Skip to main content
Erschienen in: Basic Research in Cardiology 1/2023

01.12.2023 | Mitochondria at the heart of cardioprotection

Musashi-2 causes cardiac hypertrophy and heart failure by inducing mitochondrial dysfunction through destabilizing Cluh and Smyd1 mRNA

verfasst von: Sandhya Singh, Aakash Gaur, Rakesh Kumar Sharma, Renu Kumari, Shakti Prakash, Sunaina Kumari, Ayushi Devendrasingh Chaudhary, Pankaj Prasun, Priyanka Pant, Hannah Hunkler, Thomas Thum, Kumaravelu Jagavelu, Pragya Bharati, Kashif Hanif, Pragya Chitkara, Shailesh Kumar, Kalyan Mitra, Shashi Kumar Gupta

Erschienen in: Basic Research in Cardiology | Ausgabe 1/2023

Einloggen, um Zugang zu erhalten

Abstract

Regulation of RNA stability and translation by RNA-binding proteins (RBPs) is a crucial process altering gene expression. Musashi family of RBPs comprising Msi1 and Msi2 is known to control RNA stability and translation. However, despite the presence of MSI2 in the heart, its function remains largely unknown. Here, we aim to explore the cardiac functions of MSI2. We confirmed the presence of MSI2 in the adult mouse, rat heart, and neonatal rat cardiomyocytes. Furthermore, Msi2 was significantly enriched in the heart cardiomyocyte fraction. Next, using RNA-seq data and isoform-specific PCR primers, we identified Msi2 isoforms 1, 4, and 5, and two novel putative isoforms labeled as Msi2 6 and 7 to be expressed in the heart. Overexpression of Msi2 isoforms led to cardiac hypertrophy in cultured cardiomyocytes. Additionally, Msi2 exhibited a significant increase in a pressure-overload model of cardiac hypertrophy. We selected isoforms 4 and 7 to validate the hypertrophic effects due to their unique alternative splicing patterns. AAV9-mediated overexpression of Msi2 isoforms 4 and 7 in murine hearts led to cardiac hypertrophy, dilation, heart failure, and eventually early death, confirming a pathological function for Msi2. Using global proteomics, gene ontology, transmission electron microscopy, seahorse, and transmembrane potential measurement assays, increased MSI2 was found to cause mitochondrial dysfunction in the heart. Mechanistically, we identified Cluh and Smyd1 as direct downstream targets of Msi2. Overexpression of Cluh and Smyd1 inhibited Msi2-induced cardiac malfunction and mitochondrial dysfunction. Collectively, we show that Msi2 induces hypertrophy, mitochondrial dysfunction, and heart failure.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
10.
Zurück zum Zitat Froese N, Cordero J, Abouissa A, Trogisch FA, Grein S, Szaroszyk M, Wang Y, Gigina A, Korf-Klingebiel M, Bosnjak B, Davenport CF, Wiehlmann L, Geffers R, Riechert E, Jurgensen L, Boileau E, Lin Y, Dieterich C, Forster R, Bauersachs J, Ola R, Dobreva G, Volkers M, Heineke J (2022) Analysis of myocardial cellular gene expression during pressure overload reveals matrix based functional intercellular communication. IScience 25:103965. https://doi.org/10.1016/j.isci.2022.103965CrossRefPubMedPubMedCentral Froese N, Cordero J, Abouissa A, Trogisch FA, Grein S, Szaroszyk M, Wang Y, Gigina A, Korf-Klingebiel M, Bosnjak B, Davenport CF, Wiehlmann L, Geffers R, Riechert E, Jurgensen L, Boileau E, Lin Y, Dieterich C, Forster R, Bauersachs J, Ola R, Dobreva G, Volkers M, Heineke J (2022) Analysis of myocardial cellular gene expression during pressure overload reveals matrix based functional intercellular communication. IScience 25:103965. https://​doi.​org/​10.​1016/​j.​isci.​2022.​103965CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Li X, La Salvia S, Liang Y, Adamiak M, Kohlbrenner E, Jeong D, Chepurko E, Ceholski D, Lopez-Gordo E, Yoon S, Mathiyalagan P, Agarwal N, Jha D, Lodha S, Daaboul G, Phan A, Raisinghani N, Zhang S, Zangi L, Gonzalez-Kozlova E, Dubois N, Dogra N, Hajjar RJ, Sahoo S (2023) Extracellular vesicle-encapsulated adeno-associated viruses for therapeutic gene delivery to the heart. Circulation 148:405–425. https://doi.org/10.1161/CIRCULATIONAHA.122.063759CrossRefPubMed Li X, La Salvia S, Liang Y, Adamiak M, Kohlbrenner E, Jeong D, Chepurko E, Ceholski D, Lopez-Gordo E, Yoon S, Mathiyalagan P, Agarwal N, Jha D, Lodha S, Daaboul G, Phan A, Raisinghani N, Zhang S, Zangi L, Gonzalez-Kozlova E, Dubois N, Dogra N, Hajjar RJ, Sahoo S (2023) Extracellular vesicle-encapsulated adeno-associated viruses for therapeutic gene delivery to the heart. Circulation 148:405–425. https://​doi.​org/​10.​1161/​CIRCULATIONAHA.​122.​063759CrossRefPubMed
24.
Zurück zum Zitat Paulus MG, Renner K, Nickel AG, Brochhausen C, Limm K, Zugner E, Baier MJ, Pabel S, Wallner S, Birner C, Luchner A, Magnes C, Oefner PJ, Stark KJ, Wagner S, Maack C, Maier LS, Streckfuss-Bomeke K, Sossalla S, Dietl A (2022) Tachycardiomyopathy entails a dysfunctional pattern of interrelated mitochondrial functions. Basic Res Cardiol 117:45. https://doi.org/10.1007/s00395-022-00949-0CrossRefPubMedPubMedCentral Paulus MG, Renner K, Nickel AG, Brochhausen C, Limm K, Zugner E, Baier MJ, Pabel S, Wallner S, Birner C, Luchner A, Magnes C, Oefner PJ, Stark KJ, Wagner S, Maack C, Maier LS, Streckfuss-Bomeke K, Sossalla S, Dietl A (2022) Tachycardiomyopathy entails a dysfunctional pattern of interrelated mitochondrial functions. Basic Res Cardiol 117:45. https://​doi.​org/​10.​1007/​s00395-022-00949-0CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Pun-Garcia A, Clemente-Moragon A, Villena-Gutierrez R, Gomez M, Sanz-Rosa D, Diaz-Guerra A, Prados B, Medina JP, Monto F, Ivorra MD, Marquez-Lopez C, Cannavo A, Bernal JA, Koch WJ, Fuster V, de la Pompa JL, Oliver E, Ibanez B (2022) Beta-3 adrenergic receptor overexpression reverses aortic stenosis-induced heart failure and restores balanced mitochondrial dynamics. Basic Res Cardiol 117:62. https://doi.org/10.1007/s00395-022-00966-zCrossRefPubMedPubMedCentral Pun-Garcia A, Clemente-Moragon A, Villena-Gutierrez R, Gomez M, Sanz-Rosa D, Diaz-Guerra A, Prados B, Medina JP, Monto F, Ivorra MD, Marquez-Lopez C, Cannavo A, Bernal JA, Koch WJ, Fuster V, de la Pompa JL, Oliver E, Ibanez B (2022) Beta-3 adrenergic receptor overexpression reverses aortic stenosis-induced heart failure and restores balanced mitochondrial dynamics. Basic Res Cardiol 117:62. https://​doi.​org/​10.​1007/​s00395-022-00966-zCrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Riechert E, Kmietczyk V, Stein F, Schwarzl T, Sekaran T, Jurgensen L, Kamuf-Schenk V, Varma E, Hofmann C, Rettel M, Gur K, Olschlager J, Kuhl F, Martin J, Ramirez-Pedraza M, Fernandez M, Doroudgar S, Mendez R, Katus HA, Hentze MW, Volkers M (2021) Identification of dynamic RNA-binding proteins uncovers a Cpeb4-controlled regulatory cascade during pathological cell growth of cardiomyocytes. Cell Rep 35:109100. https://doi.org/10.1016/j.celrep.2021.109100CrossRefPubMed Riechert E, Kmietczyk V, Stein F, Schwarzl T, Sekaran T, Jurgensen L, Kamuf-Schenk V, Varma E, Hofmann C, Rettel M, Gur K, Olschlager J, Kuhl F, Martin J, Ramirez-Pedraza M, Fernandez M, Doroudgar S, Mendez R, Katus HA, Hentze MW, Volkers M (2021) Identification of dynamic RNA-binding proteins uncovers a Cpeb4-controlled regulatory cascade during pathological cell growth of cardiomyocytes. Cell Rep 35:109100. https://​doi.​org/​10.​1016/​j.​celrep.​2021.​109100CrossRefPubMed
29.
Zurück zum Zitat Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM, Barengo NC, Beaton AZ, Benjamin EJ, Benziger CP, Bonny A, Brauer M, Brodmann M, Cahill TJ, Carapetis J, Catapano AL, Chugh SS, Cooper LT, Coresh J, Criqui M, DeCleene N, Eagle KA, Emmons-Bell S, Feigin VL, Fernandez-Sola J, Fowkes G, Gakidou E, Grundy SM, He FJ, Howard G, Hu F, Inker L, Karthikeyan G, Kassebaum N, Koroshetz W, Lavie C, Lloyd-Jones D, Lu HS, Mirijello A, Temesgen AM, Mokdad A, Moran AE, Muntner P, Narula J, Neal B, Ntsekhe M, Moraes de Oliveira G, Otto C, Owolabi M, Pratt M, Rajagopalan S, Reitsma M, Ribeiro ALP, Rigotti N, Rodgers A, Sable C, Shakil S, Sliwa-Hahnle K, Stark B, Sundstrom J, Timpel P, Tleyjeh IM, Valgimigli M, Vos T, Whelton PK, Yacoub M, Zuhlke L, Murray C, Fuster V, Group G-N-JGBoCDW (2020) Global burden of cardiovascular diseases and risk factors, 1990–2019: update from the GBD study. J Am Coll Cardiol. 76(2982):3021. https://doi.org/10.1016/j.jacc.2020.11.010CrossRef Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM, Barengo NC, Beaton AZ, Benjamin EJ, Benziger CP, Bonny A, Brauer M, Brodmann M, Cahill TJ, Carapetis J, Catapano AL, Chugh SS, Cooper LT, Coresh J, Criqui M, DeCleene N, Eagle KA, Emmons-Bell S, Feigin VL, Fernandez-Sola J, Fowkes G, Gakidou E, Grundy SM, He FJ, Howard G, Hu F, Inker L, Karthikeyan G, Kassebaum N, Koroshetz W, Lavie C, Lloyd-Jones D, Lu HS, Mirijello A, Temesgen AM, Mokdad A, Moran AE, Muntner P, Narula J, Neal B, Ntsekhe M, Moraes de Oliveira G, Otto C, Owolabi M, Pratt M, Rajagopalan S, Reitsma M, Ribeiro ALP, Rigotti N, Rodgers A, Sable C, Shakil S, Sliwa-Hahnle K, Stark B, Sundstrom J, Timpel P, Tleyjeh IM, Valgimigli M, Vos T, Whelton PK, Yacoub M, Zuhlke L, Murray C, Fuster V, Group G-N-JGBoCDW (2020) Global burden of cardiovascular diseases and risk factors, 1990–2019: update from the GBD study. J Am Coll Cardiol. 76(2982):3021. https://​doi.​org/​10.​1016/​j.​jacc.​2020.​11.​010CrossRef
33.
Zurück zum Zitat Sakakibara S, Nakamura Y, Satoh H, Okano H (2001) Rna-binding protein Musashi2: developmentally regulated expression in neural precursor cells and subpopulations of neurons in mammalian CNS. J Neurosci 21:8091–8107CrossRefPubMedPubMedCentral Sakakibara S, Nakamura Y, Satoh H, Okano H (2001) Rna-binding protein Musashi2: developmentally regulated expression in neural precursor cells and subpopulations of neurons in mammalian CNS. J Neurosci 21:8091–8107CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Schimmel K, Jung M, Foinquinos A, Jose GS, Beaumont J, Bock K, Grote-Levi L, Xiao K, Bar C, Pfanne A, Just A, Zimmer K, Ngoy S, Lopez B, Ravassa S, Samolovac S, Janssen-Peters H, Remke J, Scherf K, Dangwal S, Piccoli MT, Kleemiss F, Kreutzer FP, Kenneweg F, Leonardy J, Hobuss L, Santer L, Do QT, Geffers R, Braesen JH, Schmitz J, Brandenberger C, Muller DN, Wilck N, Kaever V, Bahre H, Batkai S, Fiedler J, Alexander KM, Wertheim BM, Fisch S, Liao R, Diez J, Gonzalez A, Thum T (2020) Natural compound library screening identifies new molecules for the treatment of cardiac fibrosis and diastolic dysfunction. Circulation 141:751–767. https://doi.org/10.1161/CIRCULATIONAHA.119.042559CrossRefPubMedPubMedCentral Schimmel K, Jung M, Foinquinos A, Jose GS, Beaumont J, Bock K, Grote-Levi L, Xiao K, Bar C, Pfanne A, Just A, Zimmer K, Ngoy S, Lopez B, Ravassa S, Samolovac S, Janssen-Peters H, Remke J, Scherf K, Dangwal S, Piccoli MT, Kleemiss F, Kreutzer FP, Kenneweg F, Leonardy J, Hobuss L, Santer L, Do QT, Geffers R, Braesen JH, Schmitz J, Brandenberger C, Muller DN, Wilck N, Kaever V, Bahre H, Batkai S, Fiedler J, Alexander KM, Wertheim BM, Fisch S, Liao R, Diez J, Gonzalez A, Thum T (2020) Natural compound library screening identifies new molecules for the treatment of cardiac fibrosis and diastolic dysfunction. Circulation 141:751–767. https://​doi.​org/​10.​1161/​CIRCULATIONAHA.​119.​042559CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Warren JS, Tracy CM, Miller MR, Makaju A, Szulik MW, Oka SI, Yuzyuk TN, Cox JE, Kumar A, Lozier BK, Wang L, Llana JG, Sabry AD, Cawley KM, Barton DW, Han YH, Boudina S, Fiehn O, Tucker HO, Zaitsev AV, Franklin S (2018) Histone methyltransferase Smyd1 regulates mitochondrial energetics in the heart. Proc Natl Acad Sci USA 115:E7871–E7880. https://doi.org/10.1073/pnas.1800680115CrossRefPubMedPubMedCentral Warren JS, Tracy CM, Miller MR, Makaju A, Szulik MW, Oka SI, Yuzyuk TN, Cox JE, Kumar A, Lozier BK, Wang L, Llana JG, Sabry AD, Cawley KM, Barton DW, Han YH, Boudina S, Fiehn O, Tucker HO, Zaitsev AV, Franklin S (2018) Histone methyltransferase Smyd1 regulates mitochondrial energetics in the heart. Proc Natl Acad Sci USA 115:E7871–E7880. https://​doi.​org/​10.​1073/​pnas.​1800680115CrossRefPubMedPubMedCentral
Metadaten
Titel
Musashi-2 causes cardiac hypertrophy and heart failure by inducing mitochondrial dysfunction through destabilizing Cluh and Smyd1 mRNA
verfasst von
Sandhya Singh
Aakash Gaur
Rakesh Kumar Sharma
Renu Kumari
Shakti Prakash
Sunaina Kumari
Ayushi Devendrasingh Chaudhary
Pankaj Prasun
Priyanka Pant
Hannah Hunkler
Thomas Thum
Kumaravelu Jagavelu
Pragya Bharati
Kashif Hanif
Pragya Chitkara
Shailesh Kumar
Kalyan Mitra
Shashi Kumar Gupta
Publikationsdatum
01.12.2023
Verlag
Springer Berlin Heidelberg
Erschienen in
Basic Research in Cardiology / Ausgabe 1/2023
Print ISSN: 0300-8428
Elektronische ISSN: 1435-1803
DOI
https://doi.org/10.1007/s00395-023-01016-y

Weitere Artikel der Ausgabe 1/2023

Basic Research in Cardiology 1/2023 Zur Ausgabe

Nach Herzinfarkt mit Typ-1-Diabetes schlechtere Karten als mit Typ 2?

29.05.2024 Herzinfarkt Nachrichten

Bei Menschen mit Typ-2-Diabetes sind die Chancen, einen Myokardinfarkt zu überleben, in den letzten 15 Jahren deutlich gestiegen – nicht jedoch bei Betroffenen mit Typ 1.

Erhöhtes Risiko fürs Herz unter Checkpointhemmer-Therapie

28.05.2024 Nebenwirkungen der Krebstherapie Nachrichten

Kardiotoxische Nebenwirkungen einer Therapie mit Immuncheckpointhemmern mögen selten sein – wenn sie aber auftreten, wird es für Patienten oft lebensgefährlich. Voruntersuchung und Monitoring sind daher obligat.

GLP-1-Agonisten können Fortschreiten diabetischer Retinopathie begünstigen

24.05.2024 Diabetische Retinopathie Nachrichten

Möglicherweise hängt es von der Art der Diabetesmedikamente ab, wie hoch das Risiko der Betroffenen ist, dass sich sehkraftgefährdende Komplikationen verschlimmern.

TAVI versus Klappenchirurgie: Neue Vergleichsstudie sorgt für Erstaunen

21.05.2024 TAVI Nachrichten

Bei schwerer Aortenstenose und obstruktiver KHK empfehlen die Leitlinien derzeit eine chirurgische Kombi-Behandlung aus Klappenersatz plus Bypass-OP. Diese Empfehlung wird allerdings jetzt durch eine aktuelle Studie infrage gestellt – mit überraschender Deutlichkeit.

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.