 10, (2020).
112.
Zurück zum Zitat Wang, H., Tian, T. & Zhang, J. Tumor-Associated Macrophages (TAMs) in Colorectal Cancer (CRC): from mechanism to therapy and prognosis. Int. J. Mol. Sci. 22, (2021). Wang, H., Tian, T. & Zhang, J. Tumor-Associated Macrophages (TAMs) in Colorectal Cancer (CRC): from mechanism to therapy and prognosis. Int. J. Mol. Sci. 22, (2021).
113.
Zurück zum Zitat Krockenberger M, et al. Macrophage migration inhibitory factor (MIF) contributes to the immune escape of ovarian cancer by downregulating NKG2D. J Immunol. 2008;180:7338.PubMedCrossRef Krockenberger M, et al. Macrophage migration inhibitory factor (MIF) contributes to the immune escape of ovarian cancer by downregulating NKG2D. J Immunol. 2008;180:7338.PubMedCrossRef
114.
Zurück zum Zitat Onodera S, et al. Macrophage migration inhibitory factor induces phagocytosis of foreign particles by macrophages in autocrine and paracrine fashion. Immunology. 1997;92:131–7.PubMedPubMedCentralCrossRef Onodera S, et al. Macrophage migration inhibitory factor induces phagocytosis of foreign particles by macrophages in autocrine and paracrine fashion. Immunology. 1997;92:131–7.PubMedPubMedCentralCrossRef
115.
Zurück zum Zitat Pozzi LAM, Weiser WY. Human recombinant migration inhibitory factor activates human macrophages to kill tumor cells. Cell Immunol. 1992;145:372–9.PubMedCrossRef Pozzi LAM, Weiser WY. Human recombinant migration inhibitory factor activates human macrophages to kill tumor cells. Cell Immunol. 1992;145:372–9.PubMedCrossRef
116.
Zurück zum Zitat Mao C, Ding Y, Xu N. A double-edged sword role of cytokines in prostate cancer immunotherapy. Front Oncol. 2021;11:4732.CrossRef Mao C, Ding Y, Xu N. A double-edged sword role of cytokines in prostate cancer immunotherapy. Front Oncol. 2021;11:4732.CrossRef
117.
Zurück zum Zitat Di Caro G, et al. Dual prognostic significance of tumour-associated macrophages in human pancreatic adenocarcinoma treated or untreated with chemotherapy. Gut. 2016;65:1710–20.PubMedCrossRef Di Caro G, et al. Dual prognostic significance of tumour-associated macrophages in human pancreatic adenocarcinoma treated or untreated with chemotherapy. Gut. 2016;65:1710–20.PubMedCrossRef
118.
Zurück zum Zitat Rhee I. Diverse macrophages polarization in tumor microenvironment. Arch Pharm Res. 2016;39:1588–96.PubMedCrossRef Rhee I. Diverse macrophages polarization in tumor microenvironment. Arch Pharm Res. 2016;39:1588–96.PubMedCrossRef
119.
Zurück zum Zitat Jakowlew SB. Transforming growth factor-beta in cancer and metastasis. Cancer Metastasis Rev. 2006;25:435–57.PubMedCrossRef Jakowlew SB. Transforming growth factor-beta in cancer and metastasis. Cancer Metastasis Rev. 2006;25:435–57.PubMedCrossRef
120.
Zurück zum Zitat Erreni M, Mantovani A, Allavena P. Tumor-associated macrophages (TAM) and inflammation in colorectal cancer. Cancer Microenviron. 2011;4:141–54.PubMedCrossRef Erreni M, Mantovani A, Allavena P. Tumor-associated macrophages (TAM) and inflammation in colorectal cancer. Cancer Microenviron. 2011;4:141–54.PubMedCrossRef
121.
Zurück zum Zitat Di Caro G, et al. Dual prognostic significance of tumour-associated macrophages in human pancreatic adenocarcinoma treated or untreated with chemotherapy. Gut. 2015;65:1710–20.PubMedCrossRef Di Caro G, et al. Dual prognostic significance of tumour-associated macrophages in human pancreatic adenocarcinoma treated or untreated with chemotherapy. Gut. 2015;65:1710–20.PubMedCrossRef
122.
Zurück zum Zitat Liu, K. X. & Joshi, S. “Re-educating” tumor associated macrophages as a novel immunotherapy strategy for neuroblastoma. Front. Immunol. 11, (2020). Liu, K. X. & Joshi, S. “Re-educating” tumor associated macrophages as a novel immunotherapy strategy for neuroblastoma. Front. Immunol. 11, (2020).
123.
Zurück zum Zitat Gomez-Roca C, et al. Anti-CSF-1R emactuzumab in combination with anti-PD-L1 atezolizumab in advanced solid tumor patients naïve or experienced for immune checkpoint blockade. J Immunother Cancer. 2022;10: e004076.PubMedPubMedCentralCrossRef Gomez-Roca C, et al. Anti-CSF-1R emactuzumab in combination with anti-PD-L1 atezolizumab in advanced solid tumor patients naïve or experienced for immune checkpoint blockade. J Immunother Cancer. 2022;10: e004076.PubMedPubMedCentralCrossRef
124.
Zurück zum Zitat Thangam EB, et al. The role of histamine and histamine receptors in mast cell-mediated allergy and inflammation: the hunt for new therapeutic targets. Front Immunol. 2018;9:1873.PubMedPubMedCentralCrossRef Thangam EB, et al. The role of histamine and histamine receptors in mast cell-mediated allergy and inflammation: the hunt for new therapeutic targets. Front Immunol. 2018;9:1873.PubMedPubMedCentralCrossRef
125.
Zurück zum Zitat Nakano K, Takamatsu S. Histamine produced by macrophage and T lymphocyte: a new type of signal transducer. Nihon Yakurigaku Zasshi. 2001;118:15–22.PubMedCrossRef Nakano K, Takamatsu S. Histamine produced by macrophage and T lymphocyte: a new type of signal transducer. Nihon Yakurigaku Zasshi. 2001;118:15–22.PubMedCrossRef
126.
Zurück zum Zitat Suzuki K, Meguro K, Nakagomi D, Nakajima H. Roles of alternatively activated M2 macrophages in allergic contact dermatitis. Allergol Int. 2017;66:392–7.PubMedCrossRef Suzuki K, Meguro K, Nakagomi D, Nakajima H. Roles of alternatively activated M2 macrophages in allergic contact dermatitis. Allergol Int. 2017;66:392–7.PubMedCrossRef
127.
Zurück zum Zitat Saradna A, Do DC, Kumar S, Fu QL, Gao P. Macrophage polarization and allergic asthma. Transl Res. 2018;191:1.PubMedCrossRef Saradna A, Do DC, Kumar S, Fu QL, Gao P. Macrophage polarization and allergic asthma. Transl Res. 2018;191:1.PubMedCrossRef
128.
Zurück zum Zitat Iwasaki N, et al. Th2 cells and macrophages cooperatively induce allergic inflammation through histamine signaling. PLoS ONE. 2021;16:1–18.CrossRef Iwasaki N, et al. Th2 cells and macrophages cooperatively induce allergic inflammation through histamine signaling. PLoS ONE. 2021;16:1–18.CrossRef
129.
Zurück zum Zitat Draijer, C., Robbe, P., Boorsma, C. E., Hylkema, M. N. & Melgert, B. N. Dual role of YM1+ M2 macrophages in allergic lung inflammation. Sci. Reports 2018 81 8, 1–12 (2018). Draijer, C., Robbe, P., Boorsma, C. E., Hylkema, M. N. & Melgert, B. N. Dual role of YM1+ M2 macrophages in allergic lung inflammation. Sci. Reports 2018 81 8, 1–12 (2018).
130.
Zurück zum Zitat Day DL, Chakari W, Matzen SH. Malignant transformation of a non-healing traumatic wound on the lower extremity: A case report. Int J Surg Case Rep. 2018;53:468–70.PubMedPubMedCentralCrossRef Day DL, Chakari W, Matzen SH. Malignant transformation of a non-healing traumatic wound on the lower extremity: A case report. Int J Surg Case Rep. 2018;53:468–70.PubMedPubMedCentralCrossRef
132.
Zurück zum Zitat Watanabe S, Alexander M, Misharin AV, Budinger GRS. The role of macrophages in the resolution of inflammation. J Clin Invest. 2019;129:2619–28.PubMedPubMedCentralCrossRef Watanabe S, Alexander M, Misharin AV, Budinger GRS. The role of macrophages in the resolution of inflammation. J Clin Invest. 2019;129:2619–28.PubMedPubMedCentralCrossRef
134.
Zurück zum Zitat Kang K, et al. Interferon-γ represses M2 gene expression in human macrophages by disassembling enhancers bound by the transcription factor MAF. Immunity. 2017;47:235.PubMedPubMedCentralCrossRef Kang K, et al. Interferon-γ represses M2 gene expression in human macrophages by disassembling enhancers bound by the transcription factor MAF. Immunity. 2017;47:235.PubMedPubMedCentralCrossRef
135.
136.
Zurück zum Zitat Achkova D, Maher J. Role of the colony-stimulating factor (CSF)/CSF-1 receptor axis in cancer. Biochem Soc Trans. 2016;44:333–41.PubMedCrossRef Achkova D, Maher J. Role of the colony-stimulating factor (CSF)/CSF-1 receptor axis in cancer. Biochem Soc Trans. 2016;44:333–41.PubMedCrossRef
138.
Zurück zum Zitat Sinha SK, et al. HHS Public Access. 2022;41:220–33. Sinha SK, et al. HHS Public Access. 2022;41:220–33.
140.
Zurück zum Zitat Ryan GR, et al. Rescue of the colony-stimulating factor 1 (CSF-1)-nullizygous mouse (Csf1op/Csf1op) phenotype with a CSF-1 transgene and identification of sites of local CSF-1 synthesis. Blood. 2001;98:74–84.PubMedCrossRef Ryan GR, et al. Rescue of the colony-stimulating factor 1 (CSF-1)-nullizygous mouse (Csf1op/Csf1op) phenotype with a CSF-1 transgene and identification of sites of local CSF-1 synthesis. Blood. 2001;98:74–84.PubMedCrossRef
142.
Zurück zum Zitat Horiuchi K, et al. Cell surface colony-stimulating factor 1 can be cleaved by tnf-α converting enzyme or endocytosed in a clathrin-dependent manner. J Immunol. 2007;179:6715–24.PubMedCrossRef Horiuchi K, et al. Cell surface colony-stimulating factor 1 can be cleaved by tnf-α converting enzyme or endocytosed in a clathrin-dependent manner. J Immunol. 2007;179:6715–24.PubMedCrossRef
144.
Zurück zum Zitat Hume DA, MacDonald KPA. Therapeutic applications of macrophage colony-stimulating factor-1 (CSF-1) and antagonists of CSF-1 receptor (CSF-1R) signaling. Blood. 2012;119:1810–20.PubMedCrossRef Hume DA, MacDonald KPA. Therapeutic applications of macrophage colony-stimulating factor-1 (CSF-1) and antagonists of CSF-1 receptor (CSF-1R) signaling. Blood. 2012;119:1810–20.PubMedCrossRef
145.
146.
147.
Zurück zum Zitat Felix J, et al. Structure and assembly mechanism of the signaling complex mediated by human CSF-1. Structure. 2015;23:1621–31.PubMedCrossRef Felix J, et al. Structure and assembly mechanism of the signaling complex mediated by human CSF-1. Structure. 2015;23:1621–31.PubMedCrossRef
148.
Zurück zum Zitat Wei 10_Functional overlap but differential expression of CSF-1 and IL-34 in their CSF-1.pdf. Wei 10_Functional overlap but differential expression of CSF-1 and IL-34 in their CSF-1.pdf.
149.
Zurück zum Zitat Liu H, et al. The mechanism of shared but distinct CSF-1R signaling by the non-homologous cytokines IL-34 and CSF-1. Biochim Biophys Acta - Proteins Proteomics. 2012;1824:938–45.CrossRef Liu H, et al. The mechanism of shared but distinct CSF-1R signaling by the non-homologous cytokines IL-34 and CSF-1. Biochim Biophys Acta - Proteins Proteomics. 2012;1824:938–45.CrossRef
150.
Zurück zum Zitat Stanley, E. R. & Chitu, V. CSF-1 receptor signaling in myeloid cells. Cold Spring Harb. Perspect. Biol. 6, (2014). Stanley, E. R. & Chitu, V. CSF-1 receptor signaling in myeloid cells. Cold Spring Harb. Perspect. Biol. 6, (2014).
151.
Zurück zum Zitat Seita J, Weissman IL. Published in final edited form as: Hematopoietic stem cell: self-renewal versus differentiation. Wiley Interdiscip Rev Syst Biol Med. 2010;2:1–20.CrossRef Seita J, Weissman IL. Published in final edited form as: Hematopoietic stem cell: self-renewal versus differentiation. Wiley Interdiscip Rev Syst Biol Med. 2010;2:1–20.CrossRef
152.
Zurück zum Zitat Lee AWM, States DJ. Colony-stimulating factor-1 requires PI3-kinase-mediated metabolism for proliferation and survival in myeloid cells. Cell Death Differ. 2006;13:1900–14.PubMedCrossRef Lee AWM, States DJ. Colony-stimulating factor-1 requires PI3-kinase-mediated metabolism for proliferation and survival in myeloid cells. Cell Death Differ. 2006;13:1900–14.PubMedCrossRef
153.
Zurück zum Zitat Vergadi E, Ieronymaki E, Lyroni K, Vaporidi K, Tsatsanis C. Akt signaling pathway in macrophage activation and M1/M2 polarization. J Immunol. 2017;198:1006–14.PubMedCrossRef Vergadi E, Ieronymaki E, Lyroni K, Vaporidi K, Tsatsanis C. Akt signaling pathway in macrophage activation and M1/M2 polarization. J Immunol. 2017;198:1006–14.PubMedCrossRef
154.
Zurück zum Zitat Caescu CI, et al. Colony stimulating factor-1 receptor signaling networks inhibit mouse macrophage inflammatory responses by induction of microRNA-21. Blood. 2015;125:e1–13.PubMedPubMedCentralCrossRef Caescu CI, et al. Colony stimulating factor-1 receptor signaling networks inhibit mouse macrophage inflammatory responses by induction of microRNA-21. Blood. 2015;125:e1–13.PubMedPubMedCentralCrossRef
155.
Zurück zum Zitat Feng J, et al. MiR-21 attenuates lipopolysaccharide-induced lipid accumulation and inflammatory response: Potential role in cerebrovascular disease. Lipids Health Dis. 2014;13:1–9.CrossRef Feng J, et al. MiR-21 attenuates lipopolysaccharide-induced lipid accumulation and inflammatory response: Potential role in cerebrovascular disease. Lipids Health Dis. 2014;13:1–9.CrossRef
156.
Zurück zum Zitat He H, et al. Endothelial cells provide an instructive niche for the differentiation and functional polarization of M2-like macrophages. Blood. 2012;120:3152–62.PubMedPubMedCentralCrossRef He H, et al. Endothelial cells provide an instructive niche for the differentiation and functional polarization of M2-like macrophages. Blood. 2012;120:3152–62.PubMedPubMedCentralCrossRef
157.
Zurück zum Zitat Hamilton TA, Zhao C, Pavicic PG, Datta S. Myeloid colony-stimulating factors as regulators of macrophage polarization. Front Immunol. 2014;5:1–6.CrossRef Hamilton TA, Zhao C, Pavicic PG, Datta S. Myeloid colony-stimulating factors as regulators of macrophage polarization. Front Immunol. 2014;5:1–6.CrossRef
158.
Zurück zum Zitat J Leukocyte Bio - 2009 - Fleetwood - GM‐CSF‐ and M‐CSF‐dependent macrophage phenotypes display differential dependence on.pdf. J Leukocyte Bio - 2009 - Fleetwood - GM‐CSF‐ and M‐CSF‐dependent macrophage phenotypes display differential dependence on.pdf.
159.
Zurück zum Zitat Mia S, Warnecke A, Zhang XM, Malmström V, Harris RA. An optimized protocol for human M2 macrophages using M-CSF and IL-4/IL-10/TGF-β yields a dominant immunosuppressive phenotype. Scand J Immunol. 2014;79:305–14.PubMedPubMedCentralCrossRef Mia S, Warnecke A, Zhang XM, Malmström V, Harris RA. An optimized protocol for human M2 macrophages using M-CSF and IL-4/IL-10/TGF-β yields a dominant immunosuppressive phenotype. Scand J Immunol. 2014;79:305–14.PubMedPubMedCentralCrossRef
160.
Zurück zum Zitat Osman A, et al. M-CSF inhibits anti–HIV-1 activity of IL-32, but they enhance M2-like phenotypes of macrophages. J Immunol. 2014;192:5083–9.PubMedCrossRef Osman A, et al. M-CSF inhibits anti–HIV-1 activity of IL-32, but they enhance M2-like phenotypes of macrophages. J Immunol. 2014;192:5083–9.PubMedCrossRef
161.
Zurück zum Zitat Erblich, B., Zhu, L., Etgen, A. M., Dobrenis, K. & Pollard, J. W. Absence of colony stimulation factor-1 receptor results in loss of microglia, disrupted brain development and olfactory deficits. PLoS One 6, (2011). Erblich, B., Zhu, L., Etgen, A. M., Dobrenis, K. & Pollard, J. W. Absence of colony stimulation factor-1 receptor results in loss of microglia, disrupted brain development and olfactory deficits. PLoS One 6, (2011).
162.
Zurück zum Zitat Rojo R, et al. Deletion of a Csf1r enhancer selectively impacts CSF1R expression and development of tissue macrophage populations. Nat Commun. 2019;10:1–17.CrossRef Rojo R, et al. Deletion of a Csf1r enhancer selectively impacts CSF1R expression and development of tissue macrophage populations. Nat Commun. 2019;10:1–17.CrossRef
163.
Zurück zum Zitat Cannarile MA, et al. Colony-stimulating factor 1 receptor (CSF1R) inhibitors in cancer therapy. J Immunother Cancer. 2017;5:1–13.CrossRef Cannarile MA, et al. Colony-stimulating factor 1 receptor (CSF1R) inhibitors in cancer therapy. J Immunother Cancer. 2017;5:1–13.CrossRef
164.
Zurück zum Zitat Journal Orthopaedic Research - 2008 - Sarahrudi - The impact of colony‐stimulating factor‐1 on fracture healing An.pdf. Journal Orthopaedic Research - 2008 - Sarahrudi - The impact of colony‐stimulating factor‐1 on fracture healing An.pdf.
165.
Zurück zum Zitat Takei I, et al. High macrophage-colony stimulating factor levels in synovial fluid of loose artificial hip joints. J Rheumatol. 2000;27:894–9.PubMed Takei I, et al. High macrophage-colony stimulating factor levels in synovial fluid of loose artificial hip joints. J Rheumatol. 2000;27:894–9.PubMed
166.
Zurück zum Zitat Klebl FH, Olsen JE, Jain S, Doe WF. Expression of macrophage-colony stimulating factor in normal and inflammatory bowel disease intestine. J Pathol. 2001;195:609–15.PubMedCrossRef Klebl FH, Olsen JE, Jain S, Doe WF. Expression of macrophage-colony stimulating factor in normal and inflammatory bowel disease intestine. J Pathol. 2001;195:609–15.PubMedCrossRef
167.
Zurück zum Zitat Isbel, N. M., Nikolic-Paterson, D. J., Hill, P. A., Dowling, J. & Atkins, R. C. Local macrophage proliferation correlates with increased renal M-CSF expression in human glomerulonephritis. Nephrol. Dial. Transplant. Off. Publ. Eur. Dial. Transpl. Assoc. - Eur. Ren. Assoc. 16, 1638–1647 (2001). Isbel, N. M., Nikolic-Paterson, D. J., Hill, P. A., Dowling, J. & Atkins, R. C. Local macrophage proliferation correlates with increased renal M-CSF expression in human glomerulonephritis. Nephrol. Dial. Transplant. Off. Publ. Eur. Dial. Transpl. Assoc. - Eur. Ren. Assoc. 16, 1638–1647 (2001).
168.
Zurück zum Zitat Jose MD, Le Meur Y, Atkins RC, Chadban SJ. Blockade of macrophage colony-stimulating factor reduces macrophage proliferation and accumulation in renal allograft rejection. Am J Transplant Off J Am Soc Transplant Am Soc Transpl Surg. 2003;3:294–300.CrossRef Jose MD, Le Meur Y, Atkins RC, Chadban SJ. Blockade of macrophage colony-stimulating factor reduces macrophage proliferation and accumulation in renal allograft rejection. Am J Transplant Off J Am Soc Transplant Am Soc Transpl Surg. 2003;3:294–300.CrossRef
169.
Zurück zum Zitat Rosenfeld ME, et al. Macrophage colony-stimulating factor mRNA and protein in atherosclerotic lesions of rabbits and humans. Am J Pathol. 1992;140:291–300.PubMedPubMedCentral Rosenfeld ME, et al. Macrophage colony-stimulating factor mRNA and protein in atherosclerotic lesions of rabbits and humans. Am J Pathol. 1992;140:291–300.PubMedPubMedCentral
170.
Zurück zum Zitat Lin, E. Y., Nguyen, A. V, Russell, R. G. & Pollard, J. W. Colony-Stimulating Factor 1 Promotes Progression of Mammary Tumors to Malignancy. J. Exp. Med. 193, 727–740 (2001). Lin, E. Y., Nguyen, A. V, Russell, R. G. & Pollard, J. W. Colony-Stimulating Factor 1 Promotes Progression of Mammary Tumors to Malignancy. J. Exp. Med. 193, 727–740 (2001).
171.
Zurück zum Zitat Beirão BCB, et al. A blocking antibody against canine CSF-1R maturated by limited CDR mutagenesis. Antib Ther. 2020;3:193–204.PubMedPubMedCentral Beirão BCB, et al. A blocking antibody against canine CSF-1R maturated by limited CDR mutagenesis. Antib Ther. 2020;3:193–204.PubMedPubMedCentral
172.
Zurück zum Zitat Aharinejad S, et al. Colony-Stimulating factor-1 blockade by antisense oligonucleotides and small interfering RNAs suppresses growth of human mammary tumor xenografts in mice. Cancer Res. 2004;64:5378–84.PubMedCrossRef Aharinejad S, et al. Colony-Stimulating factor-1 blockade by antisense oligonucleotides and small interfering RNAs suppresses growth of human mammary tumor xenografts in mice. Cancer Res. 2004;64:5378–84.PubMedCrossRef
173.
Zurück zum Zitat Strachan DC, et al. CSF1R inhibition delays cervical and mammary tumor growth in murine models by attenuating the turnover of tumor-associated macrophages and enhancing infiltration by CD8+ T cells. Oncoimmunology. 2013;2:1–12.CrossRef Strachan DC, et al. CSF1R inhibition delays cervical and mammary tumor growth in murine models by attenuating the turnover of tumor-associated macrophages and enhancing infiltration by CD8+ T cells. Oncoimmunology. 2013;2:1–12.CrossRef
174.
Zurück zum Zitat Lee K-H, et al. Discovery of BPR1R024, an orally active and selective CSF1R inhibitor that exhibits antitumor and immunomodulatory activity in a murine colon tumor model. J Med Chem. 2021;64:14477–97.PubMedCrossRef Lee K-H, et al. Discovery of BPR1R024, an orally active and selective CSF1R inhibitor that exhibits antitumor and immunomodulatory activity in a murine colon tumor model. J Med Chem. 2021;64:14477–97.PubMedCrossRef
175.
Zurück zum Zitat Bo L, Bo X. Colony stimulating factor 1: friend or foe of neurons? Neural Regen Res. 2022;17:773–4.PubMedCrossRef Bo L, Bo X. Colony stimulating factor 1: friend or foe of neurons? Neural Regen Res. 2022;17:773–4.PubMedCrossRef
176.
Zurück zum Zitat Orihuela R, McPherson CA, Harry GJ. Microglial M1/M2 polarization and metabolic states. Br J Pharmacol. 2016;173:649–65.PubMedCrossRef Orihuela R, McPherson CA, Harry GJ. Microglial M1/M2 polarization and metabolic states. Br J Pharmacol. 2016;173:649–65.PubMedCrossRef
177.
Zurück zum Zitat Xu Y, Jin M-Z, Yang Z-Y, Jin W-L. Microglia in neurodegenerative diseases. Neural Regen Res. 2021;16:270–80.PubMedCrossRef Xu Y, Jin M-Z, Yang Z-Y, Jin W-L. Microglia in neurodegenerative diseases. Neural Regen Res. 2021;16:270–80.PubMedCrossRef
178.
Zurück zum Zitat Wyatt-Johnson SK, Sommer AL, Shim KY, Brewster AL. Suppression of microgliosis with the colony-stimulating factor 1 receptor inhibitor PLX3397 does not attenuate memory defects during epileptogenesis in the rat. Front Neurol. 2021;12: 651096.PubMedPubMedCentralCrossRef Wyatt-Johnson SK, Sommer AL, Shim KY, Brewster AL. Suppression of microgliosis with the colony-stimulating factor 1 receptor inhibitor PLX3397 does not attenuate memory defects during epileptogenesis in the rat. Front Neurol. 2021;12: 651096.PubMedPubMedCentralCrossRef
179.
Zurück zum Zitat Hu, X. et al. Rh-CSF1 Attenuates oxidative stress and neuronal apoptosis via the CSF1R/PLCG2/PKA/UCP2 signaling pathway in a rat model of neonatal HIE. Oxid. Med. Cell. Longev. 2020, (2020). Hu, X. et al. Rh-CSF1 Attenuates oxidative stress and neuronal apoptosis via the CSF1R/PLCG2/PKA/UCP2 signaling pathway in a rat model of neonatal HIE. Oxid. Med. Cell. Longev. 2020, (2020).
180.
Zurück zum Zitat Wlodarczyk A, et al. CSF1R stimulation promotes increased neuroprotection by CD11c+ microglia in EAE. Front Cell Neurosci. 2019;12:1–10.CrossRef Wlodarczyk A, et al. CSF1R stimulation promotes increased neuroprotection by CD11c+ microglia in EAE. Front Cell Neurosci. 2019;12:1–10.CrossRef
181.
Zurück zum Zitat Luo J, et al. Colony-stimulating factor 1 receptor (CSF1R) signaling in injured neurons facilitates protection and survival. J Exp Med. 2013;210:157–72.PubMedPubMedCentralCrossRef Luo J, et al. Colony-stimulating factor 1 receptor (CSF1R) signaling in injured neurons facilitates protection and survival. J Exp Med. 2013;210:157–72.PubMedPubMedCentralCrossRef
182.
Zurück zum Zitat Huang, L., Xu, X. & Hao, Y. The possible mechanisms of tumor progression via CSF-1/CSF-1R pathway activation. Rom. J. Morphol. Embryol. = Rev. Roum. Morphol. Embryol. 55, 501–506 (2014). Huang, L., Xu, X. & Hao, Y. The possible mechanisms of tumor progression via CSF-1/CSF-1R pathway activation. Rom. J. Morphol. Embryol. = Rev. Roum. Morphol. Embryol. 55, 501–506 (2014).
183.
Zurück zum Zitat Rooney MS, Shukla SA, Wu CJ, Getz G, Hacohen N. Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell. 2015;160:48–61.PubMedPubMedCentralCrossRef Rooney MS, Shukla SA, Wu CJ, Getz G, Hacohen N. Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell. 2015;160:48–61.PubMedPubMedCentralCrossRef
184.
Zurück zum Zitat Holmgaard RB, et al. Timing of CSF-1/CSF-1R signaling blockade is critical to improving responses to CTLA-4 based immunotherapy. Oncoimmunology. 2016;5:e1151595–e1151595.PubMedPubMedCentralCrossRef Holmgaard RB, et al. Timing of CSF-1/CSF-1R signaling blockade is critical to improving responses to CTLA-4 based immunotherapy. Oncoimmunology. 2016;5:e1151595–e1151595.PubMedPubMedCentralCrossRef
185.
Zurück zum Zitat Kowal J, Kornete M, Joyce JA. Re-education of macrophages as a therapeutic strategy in cancer. Immunotherapy. 2019;11:677–89.PubMedCrossRef Kowal J, Kornete M, Joyce JA. Re-education of macrophages as a therapeutic strategy in cancer. Immunotherapy. 2019;11:677–89.PubMedCrossRef
186.
Zurück zum Zitat Woo H-H, Chambers SK. The alternative spliced 3’-UTR mediated differential secretion of macrophage colony stimulating factor in breast cancer cells. Biochem Biophys Res Commun. 2020;525:1004–10.PubMedCrossRef Woo H-H, Chambers SK. The alternative spliced 3’-UTR mediated differential secretion of macrophage colony stimulating factor in breast cancer cells. Biochem Biophys Res Commun. 2020;525:1004–10.PubMedCrossRef
187.
Zurück zum Zitat Han J, et al. Inhibition of colony stimulating factor-1 receptor (CSF-1R) as a potential therapeutic strategy for neurodegenerative diseases: opportunities and challenges. Cell Mol Life Sci. 2022;79:219.PubMedPubMedCentralCrossRef Han J, et al. Inhibition of colony stimulating factor-1 receptor (CSF-1R) as a potential therapeutic strategy for neurodegenerative diseases: opportunities and challenges. Cell Mol Life Sci. 2022;79:219.PubMedPubMedCentralCrossRef
188.
Zurück zum Zitat MacDonald KPA, et al. An antibody against the colony-stimulating factor 1 receptor depletes the resident subset of monocytes and tissue- and tumor-associated macrophages but does not inhibit inflammation. Blood. 2010;116:3955–63.PubMedCrossRef MacDonald KPA, et al. An antibody against the colony-stimulating factor 1 receptor depletes the resident subset of monocytes and tissue- and tumor-associated macrophages but does not inhibit inflammation. Blood. 2010;116:3955–63.PubMedCrossRef
189.
Zurück zum Zitat Conway JG, et al. Effects of the cFMS kinase inhibitor 5-(3-methoxy-4-((4-methoxybenzyl)oxy)benzyl)pyrimidine-2,4-diamine (GW2580) in normal and arthritic rats. J Pharmacol Exp Ther. 2008;326:41–50.PubMedCrossRef Conway JG, et al. Effects of the cFMS kinase inhibitor 5-(3-methoxy-4-((4-methoxybenzyl)oxy)benzyl)pyrimidine-2,4-diamine (GW2580) in normal and arthritic rats. J Pharmacol Exp Ther. 2008;326:41–50.PubMedCrossRef
190.
Zurück zum Zitat Toh, M.-L. et al. A CSF-1 receptor monoclonal antibody has potent bone and cartilage protective effects in experimental arthritis. Arthritis Rheumatol. 66, (2014). Toh, M.-L. et al. A CSF-1 receptor monoclonal antibody has potent bone and cartilage protective effects in experimental arthritis. Arthritis Rheumatol. 66, (2014).
191.
Zurück zum Zitat Koyama K, et al. Imatinib mesylate both prevents and treats the arthritis induced by type II collagen antibody in mice. Mod Rheumatol. 2007;17:306–10.PubMedCrossRef Koyama K, et al. Imatinib mesylate both prevents and treats the arthritis induced by type II collagen antibody in mice. Mod Rheumatol. 2007;17:306–10.PubMedCrossRef
192.
Zurück zum Zitat Wang X-F, et al. Colony-stimulating factor 1 receptor inhibition prevents against lipopolysaccharide -induced osteoporosis by inhibiting osteoclast formation. Biomed Pharmacother. 2019;115: 108916.PubMedCrossRef Wang X-F, et al. Colony-stimulating factor 1 receptor inhibition prevents against lipopolysaccharide -induced osteoporosis by inhibiting osteoclast formation. Biomed Pharmacother. 2019;115: 108916.PubMedCrossRef
193.
Zurück zum Zitat Zaiss, M. et al. Binding immunoglobulin protein (BIP) inhibits TNF‐α–induced osteoclast differentiation and systemic bone loss in an erosive arthritis model. ACR Open Rheumatol. 1, (2019). Zaiss, M. et al. Binding immunoglobulin protein (BIP) inhibits TNF‐α–induced osteoclast differentiation and systemic bone loss in an erosive arthritis model. ACR Open Rheumatol. 1, (2019).
194.
Zurück zum Zitat Irvine K, et al. A CSF-1 receptor kinase inhibitor targets effector functions and inhibits pro-inflammatory cytokine production from murine macrophage populations. FASEB J. 2006;20:1921–3.PubMedCrossRef Irvine K, et al. A CSF-1 receptor kinase inhibitor targets effector functions and inhibits pro-inflammatory cytokine production from murine macrophage populations. FASEB J. 2006;20:1921–3.PubMedCrossRef
195.
Zurück zum Zitat Paniagua RT, et al. C-Fms-mediated differentiation and priming of monocyte lineage cells play a central role in autoimmune arthritis. Arthritis Res Ther. 2010;12:R32.PubMedPubMedCentralCrossRef Paniagua RT, et al. C-Fms-mediated differentiation and priming of monocyte lineage cells play a central role in autoimmune arthritis. Arthritis Res Ther. 2010;12:R32.PubMedPubMedCentralCrossRef
196.
Zurück zum Zitat Murray LJ, et al. SU11248 inhibits tumor growth and CSF-1R-dependent osteolysis in an experimental breast cancer bone metastasis model. Clin Exp Metastasis. 2003;20:757–66.PubMedCrossRef Murray LJ, et al. SU11248 inhibits tumor growth and CSF-1R-dependent osteolysis in an experimental breast cancer bone metastasis model. Clin Exp Metastasis. 2003;20:757–66.PubMedCrossRef
197.
Zurück zum Zitat Ramesh A, Brouillard A, Kumar S, Nandi D, Kulkarni A. Dual inhibition of CSF1R and MAPK pathways using supramolecular nanoparticles enhances macrophage immunotherapy. Biomaterials. 2020;227: 119559.PubMedCrossRef Ramesh A, Brouillard A, Kumar S, Nandi D, Kulkarni A. Dual inhibition of CSF1R and MAPK pathways using supramolecular nanoparticles enhances macrophage immunotherapy. Biomaterials. 2020;227: 119559.PubMedCrossRef
198.
Zurück zum Zitat Rattanaburee T, Tipmanee V, Tedasen A, Thongpanchang T, Graidist P. Inhibition of CSF1R and AKT by (±)-kusunokinin hinders breast cancer cell proliferation. Biomed Pharmacother. 2020;129: 110361.PubMedCrossRef Rattanaburee T, Tipmanee V, Tedasen A, Thongpanchang T, Graidist P. Inhibition of CSF1R and AKT by (±)-kusunokinin hinders breast cancer cell proliferation. Biomed Pharmacother. 2020;129: 110361.PubMedCrossRef
200.
Zurück zum Zitat Rattanaburee T, Tipmanee V, Tedasen A, Thongpanchang T, Graidist P. Inhibition of CSF1R and AKT by (±)-kusunokinin hinders breast cancer cell proliferation. Biomed Pharmacother. 2020;129: 110361.PubMedCrossRef Rattanaburee T, Tipmanee V, Tedasen A, Thongpanchang T, Graidist P. Inhibition of CSF1R and AKT by (±)-kusunokinin hinders breast cancer cell proliferation. Biomed Pharmacother. 2020;129: 110361.PubMedCrossRef
201.
Zurück zum Zitat Shah RR, Morganroth J, Shah DR. Hepatotoxicity of tyrosine kinase inhibitors: clinical and regulatory perspectives. Drug Saf. 2013;36:491–503.PubMedCrossRef Shah RR, Morganroth J, Shah DR. Hepatotoxicity of tyrosine kinase inhibitors: clinical and regulatory perspectives. Drug Saf. 2013;36:491–503.PubMedCrossRef
202.
Zurück zum Zitat Kumari A, Silakari O, Singh RK. Recent advances in colony stimulating factor-1 receptor/c-FMS as an emerging target for various therapeutic implications. Biomed Pharmacother. 2018;103:662–79.PubMedCrossRef Kumari A, Silakari O, Singh RK. Recent advances in colony stimulating factor-1 receptor/c-FMS as an emerging target for various therapeutic implications. Biomed Pharmacother. 2018;103:662–79.PubMedCrossRef
203.
Zurück zum Zitat Wiktor-Jedrzejczak W, et al. Inhibition of colony-stimulating-factor-1 signaling in vivo with the orally bioavailable cFMS kinase inhibitor GW2580. Proc Natl Acad Sci U S A. 1990;87:4828–32.PubMedPubMedCentralCrossRef Wiktor-Jedrzejczak W, et al. Inhibition of colony-stimulating-factor-1 signaling in vivo with the orally bioavailable cFMS kinase inhibitor GW2580. Proc Natl Acad Sci U S A. 1990;87:4828–32.PubMedPubMedCentralCrossRef
204.
Zurück zum Zitat Gerngross L, Lehmicke G, Belkadi A, Fischer T. Role for cFMS in maintaining alternative macrophage polarization in SIV infection: implications for HIV neuropathogenesis. J Neuroinflammation. 2015;12:1–15.CrossRef Gerngross L, Lehmicke G, Belkadi A, Fischer T. Role for cFMS in maintaining alternative macrophage polarization in SIV infection: implications for HIV neuropathogenesis. J Neuroinflammation. 2015;12:1–15.CrossRef
205.
Zurück zum Zitat Clanchy FIL, Hamilton JA. HUVEC co-culture and haematopoietic growth factors modulate human proliferative monocyte activity. Cytokine. 2012;59:31–4.PubMedCrossRef Clanchy FIL, Hamilton JA. HUVEC co-culture and haematopoietic growth factors modulate human proliferative monocyte activity. Cytokine. 2012;59:31–4.PubMedCrossRef
206.
Zurück zum Zitat Ohno H, et al. A c-fms tyrosine kinase inhibitor, Ki20227, suppresses osteoclast differentiation and osteolytic bone destruction in a bone metastasis model. Mol Cancer Ther. 2006;5:2634–43.PubMedCrossRef Ohno H, et al. A c-fms tyrosine kinase inhibitor, Ki20227, suppresses osteoclast differentiation and osteolytic bone destruction in a bone metastasis model. Mol Cancer Ther. 2006;5:2634–43.PubMedCrossRef
207.
Zurück zum Zitat Saleh, R. et al. CSF-1 in inflammatory and arthritic pain development. J. Immunol. 201, 2042 LP – 2053 (2018). Saleh, R. et al. CSF-1 in inflammatory and arthritic pain development. J. Immunol. 201, 2042 LP – 2053 (2018).
208.
Zurück zum Zitat Lim AKH, et al. Antibody blockade of c-fms suppresses the progression of inflammation and injury in early diabetic nephropathy in obese db/db mice. Diabetologia. 2009;52:1669–79.PubMedCrossRef Lim AKH, et al. Antibody blockade of c-fms suppresses the progression of inflammation and injury in early diabetic nephropathy in obese db/db mice. Diabetologia. 2009;52:1669–79.PubMedCrossRef
209.
Zurück zum Zitat Tian L, et al. Macrophage-based combination therapies as a new strategy for cancer immunotherapy. Kidney Dis. 2022;8:26–43.CrossRef Tian L, et al. Macrophage-based combination therapies as a new strategy for cancer immunotherapy. Kidney Dis. 2022;8:26–43.CrossRef
210.
Zurück zum Zitat Edwards 5th, D. K. et al. CSF1R inhibitors exhibit antitumor activity in acute myeloid leukemia by blocking paracrine signals from support cells. Blood. 2019;133, 588–599. Edwards 5th, D. K. et al. CSF1R inhibitors exhibit antitumor activity in acute myeloid leukemia by blocking paracrine signals from support cells. Blood. 2019;133, 588–599.
211.
Zurück zum Zitat Edwards V, D. K. et al. CSF1R inhibitors exhibit antitumor activity in acute myeloid leukemia by blocking paracrine signals from support cells. Blood, 2019; 133, 588–599. Edwards V, D. K. et al. CSF1R inhibitors exhibit antitumor activity in acute myeloid leukemia by blocking paracrine signals from support cells. Blood, 2019; 133, 588–599.
213.
Zurück zum Zitat Zhu Y, et al. CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer Res. 2014;74:5057–69.PubMedPubMedCentralCrossRef Zhu Y, et al. CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer Res. 2014;74:5057–69.PubMedPubMedCentralCrossRef
214.
Zurück zum Zitat Seidel JA, Otsuka A, Kabashima K. Anti-PD-1 and anti-CTLA-4 therapies in cancer: mechanisms of action, efficacy, and limitations. Front Oncol. 2018;8:86.PubMedPubMedCentralCrossRef Seidel JA, Otsuka A, Kabashima K. Anti-PD-1 and anti-CTLA-4 therapies in cancer: mechanisms of action, efficacy, and limitations. Front Oncol. 2018;8:86.PubMedPubMedCentralCrossRef
Metadaten
Titel
Macrophage subsets and their role: co-relation with colony-stimulating factor-1 receptor and clinical relevance
verfasst von
Shivani Yadav
Astik Priya
Diksha R. Borade
Reena Agrawal-Rajput
Publikationsdatum
21.10.2022
Verlag
Springer US
Erschienen in
Immunologic Research / Ausgabe 2/2023
Print ISSN: 0257-277X
Elektronische ISSN: 1559-0755
DOI
https://doi.org/10.1007/s12026-022-09330-8

Weitere Artikel der Ausgabe 2/2023

Immunologic Research 2/2023 Zur Ausgabe

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

Hörschwäche erhöht Demenzrisiko unabhängig von Beta-Amyloid

29.05.2024 Hörstörungen Nachrichten

Hört jemand im Alter schlecht, nimmt das Hirn- und Hippocampusvolumen besonders schnell ab, was auch mit einem beschleunigten kognitiven Abbau einhergeht. Und diese Prozesse scheinen sich unabhängig von der Amyloidablagerung zu ereignen.

„Übersichtlicher Wegweiser“: Lauterbachs umstrittener Klinik-Atlas ist online

17.05.2024 Klinik aktuell Nachrichten

Sie sei „ethisch geboten“, meint Gesundheitsminister Karl Lauterbach: mehr Transparenz über die Qualität von Klinikbehandlungen. Um sie abzubilden, lässt er gegen den Widerstand vieler Länder einen virtuellen Klinik-Atlas freischalten.

Betalaktam-Allergie: praxisnahes Vorgehen beim Delabeling

16.05.2024 Pädiatrische Allergologie Nachrichten

Die große Mehrheit der vermeintlichen Penicillinallergien sind keine. Da das „Etikett“ Betalaktam-Allergie oft schon in der Kindheit erworben wird, kann ein frühzeitiges Delabeling lebenslange Vorteile bringen. Ein Team von Pädiaterinnen und Pädiatern aus Kanada stellt vor, wie sie dabei vorgehen.

Update HNO

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.