Skip to main content
Erschienen in: BMC Pediatrics 1/2018

Open Access 01.12.2018 | Research article

Mother’s obesity and high child’s waist circumference are predictive factors of severe child’s obesity: an observational study in French Guiana

verfasst von: Falucar Njuieyon, Emma Cuadro-Alvarez, Elise Martin, Noémie Lachaume, Yajaira Mrsic, Fanny Henaff, Chimène Maniassom, Antoine Defo, Narcisse Elenga

Erschienen in: BMC Pediatrics | Ausgabe 1/2018

Abstract

Background

This study aims to describe the predictive factors of severe obesity in children followed in French Guiana.

Methods

In this observational study, the patients from the French Guianese Childhood Obesity Group database were prospectively included, after giving a statement of patient’s non opposition.

Results

Our group classifications revealed that 36 of 150 (24%) participants were classified as being metabolically abnormal obesity“ (MAO), while 114 of 150 (76%) were categorized as metabolically normal obesity” (MNO). MAO-patients were older. Their mothers had more severe obesity. We also observed that their systolic blood pressure was higher. The median Z-score BMI of children with MAO was 4, 9 [4, 05–5, 38], which shows a more obese condition than the MNO group. The median waist-to-height ratio (WTHR) of our study population was high, either 0.63 [0.54–0.59]. No significant differences in the term of pregnancy, father’s obesity, gender, birth weight, feeding, diastolic blood pressure and WTHR were found between the two groups. The predictors of MAO status, after adjusting for age and sex, were mother’s obesity and high child’s waist circumference.
Among the comorbidity, there were two Down syndrome, one Cornelia de Lange syndrome, one Nephrotic Syndrome and one Epilepsy. The leptin hormone and insulin levels were higher in MAO than in MNO, while 25-OH D-vitamin was higher in MNO.

Conclusion

This study indicates the need to incorporate waist circumference into routine clinical practice, in addition to traditional measures of weight, height, body mass index and waist-to-height ratio.
Abkürzungen
BMI
Body mass index
BP
Blood pressure
CNIL
Commission Nationale Informatique et Libertés
GuiChOG
French Guianese Childhood Obesity Group
HAS
High Authority of Health
HDL
High density lipoprotein
INSEE
French National Institute for Statistics and Economic Studies
MAO
Metabolically abnormal obesity
MNO
Metabolically normal obesity
OGTT
Oral glucose tolerance test
OR
Odds ratios
PNNS
French National Nutrition and Health Program
QUICKI
Quantitative insulin sensitivity check index
SD
Standard deviation
SED
Sedentary behaviour
WC
Waist circumference
WTHR
Waist-to-height ratio

Background

Childhood obesity has continued to increase over the last 30 years in the world and in France. The field observations show that the prevalence of overweight and obesity among children in French Guiana is almost twice that in metropolitan France [1]. Cases of childhood type 2 diabetes associated with obesity are also observed [1].
“Overweight and obese children are likely to stay obese into adulthood and more likely to develop noncommunicable diseases like type2 diabetes or hypertension at a younger age” [2]. The fight against obesity needs multicomponent interventions including lifestyle changes reduced caloric intake, decreased sedentary behaviour and increased physical activity [3, 4]. These interventions have also been proved successful for the prevention and treatment of child and adolescent obesity [5, 6]. French public health ministry policy for fight against childhood obesity is focused on therapeutic education programs [7]. In French Guiana, all newly diagnosed childhood type2 diabetes are severely obese [1]. Prevention of childhood obesity therefore needs special attention and high priority.
French Guiana is an overseas department and region of France, located on the north Atlantic coast of South America in the Guianas. It borders Brazil in the east and south, and Suriname in the west. Its 83,534 km2 area has a very low population density. In January1st 2017, French National Institute for Statistics and Economic Studies (INSEE) estimated the population of French Guiana to be 279,933 people. Among the characteristics of this population were its youthfulness (44% below the age of 20), its multigene rational crossbreeding and the fact that the population is also facing demographic transition [8].
Cayenne Hospital is the main referral hospital in French Guiana. The day hospital of the pediatric department leads many authorized therapeutic education programs among which that for the fight against childhood obesity. More than 350 children with chronic diseases are thus involved in different therapeutic education programs. This study aims to describe the predictive factors of severe obesity in children followed in French Guiana.

Methods

French Guianese childhood obesity group (GuiChOG)

Since 2010, the GuiChOG has been created and is being held in the pediatric department of Cayenne Hospital. This group is part of the therapeutic education programs against obesity in children conducted in the pediatric day hospital. The high prevalence of overweight and obesity in French Guianese children, its close association with type 2 diabetes [1], motivated the group to understand the determinants of obesity among children in this specific population. Tips for overweight or obese children are included consecutively in this group. A GuiChOG Excel database is prospectively extracted from a medical file of these obese children after the completion of the first diagnostic consultation performed according to the High Authority of Health (HAS) recommendations for the French National Nutrition and Health Program (PNNS) [9].

Ethical statements

All data were collected, after certification of a written patient’s non opposition. All underage participants had written informed consent provided on their behalf by their parent/legal guardian. According to the European regulation, French observational studies from data obtained routinely, from patient health-care records, do not need the approval of an ethics committee [10]. These anonymized data issued from medical records were analyzed, which was authorized according to the Regulatory authorities (Commission Nationale Informatique et Libertés (CNIL) number 2046957 v 0.

Study population

Most consultations for overweight or obesity originated from general practitioners, school nurses or parents on their own. Each consulting child has a physical exam done in the same box and additional analyzes done at the day hospital of the pediatric department. Anthropometric assessments of children with the parent present were obtained out of the physical exam. Blood pressure (BP) was obtained prior to hormonal and metabolic analyzes. The number of children progressively increased since the first inclusion in the GuiChOG. After six years, 150 children completed the anthropometric, hormonal and metabolic evaluation.

Measurements

The same pediatrician performed the clinical measurements in children involved in the study. The height was measured to the nearest 0.1 cm using a wall mount mechanical Seca 206 bodymeter. The Waist circumference (WC) was measured midway between the lowest border of rib cage and the upper border of iliac crest, at the end of normal expiration, using a Seca 201CM Ergonomic Circumference Measuring Tape. The supine length was measured to the nearest 0.5 cm with a standardized length board consisting of a fixed board for the infant’s head and a movable board allowing feet to be placed perpendicular to the longitudinal axis of the infant. The weight was measured to the nearest 0.1 kg using a medical digital balance (Seca Mechanical Floor Scales - Model 762). The body mass index (BMI = weight/length2) was calculated. The weight and height of parents present during the visit was measured and BMI calculated. BMI was converted into z-scores to adjust for age and sex using the French references curves (Rolland-Cachera, Sempé) [11, 12]. We also performed the waist-to-height ratio (WTHR) measurement as it is useful as a screening tool for metabolic problems related to obesity because of its convenience [13].
The blood pressure was measured on the right arm of seated subjects after 5 min of rest, using a GE Dinamap ProCare Auscultatory 400 Vital Signs Monitor and an appropriately sized arm cuff. Three measurements were undertaken per participant. For each patient, the retained blood pressure value for this study was the mean of three measurements [14]. Above 4 years of age, glucose tolerance was assessed using an oral glucose tolerance test (OGTT) performed with the administration of 1.75 g of glucose solution per kilogram of body weight (without exceeding 75 g per dose, whatever the weight), after an overnight fast [15]. The blood samples were drawn at 0, 30 and 120 min for measurements of glucose and insulin.

Assays

Blood analyses were performed on a venous cord blood sample obtained after an overnight fast. Glucose was measured immediately whereas samples for hormonal analysis were quickly centrifuged and serum was separated and stored at − 80 °C until analysis. Serum insulin was measured by an IRMA kit (BI-INS-IRMA) from Cis Bio international (Gifsur-Yvette, France). Cross-reactivity with pro insulin and derived metabolites was less than 1%. Assay sensitivity was 3.0 pmol/L. Serum leptin was measured using a specific radioimmunoassay (Linco research, St Charles, USA). Sensitivity of the assay is 0.4 ng/ml. Intra- and inter- assay coefficients of variation are 5.2 and 8.7% respectively at 2.3 ng/ml. Insulin sensitivity was assessed from fasting insulin and glucose levels using the index QUICKI (Quantitative insulin sensitivity check index) as 1/(log (fasting insulin) + log (fasting glucose) [16].

Definition of overweight and obesity

Body mass index (BMI) is a measure used to determine childhood overweight and obesity. Overweight is defined as a BMI at or above the 85th percentile and below the 95th percentile for children and teens of the same age and sex [17]. Obesity is defined as a BMI at or above the 95th percentile for children and teens of the same age and sex [17].

Definitions of metabolic risk

For children, metabolic syndrome can be diagnosed with abdominal obesity (using waist circumference percentiles) and the presence of two or more other clinical features (elevated triglycerides, low HDL-cholesterol, high blood pressure, increased plasma glucose) [18]. To examine the presence and predictors of Metabolically normal obesity (MNO), we applied a more clinically relevant classification, in which participants were dichotomized based on the presence/absence of the following five traditional criteria of metabolic syndrome: obesity, hyperglycemia, atherogenic dyslipidemia, low HDL-cholesterol and hypertension (MNO: 0; metabolically abnormal obesity (MAO): ≥2criteria) [19, 20].

Statistical analysis

Statistical analyses were performed using STATA software version 13 (Stata Statistical Software: Release 13. College Station, TX: StataCorp LP) with statistical significance set at P < 0.05. Means, SDs, and ranges were calculated for all continuous variables. Independent samples t tests were used to compare continuous variables between groups. Multivariable logistic regression was used to examine the association between each of the variables and metabolic unhealthy status with adjustment for age and sex. Because there were no sex interactions, all analyses were conducted collapsed across sex. Subsequently, each of the strongest independent predictors of MAO within three main categories of variables: 1) adiposity (weight, BMI, BMI percentile, BMI z-score, and waist circumference); and 2) PA-related (moderate PA, very hard PA,) were entered into a logistic regression model with adjustment for age and sex. To facilitate comparisons between variables, odds ratios (ORs) were expressed per SD units. All analyses were adjusted for sex and age, except when BMI z-score was included in the models since this variable already adjusts for interindividual differences in sex and age. The final model included variables that were significantly associated with the severe obesity in a single covariable analysis.

Results

Our group classifications revealed that 36 of 150 (24%) participants were classified as being MAO, while 114 of 150 (76%) were categorized as MNO (Table 1). Patients with MAO were older. Their mothers had more severe obesity. We also observed that their systolic blood pressure was higher. The median Z-score BMI of children with MAO was 4, 9 [4, 05–5, 38], which shows a more obese condition than the MNO group. The median waist-to-height ratio (WTHR) of our study population was high, either 0.63 [0.54–0.59]. No significant differences in the term of pregnancy, father’s obesity, gender, birth weight, feeding, diastolic blood pressure and WTHR were found between the two groups (Table 1). The predictors of MAO status, after adjusting for age and sex, were mother’s obesity and high child’s waist circumference (Table 1). We described comorbidity in 12 patients (Table 2). Among them, there were two Down syndrome, one Cornelia de Lange syndrome, one Nephrotic Syndrome and one Epilepsy. Table 3 showed that leptin hormone and insulin levels were higher in MAO than in MNO, while 25-OH D-vitamin was higher in MNO. There was no statistically significant difference of urinary free cortisol between the two groups.
Table 1
Comparison of demography, anthropometry and clinical characteristics of obese children
Characteristics
Metabolically Normal Obesity n = 114 (%)
Metabolically Abnormal Obesity n = 36 (%)
p-value
p*
Age (years, median, range)
8,85 (5,92–11,10)
11,12 (9,93–13,36)
< 0,001
 
Sex
  
0.09
 
 Boys
63 (55)
14 (39)
 
 Girls
51(45)
22 (61)
 
Birth weight (Kg, median, range)
3.310 (3.020–3.560)
3.175 (2.940–3.580)
0.5
 
Comorbidity
  
0.9
 
 No
104 (91)
33 (92)
 
 Yes
10 (9)
3 (8)
 
Mother’s obesity (n = 123)
  
0.003
0,02
 Nonobese (BMI < 25 Kg/m2)
19 (20)
1 (4)
  
 Overweight (25 < BMI < 30 Kg/m2)
32 (34)
4 (14)
 
 Obese (BMI?30/Kg/m2)
44 (46)
23 (82)
 
Father’s obesity (n = 68)
  
0.6
 
 Nonobese (BMI < 25 Kg/m2)
10 (18)
3 (25)
 
 Overweight (25 < BMI < 30 Kg/m2)
21 (38)
4 (33)
 
 Obese (BMI?30 /Kg/m2)
25 (45)
5 (42)
 
Term pregnancy (n = 123)
 Full-term birth
91 (97)
28 (97
0.9
 
 Premature birth
3 (3)
1 (3)
 
Feeding (n = 129)
  
0.1
 
 Breastfeeding
25 (26)
4 (13)
 
 Formula or mixed
73 (74)
27 (87)
 
BMI (Z-score, median, range)
4,42[3,94–5,28]
4,9[4,05–5,38]
< 0,001
 
Overweight or obesity
 Overweight
6 (5)
0 (0)
0.6
 
 Obesity
108 (95)
36 (100)
 
Systolic blood pressure (mmHg, median, range)
111 (106–121)
133.5 (123.5–138.5)
0.001
 
Diastolic blood pressure (mmHg, median, range)
70 (66–77)
79.5 (72.5–84.5)
0.06
Waist circumference (cm, median, range)
85 (78–96)
103 (94–109)
< 0.001
< 0.001
Waist-to-height ratio
0.62 [0.58–0.67]
0.66 [0.61–0.69]
0.3
 
p*obtained after a multivariate analysis
Table 2
Comorbidities in obese children
Comorbidities
Number
Asthma and allergy
2
Tyrisomy 21
2
Type 2 diabetes
1
Hemoglobin Korle Bu
1
Sickle cell HbSC disease
1
Cornelia de Lange syndrome
1
Nephrotic Syndrome
1
Epilepsy
1
Psychomotor retardation
1
Dysmorphic syndrome
1
Table 3
Biological characteristics of obese children
Characteristics
Metabolically Normal Obesity n = 114 (%)
Metabolically Abnormal Obesity n = 36 (%)
p-value
Triglycerids (mmol/L) median, range
0.76 (0.62–1,27)
0.99 (0,70–1,58)
0.2
HDL cholesterol (mmol/l) median, range
1.19 (0.99–1.36)
1.22 (0.96–1.39)
0.5
Total cholesterol (mmol/l) median, range
4.1 (3.64–4.70)
4.07 (3.50–4.62)
0.7
HbA1C (%)
5.2 (4.9–5.35)
5.5 (5.1–5.8)
0.1
Leptin hormone (ng/ml) median, range
26.95 (17.82–40.96)
35.6 (28.85–48.75)
0.02
IGF1 (ng/ml) median, range
221 (185–267.7)
276.2 (237.9–325.7)
0.3
IGFBP3 (mg/l) median, range
4.6 (3.7–25.71)
4.8 (4.7–5.4)
0.4
Insulin level (μU/ml) median, ragne
12.8 (6.9–20.7)
24.4 (15.65–38.05)
0.01
Glycemia (mmol/l) median, range
4.6 (4.3–5.1)
4.8 (4.5–5.05)
0.3
25 OHD Vitamin (μg/l) median, range
28.2 (24–33)
25 (22–31)
0.03
Urinary free cortisol l(nmol/24 h) median, range
43 (21–60)
42 (24.5–67)
0.7
HDL high density lopoprotein

Discussion

The high prevalence of pediatric obesity highlights the importance to understand its associated factors in order to offer a multidisciplinary weight management care for children with obesity.
It has been described a correlation between sedentary behaviour (SED) in children and elevated risk of obesity because of parental obesity [2123]. It is also known that childhood obesity is connected with familial and environmental factors, including incorrect eating habits [2426].
Our study confirms that the child’s obesity is often related to that of the parents, especially that of the mother [2733]. Indeed, maternal obesity just before pregnancy was associated with more than triple the likelihood of severe childhood obesity [34]. Mothers play a crucial role in the family fabric as they are a model for their children. Thus, the prevention of obesity must be done by supporting mothers to build a healthy home environment. [35]. There are certainly genetic factors, but dietary habits also play a major role. For example, one study found that consuming fruits, even from children whose mothers were very obese during pregnancy, reduced by three, the risk of obesity [36]. We also highlight the need of monitoring the waist circumference, in order to prevent the worsening of obesity. Waist circumference for age and gender is used to define abdominal obesity [37]. WC is the simplest and most widely accepted clinical measure for measuring central pubertal obesity. It is a non-invasive and easy to perform method. In young children, WC is a better estimate of body fat percentage, after sex and age adjustment. According to the literature data [38], among adolescents, the waist circumference tends to increase with age in both girls and boys. This is a phenomenon expected during puberty, which represents a critical period for the development and distribution of body fat. At equal ages, boys often have higher waist circumference values than girls. This is probably explained by the distribution of adipose tissue that is different in boys and girls. Boys are mostly faced with an overload android, with accumulate fat on the upper body, while in girls, fat accumulates mostly on the lower body. Thus, waist circumference measurement can be used to determine the risk profile of metabolic syndrome and cardiovascular disease.
The same is true for risk factors for cardiovascular disease in children, where WC is a better predictor than BMI [39, 40]. In our study, breastfeeding was not associated with child’s BMI at this age-group. Even though it was high in our study population, the WHTR showed no significant relationship with the MAO. In agreement with other studies, WHTR is less useful in classifying children’s obesity status than BMI or WC [41, 42].
Children with MAO had significantly lower mean 25(OH)D levels than those with MNO. Several mechanisms could explain the relationship between Vitamine D deficiency and obesity. These mechanisms include the dilution or deposition of ingested or dermally synthesized Vitamin D in high-volume fat compartments, reducing its bioavailability [43, 44], a decrease in the exposure to solar UV radiation and a decrease of the external activity of the cutaneous vitamin D synthesis [45]. Leptin hormone and insulin levels were higher in MAO than in MNO. Authors have reported a relationship between Vitamin D, insulin resistance and leptin level. High leptin levels increase the expression of pro-inflammatory and pro-angiogenic cytokines [46]. However, vitamin D deficiency is associated with chronic inflammation and may predispose to insulin resistance [4749].
Our study had several strengths, such as the fact that similar studies have not been carried out previously in Guianese children. Trained health professionals who used the same anatomical sites and measurement tools collected anthropometric data. In addition, the results are likely to be representative of severe obese children in Cayenne because the BMI data were collected over a specific recent period within the local pediatric unit only.
Our study presents also some limitations, among which the lack of information on the effect of the pubertal state on the anthropometric indices. Children with MAO were significantly older and probably more sexually mature than those with MNO, which might have affected the fat distribution and biased the anthropometric results. The monocentric character of the study and the low power do not allow the generalization of these data throughout French Guiana.
These findings suggest the value of early and careful monitoring of BMI and WC in order to identify in time the children most at risk of severe obesity and metabolic syndrome in adolescence. Although further studies on the risk factors for severe obesity are needed, the factors described in our study could be considered in screening, monitoring, and interventions to reduce severe childhood obesity.

Conclusion

Our data can be used to inform clinicians about the heterogeneity of pediatric obesity. They indicate the need to incorporate waist circumference into routine clinical practice, in addition to traditional measures of weight, height, BMI and WHTR.

Acknowledgements

The authors would like to thank Pr Jean-Claude CAREL from the Endocrinology-Diabetology department; University hospital Hôpital Robert Debré; 48 boulevard Sérurier; 75019 PARIS; FRANCE for his advice and corrections.

Availability of data and materials

Our database is available from the corresponding author on reasonable request.
An informed written consent to participate in the study has been obtained from each parent or legal guardian.
According to the European regulation, French observational studies from data obtained routinely, from patient health-care records, do not need the approval of an ethics committee [10]. These anonymized data issued from medical records were analyzed, which was authorized according to the Regulatory authorities (Commission Nationale Informatique et Libertés (CNIL) number 2046957 v 0.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Njuieyon F, Buende Eyenga RS, Elenga N. Incidence du diabète chez les enfants de moins de 15 ans en Guyane française : 2011–2013. Ann Endocrinol. 2014;75(5–6):374.CrossRef Njuieyon F, Buende Eyenga RS, Elenga N. Incidence du diabète chez les enfants de moins de 15 ans en Guyane française : 2011–2013. Ann Endocrinol. 2014;75(5–6):374.CrossRef
2.
Zurück zum Zitat Sahoo K, Sahoo B, Choudhury AK, Sofi NY, Kumar R, Bhadoria AS. Childhood obesity: causes and consequences. J Fam Med Prim Care. 2015;4(2):187–92.CrossRef Sahoo K, Sahoo B, Choudhury AK, Sofi NY, Kumar R, Bhadoria AS. Childhood obesity: causes and consequences. J Fam Med Prim Care. 2015;4(2):187–92.CrossRef
3.
Zurück zum Zitat Davila N, Vess J, Johnson EE. Identification and Management of Obese Patients in a pediatric Orthopaedic clinic. Orthop Nurs. 2017;36(3):194–200.CrossRefPubMed Davila N, Vess J, Johnson EE. Identification and Management of Obese Patients in a pediatric Orthopaedic clinic. Orthop Nurs. 2017;36(3):194–200.CrossRefPubMed
4.
Zurück zum Zitat Eisenberg CM, Sánchez-Romero LM, Rivera-Dommarco JA, Holub CK, Arredondo EM, Elder JP, et al. Interventions to increase physical activity and healthy eating among overweight and obese children in Mexico. Salud Publica Mex. 2013;55(Suppl 3):441–6.PubMed Eisenberg CM, Sánchez-Romero LM, Rivera-Dommarco JA, Holub CK, Arredondo EM, Elder JP, et al. Interventions to increase physical activity and healthy eating among overweight and obese children in Mexico. Salud Publica Mex. 2013;55(Suppl 3):441–6.PubMed
5.
Zurück zum Zitat Bocca G, Corpeleijn E, Stolk RP, Sauer PJ. Results of a multidisciplinary treatment program in 3-year-old to 5-year-old overweight or obese children: a randomized controlled clinical trial. Arch PediatrAdolesc Med. 2012;166(12):1109–15.CrossRef Bocca G, Corpeleijn E, Stolk RP, Sauer PJ. Results of a multidisciplinary treatment program in 3-year-old to 5-year-old overweight or obese children: a randomized controlled clinical trial. Arch PediatrAdolesc Med. 2012;166(12):1109–15.CrossRef
6.
Zurück zum Zitat Flynn MA, McNeil DA, Maloff B, et al. Reducing obesity and related chronic disease risk in children and youth: a synthesis of evidence with ‘best practice’ recommendations. Obes Rev. 2006;7(Suppl 1):7–66.CrossRefPubMed Flynn MA, McNeil DA, Maloff B, et al. Reducing obesity and related chronic disease risk in children and youth: a synthesis of evidence with ‘best practice’ recommendations. Obes Rev. 2006;7(Suppl 1):7–66.CrossRefPubMed
8.
Zurück zum Zitat Silva HP, Padez C, Moura EA, Filgueiras LA. Obesity, hypertension, socialdeterminants of health and the epidemiologic transition among traditional Amazonian populations. Ann Hum Biol. 2016;43(4):371–81. Silva HP, Padez C, Moura EA, Filgueiras LA. Obesity, hypertension, socialdeterminants of health and the epidemiologic transition among traditional Amazonian populations. Ann Hum Biol. 2016;43(4):371–81.
9.
Zurück zum Zitat The French National Nutrition and Health Program solidarites-sante.gouv.fr/IMG/pdf/PNNS_UK_INDD_V2.pdf. Accessed 2010. The French National Nutrition and Health Program solidarites-sante.​gouv.​fr/IMG/pdf/PNNS_UK_INDD_V2.pdf. Accessed 2010.
11.
Zurück zum Zitat Rolland-Cachera MF, Péneau S. Assessment of growth: variations according to references and growth parameters used. Am J Clin Nutr. 2011;94:1794S–8S.CrossRefPubMed Rolland-Cachera MF, Péneau S. Assessment of growth: variations according to references and growth parameters used. Am J Clin Nutr. 2011;94:1794S–8S.CrossRefPubMed
12.
Zurück zum Zitat Rolland-Cachera MF, Cole TJ, Sempé M, Tichet J, Rossignol C, Charraud A. Body mass index variations: centiles from birth to 87 years. Eur J Clin Nutr. 1991;45:13–21.PubMed Rolland-Cachera MF, Cole TJ, Sempé M, Tichet J, Rossignol C, Charraud A. Body mass index variations: centiles from birth to 87 years. Eur J Clin Nutr. 1991;45:13–21.PubMed
13.
Zurück zum Zitat Herman KM, Sabiston CM, Mathieu ME, Tremblay A, Paradis G. Correlates of sedentary behaviour in 8- to 10-year-old children at elevated risk for obesity. Appl Physiol Nutr Metab. 2015;40(1):10–9.CrossRefPubMed Herman KM, Sabiston CM, Mathieu ME, Tremblay A, Paradis G. Correlates of sedentary behaviour in 8- to 10-year-old children at elevated risk for obesity. Appl Physiol Nutr Metab. 2015;40(1):10–9.CrossRefPubMed
15.
Zurück zum Zitat Manell E, Hedenqvist P, Svensson A, Jensen-Waern M. Establishment of a refined oral glucose tolerance test in pigs, and assessment of insulin, glucagon and glucagon-like Peptide-1 responses. Xu E, ed PLoS ONE. 2016;11(2):e0148896.CrossRef Manell E, Hedenqvist P, Svensson A, Jensen-Waern M. Establishment of a refined oral glucose tolerance test in pigs, and assessment of insulin, glucagon and glucagon-like Peptide-1 responses. Xu E, ed PLoS ONE. 2016;11(2):e0148896.CrossRef
16.
Zurück zum Zitat Katz A, Nambi SS, Mather K, Baron AD, Follmann DA, Sullivan G, et al. Quantitative insulin sensitivity check index: a simple, accurate method for assessing insulin sensitivity in humans. J Clin Endocrinol Metab. 2000;85(7):2402–10.CrossRefPubMed Katz A, Nambi SS, Mather K, Baron AD, Follmann DA, Sullivan G, et al. Quantitative insulin sensitivity check index: a simple, accurate method for assessing insulin sensitivity in humans. J Clin Endocrinol Metab. 2000;85(7):2402–10.CrossRefPubMed
17.
Zurück zum Zitat Gahagan S. Overweight and obesity. In: Kliegman RM, Stanton BF, St. Geme JW, Schor NF, editors. Nelson Textbook of Pediatrics. 20th ed. Philadelphia: Elsevier; 2016. p. chap 47. Gahagan S. Overweight and obesity. In: Kliegman RM, Stanton BF, St. Geme JW, Schor NF, editors. Nelson Textbook of Pediatrics. 20th ed. Philadelphia: Elsevier; 2016. p. chap 47.
18.
Zurück zum Zitat Alberti KGMM, Zimmet PZ, Shaw JE. The metabolic syndrome in children and adolescents. Lancet. 2007;369:2059–61.CrossRefPubMed Alberti KGMM, Zimmet PZ, Shaw JE. The metabolic syndrome in children and adolescents. Lancet. 2007;369:2059–61.CrossRefPubMed
21.
Zurück zum Zitat Lo K, Wong M, Khalechelvam P, Tam W. Waist-to-height ratio, body mass index and waist circumference for screening pediatric cardio-metabolic risk factors: a meta-analysis. Obes Rev. 2016;17(12):1258–75.CrossRefPubMed Lo K, Wong M, Khalechelvam P, Tam W. Waist-to-height ratio, body mass index and waist circumference for screening pediatric cardio-metabolic risk factors: a meta-analysis. Obes Rev. 2016;17(12):1258–75.CrossRefPubMed
22.
Zurück zum Zitat de Jong E, Visscher TL, HiraSing RA, Heymans MW, Seidell JC, Renders CM. Association between TV viewing, computer use and overweight, determinants and competing activities of screen time in 4- to 13-year-old children. Int J Obes. 2013;37(1):47–53.CrossRef de Jong E, Visscher TL, HiraSing RA, Heymans MW, Seidell JC, Renders CM. Association between TV viewing, computer use and overweight, determinants and competing activities of screen time in 4- to 13-year-old children. Int J Obes. 2013;37(1):47–53.CrossRef
23.
Zurück zum Zitat Herman KM, Chaput JP, Sabiston CM, Mathieu ME, Tremblay A, Paradis G. Combined physical activity/sedentary behaviour associations with indices of adiposity in 8- to 10-year-old children. J Phys Act Health. 2015;12(1):20–9.CrossRefPubMed Herman KM, Chaput JP, Sabiston CM, Mathieu ME, Tremblay A, Paradis G. Combined physical activity/sedentary behaviour associations with indices of adiposity in 8- to 10-year-old children. J Phys Act Health. 2015;12(1):20–9.CrossRefPubMed
24.
Zurück zum Zitat Weker H. Simple obesity in children. A study on the role of nutritional factors. Med WiekuRozwoj. 2006;10(1):3–191. Weker H. Simple obesity in children. A study on the role of nutritional factors. Med WiekuRozwoj. 2006;10(1):3–191.
25.
Zurück zum Zitat Connelly JB, Duaso MJ, Butler G. A systematic review of controlled trials of interventions to prevent childhood obesity and overweight: a realistic synthesis of the evidence. Public Health. 2007;121(7):510–7.CrossRefPubMed Connelly JB, Duaso MJ, Butler G. A systematic review of controlled trials of interventions to prevent childhood obesity and overweight: a realistic synthesis of the evidence. Public Health. 2007;121(7):510–7.CrossRefPubMed
26.
Zurück zum Zitat Cottrell EC, Ozanne SE. Early life programming of obesity and metabolic disease. Physiol Behav. 2008;94(1):17–28.CrossRefPubMed Cottrell EC, Ozanne SE. Early life programming of obesity and metabolic disease. Physiol Behav. 2008;94(1):17–28.CrossRefPubMed
28.
Zurück zum Zitat Do LM, Larsson V, Tran TK, Nguyen HT, Eriksson B, Ascher H. Vietnamese mother's conceptions of childhood overweight: findings from a qualitative study. Glob Health Action. 2016;9(1):30215.CrossRefPubMed Do LM, Larsson V, Tran TK, Nguyen HT, Eriksson B, Ascher H. Vietnamese mother's conceptions of childhood overweight: findings from a qualitative study. Glob Health Action. 2016;9(1):30215.CrossRefPubMed
29.
Zurück zum Zitat Blewitt C, Bergmeier H, Macdonald JA, Olsson CA, Skouteris H. Associations between parent-child relationship quality and obesogenic risk in adolescence: a systematic review of recent literature. Obes Rev. 2016;17(7):612–22.CrossRefPubMed Blewitt C, Bergmeier H, Macdonald JA, Olsson CA, Skouteris H. Associations between parent-child relationship quality and obesogenic risk in adolescence: a systematic review of recent literature. Obes Rev. 2016;17(7):612–22.CrossRefPubMed
30.
Zurück zum Zitat Keitel-Korndörfer A, Sierau S, Klein AM, Bergmann S, Grube M, von Klitzing K. Insatiable insecurity: maternal obesity as a risk factor for mother-child attachment and child weight. Attach Hum Dev. 2015;17(4):399–413.CrossRefPubMed Keitel-Korndörfer A, Sierau S, Klein AM, Bergmann S, Grube M, von Klitzing K. Insatiable insecurity: maternal obesity as a risk factor for mother-child attachment and child weight. Attach Hum Dev. 2015;17(4):399–413.CrossRefPubMed
32.
Zurück zum Zitat Anderson SE, Lemeshow S, Whitaker RC. Maternal-infant relationship quality and risk of obesity at age 5.5 years in a national US cohort. BMC Pediatr. 2014;24(14):54.CrossRef Anderson SE, Lemeshow S, Whitaker RC. Maternal-infant relationship quality and risk of obesity at age 5.5 years in a national US cohort. BMC Pediatr. 2014;24(14):54.CrossRef
33.
Zurück zum Zitat Ehrenthal DB, Maiden K, Rao A, West DW, Gidding SS, Bartoshesky L, et al. Independent relation of maternal prenatal factors to early childhood obesity in the offspring. Obstet Gynecol. 2013;121(1):115–21. Ehrenthal DB, Maiden K, Rao A, West DW, Gidding SS, Bartoshesky L, et al. Independent relation of maternal prenatal factors to early childhood obesity in the offspring. Obstet Gynecol. 2013;121(1):115–21.
34.
Zurück zum Zitat Styne DM, Arslanian SA, Connor EL, et al. Pediatric obesity-assessment, treatment, and prevention: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2017;102(3):709–57.PubMed Styne DM, Arslanian SA, Connor EL, et al. Pediatric obesity-assessment, treatment, and prevention: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2017;102(3):709–57.PubMed
35.
Zurück zum Zitat Kondolot M, Poyrazoğlu S, Horoz D, et al. Risk factors for overweight and obesity in children aged 2-6 years. J Pediatr Endocrinol Metab. 2017;30(5):499–505.CrossRefPubMed Kondolot M, Poyrazoğlu S, Horoz D, et al. Risk factors for overweight and obesity in children aged 2-6 years. J Pediatr Endocrinol Metab. 2017;30(5):499–505.CrossRefPubMed
36.
Zurück zum Zitat Flores G, Lin H. Factors predicting severe childhood obesity in kindergarteners. Int J Obes. 2013;37(1):31–9.CrossRef Flores G, Lin H. Factors predicting severe childhood obesity in kindergarteners. Int J Obes. 2013;37(1):31–9.CrossRef
37.
Zurück zum Zitat Taylor RW, Jones IE, Williams SM, Goulding A. Evaluation of waist circumference, waist-to-hip ratio, and the conicity index as screening tools for high trunk fat mass, as measured by dual-energy X-ray absorptiometry, in children aged 3-19 y. Am J Clin Nutr. 2000;72(2):490–5.CrossRefPubMed Taylor RW, Jones IE, Williams SM, Goulding A. Evaluation of waist circumference, waist-to-hip ratio, and the conicity index as screening tools for high trunk fat mass, as measured by dual-energy X-ray absorptiometry, in children aged 3-19 y. Am J Clin Nutr. 2000;72(2):490–5.CrossRefPubMed
38.
Zurück zum Zitat James PT, Leach R, Kalamara E, Shayeghi M. The worldwide obesity epidemic. Obes Res. 2001;9(Suppl 4):228S–33S.CrossRefPubMed James PT, Leach R, Kalamara E, Shayeghi M. The worldwide obesity epidemic. Obes Res. 2001;9(Suppl 4):228S–33S.CrossRefPubMed
39.
Zurück zum Zitat Bacopoulou F, Efthymiou V, Landis G, Rentoumis A, Chrousos GP. Waist circumference, waist-to-hip ratio and waist-to-height ratio reference percentiles for abdominal obesity among Greek adolescents. BMC Pediatr. 2015;15:50.CrossRefPubMedPubMedCentral Bacopoulou F, Efthymiou V, Landis G, Rentoumis A, Chrousos GP. Waist circumference, waist-to-hip ratio and waist-to-height ratio reference percentiles for abdominal obesity among Greek adolescents. BMC Pediatr. 2015;15:50.CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Friedemann C, Heneghan C, Mahtani K, Thompson M, Perera R, Ward AM. Cardiovascular disease risk in healthy children and its association with body mass index: systematic review and meta-analysis. BMJ. 2012;345:e4759.CrossRefPubMedPubMedCentral Friedemann C, Heneghan C, Mahtani K, Thompson M, Perera R, Ward AM. Cardiovascular disease risk in healthy children and its association with body mass index: systematic review and meta-analysis. BMJ. 2012;345:e4759.CrossRefPubMedPubMedCentral
41.
Zurück zum Zitat de Moraes AC, Fadoni RP, Ricardi LM, et al. Prevalence of abdominal obesity in adolescents: a systematic review. Obes Rev. 2011;12(2):69–77.CrossRefPubMed de Moraes AC, Fadoni RP, Ricardi LM, et al. Prevalence of abdominal obesity in adolescents: a systematic review. Obes Rev. 2011;12(2):69–77.CrossRefPubMed
42.
Zurück zum Zitat Hubert H, Guinhouya CB, Allard L, Durocher A. Comparison of the diagnostic quality of body mass index, waist circumference and waist-to-height ratio in screening skinfold-determined obesity among children. J Sci Med Sport. 2009;12:449–51.CrossRefPubMed Hubert H, Guinhouya CB, Allard L, Durocher A. Comparison of the diagnostic quality of body mass index, waist circumference and waist-to-height ratio in screening skinfold-determined obesity among children. J Sci Med Sport. 2009;12:449–51.CrossRefPubMed
43.
Zurück zum Zitat Sijtsma A, Bocca G, L'abée C, Liem ET, Sauer PJ, Corpeleijn E. Waist-to-height ratio, waist circumference and BMI as indicators of percentage fat mass and cardiometabolic risk factors in children aged 3-7 years. Clin Nutr. 2014;33(2):311–5.CrossRefPubMed Sijtsma A, Bocca G, L'abée C, Liem ET, Sauer PJ, Corpeleijn E. Waist-to-height ratio, waist circumference and BMI as indicators of percentage fat mass and cardiometabolic risk factors in children aged 3-7 years. Clin Nutr. 2014;33(2):311–5.CrossRefPubMed
44.
Zurück zum Zitat Wortsman J, Matsuoka LY, Chen TC, Lu Z, Holick MF. Decreased bioavailability of vitamin D in obesity. Am J Clin Nutr. 2000;72:690–3.CrossRefPubMed Wortsman J, Matsuoka LY, Chen TC, Lu Z, Holick MF. Decreased bioavailability of vitamin D in obesity. Am J Clin Nutr. 2000;72:690–3.CrossRefPubMed
45.
Zurück zum Zitat Drincic AT, Armas LA, Van Diest EE, Heaney RP. Volumetric dilution, rather than sequestration best explains the low vitamin D status of obesity. Obesity (Silver Spring). 2012;20:1444–8.CrossRef Drincic AT, Armas LA, Van Diest EE, Heaney RP. Volumetric dilution, rather than sequestration best explains the low vitamin D status of obesity. Obesity (Silver Spring). 2012;20:1444–8.CrossRef
46.
Zurück zum Zitat Florez H, Martinez R, Chacra W, Strickman-Stein N, Levis S. Outdoor exercise reduces the risk of hypovitaminosis D in the obese. J Steroid Biochem Mol Biol. 2007;103:679–81.CrossRefPubMed Florez H, Martinez R, Chacra W, Strickman-Stein N, Levis S. Outdoor exercise reduces the risk of hypovitaminosis D in the obese. J Steroid Biochem Mol Biol. 2007;103:679–81.CrossRefPubMed
47.
Zurück zum Zitat Aleffi S, Petrai I, Bertolani C, et al. Upregulation of proinflammatory and proangiogenic cytokines by leptin in human hepatic stellate cells. Hepatology. 2005;42:1339–48.CrossRefPubMed Aleffi S, Petrai I, Bertolani C, et al. Upregulation of proinflammatory and proangiogenic cytokines by leptin in human hepatic stellate cells. Hepatology. 2005;42:1339–48.CrossRefPubMed
48.
Zurück zum Zitat Walsh JM, McGowan CA, Kilbane M, McKenna MJ, McAuliffe FM. The relationship between maternal and fetal vitamin D, insulin resistance, and fetal growth. Reprod Sci. 2013;20(5):536–41.CrossRefPubMedPubMedCentral Walsh JM, McGowan CA, Kilbane M, McKenna MJ, McAuliffe FM. The relationship between maternal and fetal vitamin D, insulin resistance, and fetal growth. Reprod Sci. 2013;20(5):536–41.CrossRefPubMedPubMedCentral
49.
Zurück zum Zitat Rambhojan C, Larifla L, Clepier J, et al. Vitamin D status, insulin resistance, leptin-to-adiponectin ratio in adolescents: results of a 1-year lifestyle intervention. Open Access Maced J Med Sci. 2016;4(4):596–602.CrossRefPubMedPubMedCentral Rambhojan C, Larifla L, Clepier J, et al. Vitamin D status, insulin resistance, leptin-to-adiponectin ratio in adolescents: results of a 1-year lifestyle intervention. Open Access Maced J Med Sci. 2016;4(4):596–602.CrossRefPubMedPubMedCentral
Metadaten
Titel
Mother’s obesity and high child’s waist circumference are predictive factors of severe child’s obesity: an observational study in French Guiana
verfasst von
Falucar Njuieyon
Emma Cuadro-Alvarez
Elise Martin
Noémie Lachaume
Yajaira Mrsic
Fanny Henaff
Chimène Maniassom
Antoine Defo
Narcisse Elenga
Publikationsdatum
01.12.2018
Verlag
BioMed Central
Erschienen in
BMC Pediatrics / Ausgabe 1/2018
Elektronische ISSN: 1471-2431
DOI
https://doi.org/10.1186/s12887-018-1158-z

Weitere Artikel der Ausgabe 1/2018

BMC Pediatrics 1/2018 Zur Ausgabe

Ähnliche Überlebensraten nach Reanimation während des Transports bzw. vor Ort

29.05.2024 Reanimation im Kindesalter Nachrichten

Laut einer Studie aus den USA und Kanada scheint es bei der Reanimation von Kindern außerhalb einer Klinik keinen Unterschied für das Überleben zu machen, ob die Wiederbelebungsmaßnahmen während des Transports in die Klinik stattfinden oder vor Ort ausgeführt werden. Jedoch gibt es dabei einige Einschränkungen und eine wichtige Ausnahme.

Alter der Mutter beeinflusst Risiko für kongenitale Anomalie

28.05.2024 Kinder- und Jugendgynäkologie Nachrichten

Welchen Einfluss das Alter ihrer Mutter auf das Risiko hat, dass Kinder mit nicht chromosomal bedingter Malformation zur Welt kommen, hat eine ungarische Studie untersucht. Sie zeigt: Nicht nur fortgeschrittenes Alter ist riskant.

Begünstigt Bettruhe der Mutter doch das fetale Wachstum?

Ob ungeborene Kinder, die kleiner als die meisten Gleichaltrigen sind, schneller wachsen, wenn die Mutter sich mehr ausruht, wird diskutiert. Die Ergebnisse einer US-Studie sprechen dafür.

Bei Amblyopie früher abkleben als bisher empfohlen?

22.05.2024 Fehlsichtigkeit Nachrichten

Bei Amblyopie ist das frühzeitige Abkleben des kontralateralen Auges in den meisten Fällen wohl effektiver als der Therapiestandard mit zunächst mehrmonatigem Brilletragen.

Update Pädiatrie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.