Skip to main content
Erschienen in: Indian Journal of Thoracic and Cardiovascular Surgery 1/2024

Open Access 14.05.2024 | Review Article

Perioperative care in infective endocarditis

verfasst von: Eduard Quintana, Sara Ranchordas, Cristina Ibáñez, Polina Danchenko, Francis Edwin Smit, Carlos - Alberto Mestres

Erschienen in: Indian Journal of Thoracic and Cardiovascular Surgery | Sonderheft 1/2024

Abstract

Patients undergoing surgery for acute infective endocarditis are among those with the highest risk. Their preoperative condition has significant impact on outcomes. There are specific issues related with the preoperative situation, intraoperative findings, and postoperative management. In this narrative review, focus is placed on the most critical aspects in the perioperative period including the management and weaning from mechanical ventilation, the management of vasoplegia, the management of the chest open, antithrombotic therapy, transfusion, coagulopathy, management of atrial fibrillation, the duration of antibiotic therapy, and pacemaker implantation.
Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Introduction

The management of infective endocarditis (IE) is a matter of multidisciplinary interaction, which is currently recognized in Clinical Practice Guidelines [1]. This is a serious medical-surgical disease carrying significant morbidity and mortality despite advances in diagnosis, antibiotic therapy, surgical management, and preoperative care [2]. Current estimates indicate that 40–50% of the patients are surgical candidates partly due to the increased incidence observed worldwide in the past two decades [38]. It is also documented that a substantial proportion of patients might not receive an operation including, but not restricted to, poor preoperative condition, the common variable across the literature; these patients are older and have more comorbidities and, therefore, higher preoperative risk profile and a low 1-year survival [9, 10]. It is then clear that pre-, intra, and postoperative care is a fundamental part of patient management in which the experience and expertise of anesthesiologists and surgeons must be well integrated in the treating team [11].
We aimed at discussing specific relevant aspects of the perioperative management of patients requiring surgery for active IE (AIE).

Methods

Study design

This is a narrative review summarizing essential aspects of management during and after surgery for AIE. It is structured in a way that they are individually identified.

Ethics

This is a literature review with no direct information retrieved from actual patients; therefore, it does not need ethical clearance from the Ethics Committee/Institutional Review Board. In this line, no written informed consent is necessary as no patients or hospital files have been individually addressed.

Definitions

Infective endocarditis is known to be an infection of a native or prosthetic heart valve, the endocardial surface, or an indwelling cardiac device [11, 12].
Although this still is somewhat poorly defined, active IE is considered the phase of the infectious process during which the patient receives antibiotic therapy and develops a complication leading to an indication for surgical therapy [1317].
The 2023 Duke-International Society of Cardiovascular Infectious Disease (ISCVID) criteria for diagnosis, as proposed by Fowler et al. [18], were considered. Only definite and possible cases of endocarditis were included.
There are neither clearly standardized and universally accepted definition nor protocols for early extubation after cardiac surgery. Fast-track protocols contemplate a variety of timings after surgery for extubation, usually between 3 and 12 h. In accordance with the 2016 Cochrane review, fast-track cardiac care includes “administration of low-dose opioid-based general anesthesia or use of a time-directed extubation protocol, or both,” aiming at reducing intensive care unit (ICU) and hospital length of stay [19]. The Society of Thoracic Surgeons (STS) defines prolonged ventilation after cardiac surgery as > 24 postoperative hours [20] and early extubation within 6 h [21].
The following terms were used to interrogate the free engine search PubMed that primarily accesses the MEDLINE database [22]: “Infective endocarditis,” “Surgery,” “Active phase,” “Perioperative care,” “Postoperative care,” “Coagulopathy,” and “Anticoagulation.” Articles were selected based on its relevance to the topic regardless of the year of publication but with focus on those published in the past 5 years.

Additional considerations

In essence, the conduct of an operation for IE has some similarities with other high-risk surgery such as surgery for aortic dissection, which may have some impact on outcomes. This means that surgical technique has to be refined, that re-entry in the case of prosthetic valve endocarditis (PVE) has to be performed with utmost care to avoid potential injury to any mediastinal structure, etc. The surgical technique is something that needs to be adapted to the specific procedure be in the aortic, mitral, or any other valve position.

Weaning from sedation and mechanical ventilation

Following most cardiac operations, patients arrive in the intensive care unit (ICU) anesthetized and sedated and will require mechanical ventilation according to their preoperative condition and intraoperative course. In general, the patients who are likely to require prolonged postoperative ventilation are those with preoperative congestive heart failure or requiring urgent/emergency surgery on sepsis or cardiogenic/septic shock. Adequate sedation and analgesia are essential currently and during the weaning process from the ventilator [23]. Propofol-based sedation has proved to allow earlier extubation, with consequent shorter ICU stay, in comparison with midazolam. The concomitant use of remifentanil aids in attaining adequate postoperative analgesia with hemodynamic stability [2427]. More recently, dexmedetomidine seems to be another safe option for postoperative sedation despite its controversial impact on the length of stay [2830]. Sedation is weaned off once standard criteria are met.
General criteria for early extubation follows the principles of general cardiac surgery with special focus on abnormal preoperative features usually present in patients with IE (such as hypoxemia due to pulmonary congestion, vasoplegia, and neurologic dysfunction). The physician in charge in the ICU or the attending surgeon makes the decision to extubate. Patients may be extubated directly from the ventilator or after a spontaneous breathing trial [23, 31, 32]. It is accepted that early extubation is associated with improved cardiac function and patient comfort, reduction in respiratory complications, ease in management, and cost savings [32] despite discussions on its influence on the length of stay [23, 33]. However, prolonged ventilation periods may be necessary due to preoperative, intraoperative, or postoperative factors, summarized in Table 1 [21, 3436].
Table 1
Factors influencing on postoperative ventilation
Preoperative
Intraoperative
Postoperative
Anemia
Duration of CPB
Bleeding
Congestive heart failure
Transfusion of multiple blood products
LCOS
Emergency operation
Impaired cardiovascular performance
Sepsis
Impaired renal function
 
Pneumonia
COPD
 
Renal dysfunction
Age > 70 years
 
Stroke
Prolonged ventilation after cardiac surgery is common and a risk factor for mortality, especially in high-risk groups [34, 37]. Tracheostomy is indicated to improve comfort and cooperation and it is considered as it eliminates dead space, thus reducing the work of breathing which facilitates weaning from mechanical ventilation, reduces airway injury and ventilator-associated pneumonia, and allows early mobilization, speech, and oral nutrition [3841]. Tracheostomy can be performed surgically or percutaneously. Early tracheostomy (< 14 days post operatively) seems to lead to a reduction in the duration of mechanical ventilation and ICU/hospital stay, compared to late tracheostomy. In fact, in patients with preoperative chronic debilitation and severe condition undergoing surgery, this 14-day threshold could be even lowered to facilitate early sedation removal and rehabilitation. The effect in mortality is not consistent in all studies [38, 41]. One of the main fears when performing early tracheostomy is increasing the risk of mediastinitis. The incidence of sternal wound infection across different studies is 7%, around 9% for open tracheostomy and 3% for percutaneous but with no major statistical differences according to a meta-analysis [38]. Percutaneous tracheostomy may thus be associated with a lower incidence of sternal wound infection [38, 41].

Management of vasoplegia

Vasoplegic syndrome (VPS) is a frequent complication after cardiac surgery, especially in the case of AIE, with a reported incidence up to 44–48% and high mortality rate (30–50%) associated with multiorgan failure [42, 43]. Although there is not a consensual definition of VPS, it can be broadly described as a mean arterial pressure (MAP) < 65 mmHg, cardiac index (CI) > 2.2 l/min/m2, central venous pressure < 5 mmHg, left atrial pressure or pulmonary capillary wedge pressure (PCWP) < 10 mmHg, and systemic vascular resistance < 800 dyn/s/cm5. Refractory VPS occurs when hypotension is not corrected with vasopressor and fluid support [44, 45]. Surgical trauma and cardiopulmonary bypass (CPB) activate complex multifactorial interaction between pathways that stimulate production and systemic release of neurohumoral inflammatory mediators leading to vasodilation [44, 45]. Ischemia–reperfusion injury of heart and lungs and blood transfusion also contributes. Long CPB and aortic cross-clamp times are important risk factors for VPS [43, 46].
Sepsis is a serious condition caused by the invasion of the blood stream by toxin-producing microorganisms. Sepsis and septic shock are the major causes of morbidity and mortality in critically ill patients [47]. Patients suffering from IE often present for surgery in poor status mainly due to heart failure or persistent sepsis, particularly in staphylococcal infections [48], usually the most aggressive pathogen as any strain can induce IE [49]. A severe inflammatory reaction that involves mediators such as cytokines and inflammatory cells (polymorphonuclear neutrophils and macrophages) develops during sepsis. Clinically, a decrease in vasomotor tone and peripheral vascular resistance is detected, configurating microcirculatory disorders [50]. Some patients operated for AIE have a vasoplegic component in the presence of persistent infection documented by serial blood cultures or when they require urgent/emergency surgery due to cardiogenic/septic shock [48].
Therefore, treatment of VPS frequently begins during the operation. There are no established guidelines for the management of VPS, but current standard treatment includes fluid resuscitation and vasopressor administration, such as catecholamines with adrenergic alpha effects, mainly noradrenaline. Recently, non-catecholamine drugs like vasopressin appear to be an alternative to noradrenaline [51]. Vasopressin seems to increase systemic vascular resistance and decrease the need for cathecolamines with no additional complications [52, 53]. More recently, methylene blue, hydroxocobalamin, corticosteroids, ascorbic acid, and thiamine have been used as adjuvants. Their effect on mortality benefits is still not clear and are recommended only as rescue therapy [43, 5155].
The role of hemoadsorption in the treatment of VPS in IE is currently controversial. Essentially, hemoadsorption is considered in surgery for AIE aiming to control the intrinsic inflammatory component with uncontrolled release of inflammatory mediators and facilitate intraoperative control. Intraoperative hemoadsorption is known to reduce plasma cytokines and the need for vasopressor support [56]. Although hemoadsorption contributes to reduce the inflammatory component and to a stable intraperative hemodyamics, its actual impact on mortality and organ dysfunction in IE is still not fully elucidated. On the one side, two randomized studies [57, 58] did not detect differences among groups as regards reduction in the Sequential Organ Failure Assessment (SOFA) score, duration of mechanical ventilation, or renal replacement therapy. Other equally recent non-randomized studies confirmed significantly reduced sepsis-associated mortality and faster recovery of hemodynamics and organ function [59, 60]. More information is needed to confirm the actual role of hemoadsorption in IE and probably a better definition of specific primary endpoints in controlled studies and appropriate patient selection seeking those who may benefit the most of such approach [5760].

Open chest therapy and delayed sternal closure

Leaving the chest open after a cardiac operation is a frequent decision after pediatric cardiac surgery. In the adult setting also, it aims at reducing hemodynamic and respiratory instability and assisting in the control of intraoperative uncontrollable bleeding. Compression of the heart by surrounding structures reduces diastolic filling leading to a decrease in cardiac output, more significant when poor ventricular compliance is present due to ischemia, reperfusion, and edema [61, 62]. Therefore, delayed sternal closure (DSC) is a useful tool in the management of patients that cannot tolerate chest closure. Use of DSC in adult patients has been reported as ranging from 1.7 to 5%. The main indications for DSC are hemodynamic instability, bleeding/coagulopathy, cardiac edema, and arrhythmias with hemodynamic compromise. In IE, bleeding/coagulopathy and unstable hemodynamics are the most frequent indications in our experience. Patients submitted to redo, emergency, or complex operations are more likely to require DSC [6164].
Various methods of DSC have been described, such as keeping the sternum open with a self-retaining retractor or a modified syringe, mediastinal packing, high-density polyethylene film coverage, silicone membrane, or sterile polytetrafluoroethylene layer sutured to the skin and primary skin closure [65] (Fig. 1). Vacuum-assisted dressing systems with a porous low-adhesive soft dressing applied on the heart for protection have also been used with minimal infectious complications [66, 67]. In the ICU, patients are kept sedated and ventilated until chest closure. Debridement and irrigation can be performed every 24 to 72 h to ensure a clean wound. This can be done in the ICU or operating room with a strict sterile technique. Usually, broad-spectrum antibiotics are maintained while the chest is open and thereafter. Used regimens vary widely among centers [61, 6467]. Patients requiring DSC are at risk of surgical site infection because of, not only the open chest, but also the frequently prolonged CPB time, low cardiac output, excessive bleeding, and need for multiple re-explorations of the chest cavity [64]. Mortality rates are high after DSC (27–48.4%) but are mostly related to the primary indication for DSC [68].

Antithrombotic therapy

Current strategies on pre- and postoperative anticoagulation therapies in patients with IE are controversial due to the limited number of randomized control trials (RCTs), the low incidence of this pathology, and lack of meta-analyses [69]. According to available studies, antiplatelet and/or anticoagulation management should be assessed individually by the Endocarditis Team, whose core members should include cardiologists, cardiovascular surgeons, infectious disease specialists (or internal medicine specialists with expertise in infectious diseases), and microbiologists [1, 70]. An appropriate postoperative anticoagulation strategy is crucial to improving outcomes and requires good understanding of the indication, timing, and regimen of anticoagulation in the setting of IE.
Current clinical practice guidelines on the management of IE suggest restrictive use of antiplatelet/anticoagulation agents after surgery to avoid potential hemorrhagic events [1, 70]. This strategy potentially favors patients receiving repair or biological valves at the time of surgery; however, this is less clear in the case of mechanical prostheses [1, 70, 71]. According to Pettersson et al., IE alone is not an indication to anticoagulation; nevertheless, IE patients with high thrombotic risk are more likely to benefit from anticoagulation, even if the bleeding risk is high [70]. This group of patients particularly include, among others, one of the following: mechanical heart valve; left ventricular assist device; valvular atrial fibrillation (AF) with moderate-to-severe mitral stenosis; rheumatic mitral stenosis with AF or prior embolic event or a left atrial thrombus; and non-valvular AF with CHA2DS2-VASc score ≥ 2 in men or ≥ 3 in women.
As for the antiplatelet use, the only RCT published up to date describes a salutary effect of aspirin therapy comparing oral aspirin 325 mg/day with placebo in 115 IE patients. Not only no significant benefit was observed in aspirin-treated patients regarding embolic events but an upward trend of bleeding episodes in the aspirin-treated patients [72]. Until definitive data are available, the initiation of aspirin or other antiplatelet agents as adjunctive therapy in IE is not recommended. In contrast, the continuation of long-term antiplatelet therapy at the time of development of IE with no bleeding complications may be considered [70]. Summarizing, use of antithrombotic therapy would be individualized as per the patients pre-, per-, and the postoperative factors.

Blood transfusion thresholds

Blood transfusion requirement is frequent in AIE perioperative context. Most patients reach a non-elective intervention without the possibility of anemia optimization to increase red cell mass. Heart failure, bone marrow blockage, hospitalization, and repeat sampling are factors that cannot be timely controlled before an effective operation takes place. Although it is known that blood product transfusion is associated with impaired outcomes, this is also an effective intervention to increase blood oxygen content and viscosity and contributes to hemostasis [73]. This may be especially important during the intraoperative and early postoperative phases where the classic thresholds for red blood cell transfusion (RBC) may differ from those of more stable patients [74, 75]. There is little data to support interventions in this regard but a more liberal use of packed RBC in patients with ongoing bleeding, low-borderline cardiac output or high oxygen extraction rates may be warranted. However, allogeneic RBC transfusion is unlikely to improve oxygen transport when the hemoglobin concentration is greater than 10 g/dL and is not recommended.
Intraoperative management of patients with AIE and anemia could include hemoconcentration through CPB hemofiltration, retrograde circuit priming, routine use of cell saver, and appropriate selection of cardioplegia to minimize further hemodilution. The patients at higher risk of bleeding are usually those undergoing reoperations for PVE, because of expected complex repair such as multivalvular involvement and long CPB run time, and those with preoperative coagulopathy in the context of sepsis.
In patients with preoperative ischemic or hemorrhagic stroke, it may be reasonable to seek higher hemoglobin value. The association of anemia would support this and the higher observed rates of bleeding transformation after stroke [76]. There seems not to be a penalty associated with higher transfusion rates in patients with intracerebral hematoma [77]. However, all these assumptions and liberal strategy need to be further studied.
Once patients are stabilized, the general practice guideline recommendations on patient blood management would apply as for most cardiovascular surgery patients [78].

Coagulopathy assessment and management

Although surgery for IE entails high risk of bleeding complications, there are no specific guidelines in this regard.

Preoperative assessment

One of the cornerstones for decreasing intraoperative bleeding is preoperative management of antithrombotic drugs. International guidelines recommend discontinuation of all of them for invasive procedures at high risk of bleeding. The time of last drug intake or administration to surgery depends on the type of drug. The only exception is aspirin, when prescribed in secondary prevention treatment [79].
Unfortunately, surgery for IE is often performed urgently and preoperative optimization is not possible. Nevertheless, when possible, surgery should be delayed until discontinuation interval of antithrombotic drugs is achieved. In those cases where recommended withdrawal is not possible, this information should be considered to plan the transfusion strategy. For example, anti-Xa activity might be measured in patients receiving low molecular weight heparin to determine the contribution of anti-Xa activity to bleeding. Values above 0.3 U/ml might need additional protamine. Dual antiplatelet administration effect can as well be monitored considering that there is a significant variability in the response to P2Y12. Thus, platelet function testing might be used to guide timing to non-emergent surgery in patients that have received P2Y12 inhibitors if the clinical condition allows waiting and/or to confirm the degree of platelet inhibition [79, 80].
Infective endocarditis is a clear example of the connection between the inflammatory and hemostatic systems. When bacteria enter the bloodstream, the coagulation system is activated due to bacteria recognition by receptors on endothelial cells, leucocytes, and platelets. The extrinsic coagulation pathway is activated by the release of tissue factor from endothelial cells and leukocytes. Intrinsic coagulation pathway is triggered by the activation of factor XII by bacterial wall components. The activation of both coagulation pathways leads to the formation of thrombin and thus fibrin and more platelet activation. Furthermore, there is an inhibition of the fibrinolytic and natural anticoagulation systems [81, 82]. Patients with IE have systemic hypercoagulability. However, this contrasts with the fact that one of the major complications of IE surgery is severe coagulopathy and bleeding. Several authors tried to study this contradiction in the clinical setting. Koltsova et al. [83] studied the preoperative hemostatic profile of patients with IE with standard coagulation assays, thromboelastography, thrombodynamics, and cytometry. The majority had a profile of hypercoagulability and platelet activation; nevertheless, some patients showed a hypocoagulability profile. They hypothesized that this second group entered in the phase of consumption coagulopathy. Czerwińska-Jelonkiewicz et al. [82] studied the preoperative and postoperative hemostatic profile with the point of care Total Thrombus formation Analysis System® (Fujimori Kogyo Co., Ltd., Tokyo, Japan) and found that most patients had an hypocoagulability profile with reduced hemostatic capacity before surgery that was aggravated due to prolonged activation of hemostasia, prolonged clot growth, and impaired clot stability. Breel et al. [84] compared ROTEM® preoperative and postoperative parameters between patients with and without IE and found that patients with IE had prolonged EXTEM clotting time but EXTEM clotting firmness parameters were increased.
These examples show that despite the general concept that IE is associated with a hypercoagulability state, patients might also have a hypocoagulability profile preoperatively, which will be aggravated after complex surgery with prolonged CPB. Therefore, we could hypothesize that preoperative profile characterization might help us to detect patients at higher risk of bleeding and plan, anticipate, and individualize our transfusion strategy.

Coagulation monitoring and thresholds for transfusion

Recent guidelines [79, 80] recommend the use of standard laboratory test in combination with point of care (POC) hemostatic testing, such as thromboelastography or thromboelastometry, in cardiac surgery. Moreover, they suggest developing hemostatic algorithms with predefined intervention triggers. Whether different procedures should have the same transfusion thresholds are still unsolved questions. The guidelines do not mention specific thresholds except for plasma Clauss fibrinogen level (< 1.5 g/l) and platelet transfusion to obtain a platelet count above 100.000/µL in high-risk situations such as IE.

Coagulopathy treatment

Prophylactic administration of antifibrinolytic therapy with tranexamic acid or e-aminocaproic acid is recommended in all cardiac surgery procedures with CPB to reduce postoperative blood loss and transfusion requirements. There are several protocols depending on the type of procedure. A high-dose protocol should be used in the context of IE. Aprotinin has been used also as an antifibrinolytic agent in cardiac surgery. This drug was withdrawn from the European market in 2008 for safety concerns but was reintroduced in 2012. Infective endocarditis is not included in its current licensing; however, it has been used off-label [79].
The products used for the treatment of bleeding in IE do not differ from other cardiac surgery procedures, namely fibrinogen concentrate or cryoprecipitate for hypofibrinogenemia. In case of coagulation factors deficiency, prothrombin complex concentrate (PCC) might be preferred over fresh frozen plasma as it is readily available. Platelet transfusion is indicated for low platelet count and/or dysfunction. Desmopressin is not systematically recommended but it might be used in bleeding patients with suspicion of platelet dysfunction [79]. Guidelines also mention two special situations: (1) in patients receiving ticagrelor or rivaroxaban, hemoadsorption may be considered; (2) in patients with refractory bleeding despite conventional hemostatic therapy, rFVIIa may be considered. The doses recommended are lower (20–40 mcg/kg) than doses used for congenital hemostatic deficits [80]. At times, clinical behavior of hemostasis of these patients in the operating theater escape from conventionally dictated management—including POC evaluations—leading to empirical replacement of coagulation factors and platelets. As in all other bleeding context, these therapies should be accompanied with maintenance of adequate hemoglobin, calcium, pH, temperature, and blood pressure.
In certain cases, we have observed persistent and uncontrollable oozing which leads to the use of external compression with sponges or cotton. We believe this allows containing sources of bleeding that may lead to increased transfusion and re-explorations in this vulnerable population. Allowing the patient to gradually correct coagulopathy may add value to postoperative management through a strategy of DSC [65].

Repeat blood cultures and duration of antibiotics

Patients require early sequential blood culture surveillance to ensure cardiac and extracardiac (metastatic) infection control. It is reasonable to obtain a new set of antibiotics 48–72 h after surgery in patients that are evolving satisfactorily. It is exceptional that after an appropriate cardiac intervention, the source of persistent positive blood cultures remains at the valve level. In the event uncontrolled infection is documented at repeat blood cultures, whole-body computed tomography is justified to rule out the presence of other foci that may require intervention (spondylodiscitis, splenic abscess, retroperitoneal abscess, etc.). Duration of antibiotics after successful surgery for AIE is based on results from retrieved surgical specimens, which is mandatory. Appropriate therapy has positive impact on the risk of recurrence, relapse, and infection-related mortality. The three major features are a correct dose, the antimicrobial agent, and its duration. However, there are concerns as prolonged therapy may be associated to adverse events such as neutropenia, eosinophilia, rash, and Clostridiodes difficile infection due to disruption of microbiome [85]. Furthermore, and despite its beneficial event, it seems that prolonged therapy has no significant effect on recurrence or mortality [86]. On the other hand, short courses of postoperative antibiotic regimes did not result in differences in mortality, relapse, or reinfection in specific cases of IE [86, 87]. Despite this, the total duration of antibiotics will be counted since the start of appropriate antibiotic regime to the causative agent. However, if sample cultures obtained intraoperatively are still positive, the clock is reset at day 0 from the operation and a new antimicrobial course will be started. It is important to differentiate culture-positive scenarios from obtaining a positive result at molecular tests (e.g., 16S PCR) as genetic material may remain longer despite non-viable bacteria and this should not alter duration of postoperative antibiotics. Transition to oral antibiotics and early discharge should be considered once the patients reach stability from a medical and cardiovascular surgical standpoint. In summary, there are still no established guidelines as regards the duration of postoperative antibiotic therapy, but recent guidelines support new therapy course when the valve culture is positive [1]. Although individual institutional practices may also vary and in the absence of fever of other signs of suspected infection, blood cultures will be performed before discharge and at 3, 6, and 12 months. With regard to the expected duration of antibiotic therapy after surgery, drug treatment of PVE should last longer (≥ 6 weeks) than that of native valve endocarditis (NVE) (2–6 weeks) but is otherwise similar. Those regimens may change according to the pathogen as specific antibiotic associations might be required. In NVE needing valve replacement during antibiotic therapy, the post-operative antibiotic regimen should be that recommended for NVE, as defined by guidelines [1].

Atrial fibrillation management

Frequently, the need for re-establishing anticoagulation in patients with history of atrial fibrillation is a challenging decision during the postoperative management of AIE. There is not existing guidance for the specific IE population, leading to arbitration with clinical judgment. This is a major issue but, in general, most of the factors that impact on the development of postoperative AF in AIE are like other type of surgery and include, but are not restricted to, older age, history of heart failure, and valve repair or replacement, with or without coronary artery bypass graft. As discussed in the literature and from own experience, a proportion of AIE patients are old and have prior operations, among other non-specific factors.
When initiating antithrombotic therapy, potential risk for bleeding requires assessment. Non-modifiable and partially modifiable bleeding risks are often specific drivers of bleeding events in patients with AIE. Certain variables associated with bleeding complications of patients with IE escape the typical risk scores applied to the general population (extensive mediastinal surgery, general inflammation, preoperative embolism, anemia, bone marrow blockage, need for medical instrumentation, etc.).
In stable patients with a low bleeding risk profile, reinstitution after surgery of anticoagulation should preferably be performed with easy-to-reverse agents (unfractioned heparin), recommended before transitioning to more definitive regimes [88]. However, there are subgroups of high-risk patients in which the decision of deferring for a few days/weeks the initiation of anticoagulation may be the best course of action. At times, avoidance of any anticoagulation could even be a choice during the acute phase of the disease. Table 2 depicts some features associated with high risk of bleeding that could justify avoidance/delay of anticoagulation for embolic prevention in patients with history of AF and who received non-mechanical valve substitutes. Atrial fibrillation is a multifaceted problem, and a variety of drugs are involved as part of the therapy. In general, the same treatment protocols apply for AF in the IE patient and, therefore, class I and III antiarrhythmics are considered. As regards oral anticoagulation, both anti-Vitamin K and novel oral anticoagulants can be prescribed but specific types of patients might require a different protocol.
Table 2
Features suggesting avoidance/delay of anticoagulation early after surgery for AIE (no mechanical heart valve presence)
Preoperative ischemic stroke (particularly in moderate-large cerebral mass involvement)
Preoperative hemorrhagic stroke
Persistent anemia
Low platelet count
Pure atrial fibrillation indication in patients with occluded left atrial appendage
History of atrial fibrillation but maintenance of postoperative sinus rhythm
Frailty
Postoperative bleeding complications
Surgical occlusion or exclusion of the left atrial appendage (LAA) may be considered for stroke prevention in patients with AF undergoing surgery for AIE. This may simplify greatly postoperative discussions and management [89]. Giant left atrium, which is also a known cause of AF, is very seldom seen in patients requiring surgery for IE, unless a patient has a history of long-standing rheumatic heart disease. Other than the then mandatory LAA occlusion, the treatment of giant left atrium is also debatable but not critical in this setting.

Timing for pacemaker implantation after surgery for endocarditis

Complete heart block is frequent in surgery for AIE and especially in surgery for PVE (7–20%). Acute IE is an independent risk factor for postoperative pacemaker implant [90, 91]. It is important to ensure appropriate capture and functioning of temporary pacing systems. Daily check of capture thresholds is recommended and may alter decisions to proceed with definitive endocavitary pacing implantation. Ideally, a definitive transvenous system should not be implanted until confirmation of negative blood cultures and preferably when major central venous lines have been already removed. The mode of pacing will depend on the preoperative rhythm of the patient. If the patient has a clear indication for immediate pacing, there are different policies, with some implanting epicardial pacemakers with ventricular and/or atrial leads. It may be helpful to leave two additional sets of epicardial electrodes in patients with complete atrioventricular block and a predicted complicated postoperative course in which definite implant may not occur in the first postoperative week.
The appropriate timing for implantation is still controversial. Some studies recommend an early implant, namely < 5 postoperative days [91]. Clinical practice guidelines recommend immediate epicardial implantation in patients with preoperative conduction abnormalities, staphylococcal infection, aortic root abscess, tricuspid involvement, or previous valvular surgery [1]. It is likely that the postoperative observation period for the decision of implanting a pacemaker might be shorter than that of 14 days advocated by others [92] as a large proportion of AIE patients will have a compelling indication for implantation. The relevance of this belongs to an appropriate clinical judgment [93] and to Endocarditis Team discussions [1, 70].

Limitations

As this is a narrative non-systematic review, some evidence might have been missed as regards specific aspects herein discussed. As such, this contribution does not aim at establishing specific universal rules of perioperative care management.

Conclusions

Infective endocarditis is a serious disease associated with an increased surgical risk. Patients are usually older, and their preoperative condition is poor, with impact on outcomes. Perioperative management is more complex than that in other non-complicated cardiac surgery and starts in the operating room as vasoplegic syndrome; coagulopathy and open chest therapy are to be managed frequently. Adjustments in antibiotic therapy will depend on surgical specimens and the need for postoperative permanent pacing is also increased as a function of tissue destruction and specific extended reconstructions.

Declarations

Ethics approval

This study did not require Ethics Committee/Institutional Review Board approval, as it did not represent human research.

Statement of human and animal rights

Not applicable.
Not applicable.

Conflict of interest

CAM reports speaker fees from CytoSorbents, Inc., and is a member of the Edwards Clinical Events Committee. The other authors declare that they have no conflict of interest in this study.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

Die Chirurgie

Print-Titel

Das Abo mit mehr Tiefe

Mit der Zeitschrift Die Chirurgie erhalten Sie zusätzlich Online-Zugriff auf weitere 43 chirurgische Fachzeitschriften, CME-Fortbildungen, Webinare, Vorbereitungskursen zur Facharztprüfung und die digitale Enzyklopädie e.Medpedia.

e.Med Interdisziplinär

Kombi-Abonnement

Jetzt e.Med zum Sonderpreis bestellen!

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

Jetzt bestellen und 100 € sparen!

Literatur
1.
Zurück zum Zitat Delgado V, AjmoneMarsan N, de Waha S, Bonaros N, Brida M, Burri S, et al. ESC Guidelines for the management of endocarditis. Eur Heart J. 2023;44:3948–4042.PubMedCrossRef Delgado V, AjmoneMarsan N, de Waha S, Bonaros N, Brida M, Burri S, et al. ESC Guidelines for the management of endocarditis. Eur Heart J. 2023;44:3948–4042.PubMedCrossRef
2.
Zurück zum Zitat Cahill TJ, Baddour LM, Habib G, Hoen B, Salaun E, Pettersson GB, et al. Challenges in infective endocarditis. J Am Coll Cardiol. 2017;69:325–44.PubMedCrossRef Cahill TJ, Baddour LM, Habib G, Hoen B, Salaun E, Pettersson GB, et al. Challenges in infective endocarditis. J Am Coll Cardiol. 2017;69:325–44.PubMedCrossRef
3.
Zurück zum Zitat Bor DH, Woolhandler S, Nardin R, Brusch J, Himmelstein DU. Infective endocarditis in the U.S., 1998-2009: a nationwide study. PLoS One. 2013;8:e60033.PubMedPubMedCentralCrossRef Bor DH, Woolhandler S, Nardin R, Brusch J, Himmelstein DU. Infective endocarditis in the U.S., 1998-2009: a nationwide study. PLoS One. 2013;8:e60033.PubMedPubMedCentralCrossRef
4.
Zurück zum Zitat Chen H, Zhan Y, Zhang K, Gao Y, Chen L, Zhan J, et al. The global, regional, and national burden and trends of infective endocarditis from 1990 to 2019: results from the Global Burden of Disease Study 2019. Front Med (Lausanne). 2022;9: 774224.PubMedCrossRef Chen H, Zhan Y, Zhang K, Gao Y, Chen L, Zhan J, et al. The global, regional, and national burden and trends of infective endocarditis from 1990 to 2019: results from the Global Burden of Disease Study 2019. Front Med (Lausanne). 2022;9: 774224.PubMedCrossRef
5.
Zurück zum Zitat Olmos C, Vilacosta I, Fernandez-Perez C, Bernal JL, Ferrera C, Garcia-Arribas D, et al. The evolving nature of infective endocarditis in Spain: a population-based study (2003 to 2014). J Am Coll Cardiol. 2017;70:2795–804.PubMedCrossRef Olmos C, Vilacosta I, Fernandez-Perez C, Bernal JL, Ferrera C, Garcia-Arribas D, et al. The evolving nature of infective endocarditis in Spain: a population-based study (2003 to 2014). J Am Coll Cardiol. 2017;70:2795–804.PubMedCrossRef
6.
Zurück zum Zitat Keller K, von Bardeleben RS, Ostad MA, Hobohm L, Munzel T, Konstantinides S, et al. Temporal trends in the prevalence of infective endocarditis in Germany between 2005 and 2014. Am J Cardiol. 2017;119:317–22.PubMedCrossRef Keller K, von Bardeleben RS, Ostad MA, Hobohm L, Munzel T, Konstantinides S, et al. Temporal trends in the prevalence of infective endocarditis in Germany between 2005 and 2014. Am J Cardiol. 2017;119:317–22.PubMedCrossRef
7.
Zurück zum Zitat Cresti A, Chiavarelli M, Scalese M, Nencioni C, Valentini S, Guerrini F, et al. Epidemiological and mortality trends in infective endocarditis, a 17-year population-based prospective study. Cardiovasc Diagn Ther. 2017;7:27–35.PubMedPubMedCentralCrossRef Cresti A, Chiavarelli M, Scalese M, Nencioni C, Valentini S, Guerrini F, et al. Epidemiological and mortality trends in infective endocarditis, a 17-year population-based prospective study. Cardiovasc Diagn Ther. 2017;7:27–35.PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Bustamante-Munguira J, Mestres CA, Alvarez P, Figuerola-Tejerina A, Eiros Bachiller R, Gómez-Sánchez E, et al. Surgery for acute infective endocarditis: epidemiological data from a Spanish nationwide hospital-based registry. Interact Cardiovasc Thorac Surg. 2018;27:498–504.PubMedCrossRef Bustamante-Munguira J, Mestres CA, Alvarez P, Figuerola-Tejerina A, Eiros Bachiller R, Gómez-Sánchez E, et al. Surgery for acute infective endocarditis: epidemiological data from a Spanish nationwide hospital-based registry. Interact Cardiovasc Thorac Surg. 2018;27:498–504.PubMedCrossRef
9.
Zurück zum Zitat Carino D, Fernández-Cisneros A, Hernández-Meneses M, Sandoval E, Llopis J, Falces C, et al. Grup d’Estudi d’Endocarditis Infecciosa de l’Hospital Clínic de Barcelona. The fate of active left-side infective endocarditis with operative indication in absence of valve surgery. J Card Surg. 2020;35:3034–40.PubMedCrossRef Carino D, Fernández-Cisneros A, Hernández-Meneses M, Sandoval E, Llopis J, Falces C, et al. Grup d’Estudi d’Endocarditis Infecciosa de l’Hospital Clínic de Barcelona. The fate of active left-side infective endocarditis with operative indication in absence of valve surgery. J Card Surg. 2020;35:3034–40.PubMedCrossRef
10.
Zurück zum Zitat Van Hemelrijck M, Sromicki J, Frank M, Greutmann M, Ledergerber B, Epprecht J, et al. Dismal prognosis of patients with operative indication without surgical intervention in active left-sided infective endocarditis. Front Cardiovasc Med. 2023;10:1223878.PubMedPubMedCentralCrossRef Van Hemelrijck M, Sromicki J, Frank M, Greutmann M, Ledergerber B, Epprecht J, et al. Dismal prognosis of patients with operative indication without surgical intervention in active left-sided infective endocarditis. Front Cardiovasc Med. 2023;10:1223878.PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Hermanns H, Eberl S, Terwindt LE, Mastenbroek TCB, Bauer WO, van der Vaart TW, et al. Anesthesia considerations in infective endocarditis. Anesthesiology. 2022;136:633–65.PubMedCrossRef Hermanns H, Eberl S, Terwindt LE, Mastenbroek TCB, Bauer WO, van der Vaart TW, et al. Anesthesia considerations in infective endocarditis. Anesthesiology. 2022;136:633–65.PubMedCrossRef
13.
Zurück zum Zitat Wang A, Gaca JG, Chu VH. Management considerations in infective endocarditis: a review. JAMA. 2018;320:72–83.PubMedCrossRef Wang A, Gaca JG, Chu VH. Management considerations in infective endocarditis: a review. JAMA. 2018;320:72–83.PubMedCrossRef
14.
Zurück zum Zitat Scalia D, Bortolotti U, Milano A, Stritoni P, Panizzon G, Valfrè C, et al. Surgical treatment of infectious endocarditis in the active phase. Experience in 40 cases. G Ital Cardiol. 1981;11:643–9.PubMed Scalia D, Bortolotti U, Milano A, Stritoni P, Panizzon G, Valfrè C, et al. Surgical treatment of infectious endocarditis in the active phase. Experience in 40 cases. G Ital Cardiol. 1981;11:643–9.PubMed
15.
Zurück zum Zitat Rostagno C, Rosso G, Puggelli F, Gelsomino S, Braconi L, Montesi GF, et al. Active infective endocarditis: clinical characteristics and factors related to hospital mortality. Cardiol J. 2010;17:566–73.PubMed Rostagno C, Rosso G, Puggelli F, Gelsomino S, Braconi L, Montesi GF, et al. Active infective endocarditis: clinical characteristics and factors related to hospital mortality. Cardiol J. 2010;17:566–73.PubMed
16.
Zurück zum Zitat Omoto T, Aoki A, Maruta K, Masuda T. Surgical outcome in hemodialysis patients with active-phase infective endocarditis. Ann Thorac Cardiovasc Surg. 2016;22:181–5.PubMedPubMedCentralCrossRef Omoto T, Aoki A, Maruta K, Masuda T. Surgical outcome in hemodialysis patients with active-phase infective endocarditis. Ann Thorac Cardiovasc Surg. 2016;22:181–5.PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat Cuervo G, Hernández-Meneses M, Falces C, Quintana E, Vidal B, Marco F, et al. Hospital Clinic and the Hospital of Bellvitge Endocarditis Team Investigators. Infective endocarditis: new challenges in a classic disease. Semin Respir Crit Care Med. 2022;43:150–72.PubMedCrossRef Cuervo G, Hernández-Meneses M, Falces C, Quintana E, Vidal B, Marco F, et al. Hospital Clinic and the Hospital of Bellvitge Endocarditis Team Investigators. Infective endocarditis: new challenges in a classic disease. Semin Respir Crit Care Med. 2022;43:150–72.PubMedCrossRef
18.
Zurück zum Zitat Fowler VG, Durack DT, Selton-Suty C, Athan E, Bayer AS, Chamis AL, et al. The 2023 Duke-International Society for Cardiovascular Infectious Diseases Criteria for Infective Endocarditis: Updating the Modified Duke Criteria. Clin Infect Dis. 2023;77:518–26.PubMedPubMedCentralCrossRef Fowler VG, Durack DT, Selton-Suty C, Athan E, Bayer AS, Chamis AL, et al. The 2023 Duke-International Society for Cardiovascular Infectious Diseases Criteria for Infective Endocarditis: Updating the Modified Duke Criteria. Clin Infect Dis. 2023;77:518–26.PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Wong WT, Lai VK, Chee YE, Lee A. Fast-track cardiac care for adult cardiac surgical patients. Cochrane Database Syst Rev. 2016;9:CD003587.PubMed Wong WT, Lai VK, Chee YE, Lee A. Fast-track cardiac care for adult cardiac surgical patients. Cochrane Database Syst Rev. 2016;9:CD003587.PubMed
20.
Zurück zum Zitat Jacobs JP, He X, O’Brien SM, Welke KF, Filardo G, Han JM, et al. Variation in ventilation time after coronary artery bypass grafting: an analysis from the Society of Thoracic Surgeons adult cardiac surgery database. Ann Thorac Surg. 2013;96:757–562.PubMedCrossRef Jacobs JP, He X, O’Brien SM, Welke KF, Filardo G, Han JM, et al. Variation in ventilation time after coronary artery bypass grafting: an analysis from the Society of Thoracic Surgeons adult cardiac surgery database. Ann Thorac Surg. 2013;96:757–562.PubMedCrossRef
21.
Zurück zum Zitat Goeddel LA, Hollander KN, Evans AS. Early extubation after cardiac surgery: a better predictor of outcome than metric of quality? J Cardiothorac Vasc Anesth. 2018;32:745–7.PubMedCrossRef Goeddel LA, Hollander KN, Evans AS. Early extubation after cardiac surgery: a better predictor of outcome than metric of quality? J Cardiothorac Vasc Anesth. 2018;32:745–7.PubMedCrossRef
23.
Zurück zum Zitat Bojar RM. Manual of perioperative care in adult cardiac surgery. 6th ed. Oxford UK: John Wiley & Sons Ltd.; 2021.CrossRef Bojar RM. Manual of perioperative care in adult cardiac surgery. 6th ed. Oxford UK: John Wiley & Sons Ltd.; 2021.CrossRef
24.
Zurück zum Zitat Wahr JA, Plunkett JJ, Ramsay JG, Reeves J, Jain U, Ley C, et al. Cardiovascular responses during sedation after coronary revascularization. Incidence of myocardial ischemia and hemodynamic episodes with propofol versus midazolam. Institutions of the McSPI Research Group. Anesthesiology. 1996;84:1350–60.PubMedCrossRef Wahr JA, Plunkett JJ, Ramsay JG, Reeves J, Jain U, Ley C, et al. Cardiovascular responses during sedation after coronary revascularization. Incidence of myocardial ischemia and hemodynamic episodes with propofol versus midazolam. Institutions of the McSPI Research Group. Anesthesiology. 1996;84:1350–60.PubMedCrossRef
25.
Zurück zum Zitat Olivier P, Sirieix D, Dassier P, D’Attellis N, Baron JF. Continuous infusion of remifentanil and target-controlled infusion of propofol for patients undergoing cardiac surgery: a new approach for scheduled early extubation. J Cardiothorac Vasc Anesth. 2000;14:29–35.PubMedCrossRef Olivier P, Sirieix D, Dassier P, D’Attellis N, Baron JF. Continuous infusion of remifentanil and target-controlled infusion of propofol for patients undergoing cardiac surgery: a new approach for scheduled early extubation. J Cardiothorac Vasc Anesth. 2000;14:29–35.PubMedCrossRef
27.
Zurück zum Zitat de Hoogd S, Ahlers SJGM, van Dongen EPA, van de Garde EMW, Daeter EJ, Dahan A, et al. Randomized controlled trial on the influence of intraoperative remifentanil versus fentanyl on acute and chronic pain after cardiac surgery. Pain Pract. 2018;18:443–51.PubMedCrossRef de Hoogd S, Ahlers SJGM, van Dongen EPA, van de Garde EMW, Daeter EJ, Dahan A, et al. Randomized controlled trial on the influence of intraoperative remifentanil versus fentanyl on acute and chronic pain after cardiac surgery. Pain Pract. 2018;18:443–51.PubMedCrossRef
28.
Zurück zum Zitat Mogahd MM, Mahran MS, Elbaradi GF. Safety and efficacy of ketamine-dexmedetomidine versus ketamine-propofol combinations for sedation in patients after coronary artery bypass graft surgery. Ann Card Anaesth. 2017;20:182–7.PubMedPubMedCentralCrossRef Mogahd MM, Mahran MS, Elbaradi GF. Safety and efficacy of ketamine-dexmedetomidine versus ketamine-propofol combinations for sedation in patients after coronary artery bypass graft surgery. Ann Card Anaesth. 2017;20:182–7.PubMedPubMedCentralCrossRef
29.
Zurück zum Zitat Abowali HA, Paganini M, Enten G, Elbadawi A, Camporesi EM. Critical review and meta-analysis of postoperative sedation after adult cardiac surgery: dexmedetomidine versus propofol. J Cardiothorac Vasc Anesth. 2021;35:1134–42.PubMedCrossRef Abowali HA, Paganini M, Enten G, Elbadawi A, Camporesi EM. Critical review and meta-analysis of postoperative sedation after adult cardiac surgery: dexmedetomidine versus propofol. J Cardiothorac Vasc Anesth. 2021;35:1134–42.PubMedCrossRef
30.
Zurück zum Zitat Preveden M, Zdravković R, Vicković S, Vujić V, Todić M, Mladenović N, et al. Dexmedetomidine vs. propofol sedation reduces the duration of mechanical ventilation after cardiac surgery - a randomized controlled trial. Eur Rev Med Pharmacol Sci. 2023;27:7644–52.PubMed Preveden M, Zdravković R, Vicković S, Vujić V, Todić M, Mladenović N, et al. Dexmedetomidine vs. propofol sedation reduces the duration of mechanical ventilation after cardiac surgery - a randomized controlled trial. Eur Rev Med Pharmacol Sci. 2023;27:7644–52.PubMed
31.
Zurück zum Zitat Knapik P, Ciesla D, Borowik D, Czempik P, Knapik T. Prolonged ventilation post cardiac surgery–tips and pitfalls of the prediction game. J Cardiothorac Surg. 2011;6:158.PubMedPubMedCentralCrossRef Knapik P, Ciesla D, Borowik D, Czempik P, Knapik T. Prolonged ventilation post cardiac surgery–tips and pitfalls of the prediction game. J Cardiothorac Surg. 2011;6:158.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Chan JL, Miller JG, Murphy M, Greenberg A, Iraola M, Horvath KA. A multidisciplinary protocol-driven approach to improve extubation times after cardiac surgery. Ann Thorac Surg. 2018;105:1684–90.PubMedCrossRef Chan JL, Miller JG, Murphy M, Greenberg A, Iraola M, Horvath KA. A multidisciplinary protocol-driven approach to improve extubation times after cardiac surgery. Ann Thorac Surg. 2018;105:1684–90.PubMedCrossRef
33.
Zurück zum Zitat Richey M, Mann A, He J, Dan E, Wirtz K, Dalton A, et al. Implementation of an early extubation protocol in cardiac surgical patients decreased ventilator time but not intensive care unit or hospital length of stay. J CardiothoracVasc Anesth. 2018;32:739–44.CrossRef Richey M, Mann A, He J, Dan E, Wirtz K, Dalton A, et al. Implementation of an early extubation protocol in cardiac surgical patients decreased ventilator time but not intensive care unit or hospital length of stay. J CardiothoracVasc Anesth. 2018;32:739–44.CrossRef
34.
Zurück zum Zitat Aksoy R, Karakoc AZ, Cevirme D, Elibol A, Yigit F, Yilmaz Ü, et al. Predictive factors of prolonged ventilation following cardiac surgery with cardiopulmonary bypass. Braz J Cardiovasc Surg. 2021;36:780–7.PubMedPubMedCentralCrossRef Aksoy R, Karakoc AZ, Cevirme D, Elibol A, Yigit F, Yilmaz Ü, et al. Predictive factors of prolonged ventilation following cardiac surgery with cardiopulmonary bypass. Braz J Cardiovasc Surg. 2021;36:780–7.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Spadaccio C, Rose D, Nenna A, Taylor R, Bittar MN. Early re-Exploration versus conservative management for postoperative bleeding in stable patients after coronary artery bypass grafting: a propensity matched study. J Clin Med. 2023;12:3327.PubMedPubMedCentralCrossRef Spadaccio C, Rose D, Nenna A, Taylor R, Bittar MN. Early re-Exploration versus conservative management for postoperative bleeding in stable patients after coronary artery bypass grafting: a propensity matched study. J Clin Med. 2023;12:3327.PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Rubino AS, De Santo LS, Montella AP, Golini Petrarcone C, Palmieri L, Galbiati D, et al. Prognostic implication of preoperative anemia in redo cardiac surgery: a single-center propensity-matched Analysis. J Cardiovasc Dev Dis. 2023;10:160.PubMedPubMedCentral Rubino AS, De Santo LS, Montella AP, Golini Petrarcone C, Palmieri L, Galbiati D, et al. Prognostic implication of preoperative anemia in redo cardiac surgery: a single-center propensity-matched Analysis. J Cardiovasc Dev Dis. 2023;10:160.PubMedPubMedCentral
37.
Zurück zum Zitat Fernandez-Zamora MD, Gordillo-Brenes A, Banderas-Bravo E, Arboleda-Sánchez JA, Hinojosa-Pérez R, Aguilar-Alonso E, et al. Prolonged mechanical ventilation as a predictor of mortality after cardiac surgery. Respir Care. 2018;63:550–7.PubMedCrossRef Fernandez-Zamora MD, Gordillo-Brenes A, Banderas-Bravo E, Arboleda-Sánchez JA, Hinojosa-Pérez R, Aguilar-Alonso E, et al. Prolonged mechanical ventilation as a predictor of mortality after cardiac surgery. Respir Care. 2018;63:550–7.PubMedCrossRef
38.
Zurück zum Zitat Toeg H, French D, Gilbert S, Rubens F. Incidence of sternal wound infection after tracheostomy in patients undergoing cardiac surgery: a systematic review and meta-analysis. J Thorac Cardiovasc Surg. 2017;153:1394–400.PubMedCrossRef Toeg H, French D, Gilbert S, Rubens F. Incidence of sternal wound infection after tracheostomy in patients undergoing cardiac surgery: a systematic review and meta-analysis. J Thorac Cardiovasc Surg. 2017;153:1394–400.PubMedCrossRef
39.
Zurück zum Zitat Affronti A, Casali F, Eusebi P, Todisco C, Volpi F, Beato V, et al. Early versus late tracheostomy in cardiac surgical patients: a 12-year single center experience. J Cardiothorac Vasc Anesth. 2019;33:82–90.PubMedCrossRef Affronti A, Casali F, Eusebi P, Todisco C, Volpi F, Beato V, et al. Early versus late tracheostomy in cardiac surgical patients: a 12-year single center experience. J Cardiothorac Vasc Anesth. 2019;33:82–90.PubMedCrossRef
40.
Zurück zum Zitat Yavas S, Yagar S, Mavioglu L, Cetin E, Iscan HZ, Ulus AT, et al. Tracheostomy: how and when should it be done in cardiovascular surgery ICU? J Card Surg. 2009;24:11–8.PubMedCrossRef Yavas S, Yagar S, Mavioglu L, Cetin E, Iscan HZ, Ulus AT, et al. Tracheostomy: how and when should it be done in cardiovascular surgery ICU? J Card Surg. 2009;24:11–8.PubMedCrossRef
41.
Zurück zum Zitat Ben-Avi R, Ben-Nun A, Levin S, Simansky D, Zeitlin N, Sternik L, et al. Tracheostomy after cardiac surgery: timing of tracheostomy as a risk factor for mortality. J Cardiothorac Vasc Anesth. 2014;28:493–6.PubMedCrossRef Ben-Avi R, Ben-Nun A, Levin S, Simansky D, Zeitlin N, Sternik L, et al. Tracheostomy after cardiac surgery: timing of tracheostomy as a risk factor for mortality. J Cardiothorac Vasc Anesth. 2014;28:493–6.PubMedCrossRef
42.
Zurück zum Zitat Orozco Vinasco DM, Triana Schoonewolff CA, Orozco Vinasco AC. Vasoplegic syndrome in cardiac surgery: definitions, pathophysiology, diagnostic approach and management. Rev Esp Anestesiol Reanim (Engl Ed). 2019;66:277–87.PubMedCrossRef Orozco Vinasco DM, Triana Schoonewolff CA, Orozco Vinasco AC. Vasoplegic syndrome in cardiac surgery: definitions, pathophysiology, diagnostic approach and management. Rev Esp Anestesiol Reanim (Engl Ed). 2019;66:277–87.PubMedCrossRef
43.
Zurück zum Zitat Datt V, Wadhhwa R, Sharma V, Virmani S, Minhas HS, Malik S. Vasoplegic syndrome after cardiovascular surgery: a review of pathophysiology and outcome-oriented therapeutic management. J Card Surg. 2021;36:3749–60.PubMedCrossRef Datt V, Wadhhwa R, Sharma V, Virmani S, Minhas HS, Malik S. Vasoplegic syndrome after cardiovascular surgery: a review of pathophysiology and outcome-oriented therapeutic management. J Card Surg. 2021;36:3749–60.PubMedCrossRef
44.
Zurück zum Zitat Abou-Arab O, Martineau L, Bar S, Huette P, Amar AB, Caus T, et al. Postoperative vasoplegic syndrome is associated with impaired endothelial vasomotor response in cardiac surgery: A prospective, observational study. J Cardiothorac Vasc Anesth. 2018;32:2218–24.PubMedCrossRef Abou-Arab O, Martineau L, Bar S, Huette P, Amar AB, Caus T, et al. Postoperative vasoplegic syndrome is associated with impaired endothelial vasomotor response in cardiac surgery: A prospective, observational study. J Cardiothorac Vasc Anesth. 2018;32:2218–24.PubMedCrossRef
45.
Zurück zum Zitat Perdhana F, Kloping NA, Witarto AP, Nugraha D, Yogiswara N, Luke K, et al. Methylene blue for vasoplegic syndrome in cardiopulmonary bypass surgery: a systematic review and meta-analysis. Asian Cardiovasc Thorac Ann. 2021;29:717–28.PubMedCrossRef Perdhana F, Kloping NA, Witarto AP, Nugraha D, Yogiswara N, Luke K, et al. Methylene blue for vasoplegic syndrome in cardiopulmonary bypass surgery: a systematic review and meta-analysis. Asian Cardiovasc Thorac Ann. 2021;29:717–28.PubMedCrossRef
46.
Zurück zum Zitat Bastopcu M, Sargın M, Kuplay H, Erdoğan SB, Yapıcı N, Aka SA. Risk factors for vasoplegia after coronary artery bypass and valve surgery. J Card Surg. 2021;36:2729–34.PubMedCrossRef Bastopcu M, Sargın M, Kuplay H, Erdoğan SB, Yapıcı N, Aka SA. Risk factors for vasoplegia after coronary artery bypass and valve surgery. J Card Surg. 2021;36:2729–34.PubMedCrossRef
47.
Zurück zum Zitat Calandra T, Cohen J. International Sepsis Forum Definition of Infection in the ICU Consensus Conference. The international sepsis forum consensus conference on definitions of infection in the intensive care unit. Crit Care Med. 2005;33:1538–48.PubMedCrossRef Calandra T, Cohen J. International Sepsis Forum Definition of Infection in the ICU Consensus Conference. The international sepsis forum consensus conference on definitions of infection in the intensive care unit. Crit Care Med. 2005;33:1538–48.PubMedCrossRef
48.
Zurück zum Zitat Pericàs JM, Hernández-Meneses M, Muñoz P, Álvarez-Uría A, Pinilla-Llorente B, de Alarcón A, et al. Outcomes and risk factors of septic shock in patients with infective endocarditis: a prospective cohort study. Open Forum Infect Dis. 2021;8:ofab119.PubMedPubMedCentralCrossRef Pericàs JM, Hernández-Meneses M, Muñoz P, Álvarez-Uría A, Pinilla-Llorente B, de Alarcón A, et al. Outcomes and risk factors of septic shock in patients with infective endocarditis: a prospective cohort study. Open Forum Infect Dis. 2021;8:ofab119.PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Bastien S, Meyers S, Salgado-Pabón W, Giulieri SG, Rasigade JP, Liesenborghs L, et al. All Staphylococcus aureus bacteraemia-inducing strains can cause infective endocarditis: results of GWAS and experimental animal studies. J Infect. 2023;86:123–33.PubMedPubMedCentralCrossRef Bastien S, Meyers S, Salgado-Pabón W, Giulieri SG, Rasigade JP, Liesenborghs L, et al. All Staphylococcus aureus bacteraemia-inducing strains can cause infective endocarditis: results of GWAS and experimental animal studies. J Infect. 2023;86:123–33.PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Hoffmann JN, Fertmann JM, Kauch K. Microcirculatory disorders in sepsis and transplantation: therapy with natural coagulatory inhibitors antithrombin and activated protein C. Curr Opin Crit Care. 2006;12:426–30.PubMedCrossRef Hoffmann JN, Fertmann JM, Kauch K. Microcirculatory disorders in sepsis and transplantation: therapy with natural coagulatory inhibitors antithrombin and activated protein C. Curr Opin Crit Care. 2006;12:426–30.PubMedCrossRef
51.
Zurück zum Zitat Ortoleva J, Shapeton A, Vanneman M, Dalia AA. Vasoplegia during cardiopulmonary bypass: current literature and rescue therapy option. J Cardiothorac Vasc Anesth. 2020;34:2766–75.PubMedCrossRef Ortoleva J, Shapeton A, Vanneman M, Dalia AA. Vasoplegia during cardiopulmonary bypass: current literature and rescue therapy option. J Cardiothorac Vasc Anesth. 2020;34:2766–75.PubMedCrossRef
52.
Zurück zum Zitat Hajjar LA, Vincent JL, Barbosa Gomes Galas FR, Rhodes A, Landoni G, Osawa EA, et al. Vasopressin versus norepinephrine in patients with vasoplegic shock after cardiac surgery: the VANCS randomized controlled Trial. Anesthesiology. 2017;126:85–93.PubMedCrossRef Hajjar LA, Vincent JL, Barbosa Gomes Galas FR, Rhodes A, Landoni G, Osawa EA, et al. Vasopressin versus norepinephrine in patients with vasoplegic shock after cardiac surgery: the VANCS randomized controlled Trial. Anesthesiology. 2017;126:85–93.PubMedCrossRef
53.
Zurück zum Zitat Wieruszewski PM, Nei SD, Maltais S, Schaff HV, Wittwer ED. Vitamin C for vasoplegia after cardiopulmonary bypass: a case series. A A Pract. 2018;11:96–9.PubMedCrossRef Wieruszewski PM, Nei SD, Maltais S, Schaff HV, Wittwer ED. Vitamin C for vasoplegia after cardiopulmonary bypass: a case series. A A Pract. 2018;11:96–9.PubMedCrossRef
54.
Zurück zum Zitat Bak MA, Smith JA, Murfin B, Chen Y. High-Dose hydroxocobalamin for refractory vasoplegia post cardiac surgery. Cureus. 2022;14: e28267.PubMedPubMedCentral Bak MA, Smith JA, Murfin B, Chen Y. High-Dose hydroxocobalamin for refractory vasoplegia post cardiac surgery. Cureus. 2022;14: e28267.PubMedPubMedCentral
55.
Zurück zum Zitat Johnson AJ, Tidwell W, McRae A, Henson CP, Hernandez A. Angiotensin-II for vasoplegia following cardiac surgery. Perfusion. 2023;13:2676591231215920.CrossRef Johnson AJ, Tidwell W, McRae A, Henson CP, Hernandez A. Angiotensin-II for vasoplegia following cardiac surgery. Perfusion. 2023;13:2676591231215920.CrossRef
56.
Zurück zum Zitat Kühne LU, Binczyk R, Rieß FC. Comparison of intraoperative versus intraoperative plus postoperative hemoadsorption therapy in cardiac surgery patients with endocarditis. Int J Artif Organs. 2019;42:194–200.PubMedCrossRef Kühne LU, Binczyk R, Rieß FC. Comparison of intraoperative versus intraoperative plus postoperative hemoadsorption therapy in cardiac surgery patients with endocarditis. Int J Artif Organs. 2019;42:194–200.PubMedCrossRef
57.
Zurück zum Zitat Asch S, Kaufmann TP, Walter M, Leistner M, Danner BC, Perl T, et al. The effect of perioperative hemadsorption in patients operated for acute infective endocarditis-a randomized controlled study. Artif Organs. 2021;45:1328–37.PubMedCrossRef Asch S, Kaufmann TP, Walter M, Leistner M, Danner BC, Perl T, et al. The effect of perioperative hemadsorption in patients operated for acute infective endocarditis-a randomized controlled study. Artif Organs. 2021;45:1328–37.PubMedCrossRef
58.
Zurück zum Zitat Diab M, Lehmann T, Bothe W, Akhyari P, Platzer S, Wendt D, et al. REMOVE Trial Investigators. cytokine hemoadsorption during cardiac surgery versus standard surgical care for infective endocarditis (REMOVE): results from a multicenter randomized controlled trial. Circulation. 2022;145:959–68.PubMedCrossRef Diab M, Lehmann T, Bothe W, Akhyari P, Platzer S, Wendt D, et al. REMOVE Trial Investigators. cytokine hemoadsorption during cardiac surgery versus standard surgical care for infective endocarditis (REMOVE): results from a multicenter randomized controlled trial. Circulation. 2022;145:959–68.PubMedCrossRef
59.
Zurück zum Zitat Haidari Z, Demircioglu E, Boss K, Tyczynski B, Thielmann M, Schmack B, et al. Intraoperative hemoadsorption in high-risk patients with infective endocarditis. PLoS ONE. 2022;17: e0266820.PubMedPubMedCentralCrossRef Haidari Z, Demircioglu E, Boss K, Tyczynski B, Thielmann M, Schmack B, et al. Intraoperative hemoadsorption in high-risk patients with infective endocarditis. PLoS ONE. 2022;17: e0266820.PubMedPubMedCentralCrossRef
60.
Zurück zum Zitat Kalisnik JM, Leiler S, Mamdooh H, Zibert J, Bertsch T, Vogt FA, et al. Single-centre retrospective evaluation of intraoperative hemoadsorption in left-sided acute infective endocarditis. J Clin Med. 2022;11:3954.PubMedPubMedCentralCrossRef Kalisnik JM, Leiler S, Mamdooh H, Zibert J, Bertsch T, Vogt FA, et al. Single-centre retrospective evaluation of intraoperative hemoadsorption in left-sided acute infective endocarditis. J Clin Med. 2022;11:3954.PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat Josa M, Khuri SF, Braunwald NS, VanCisin MF, Spencer MP, Evans DA, et al. Delayed sternal closure. An improved method of dealing with complications after cardiopulmonary bypass. J Thorac Cardiovasc Surg. 1986;91:598–603.PubMedCrossRef Josa M, Khuri SF, Braunwald NS, VanCisin MF, Spencer MP, Evans DA, et al. Delayed sternal closure. An improved method of dealing with complications after cardiopulmonary bypass. J Thorac Cardiovasc Surg. 1986;91:598–603.PubMedCrossRef
62.
Zurück zum Zitat Mestres CA, Pomar JL, Acosta M, Ninot S, Barriuso C, Abad C, et al. Delayed sternal closure for life-threatening complications in cardiac operations: an update. Ann Thorac Surg. 1991;51:773–6.PubMedCrossRef Mestres CA, Pomar JL, Acosta M, Ninot S, Barriuso C, Abad C, et al. Delayed sternal closure for life-threatening complications in cardiac operations: an update. Ann Thorac Surg. 1991;51:773–6.PubMedCrossRef
63.
Zurück zum Zitat Fleck T, Kickinger B, Moidl R, Waldenberger F, Wolner E, Grabenwoger M, et al. Management of open chest and delayed sternal closure with the vacuum assisted closure system: preliminary experience. Interact Cardiovasc Thorac Surg. 2008;7:801–4.PubMedCrossRef Fleck T, Kickinger B, Moidl R, Waldenberger F, Wolner E, Grabenwoger M, et al. Management of open chest and delayed sternal closure with the vacuum assisted closure system: preliminary experience. Interact Cardiovasc Thorac Surg. 2008;7:801–4.PubMedCrossRef
64.
Zurück zum Zitat Boeken U, Assmann A, Mehdiani A, Akhyari P, Lichtenberg A. Open chest management after cardiac operations: outcome and timing of delayed sternal closure. Eur J Cardiothorac Surg. 2011;40:1146–50.PubMed Boeken U, Assmann A, Mehdiani A, Akhyari P, Lichtenberg A. Open chest management after cardiac operations: outcome and timing of delayed sternal closure. Eur J Cardiothorac Surg. 2011;40:1146–50.PubMed
66.
Zurück zum Zitat Li M, Mazzeffi MA, Gammie JS, Banoub M, Pazhani Y, Herr D, et al. Characterization of postoperative infection risk in cardiac surgery patients with delayed sternal closure. J Cardiothorac Vasc Anesth. 2020;34:1238–43.PubMedCrossRef Li M, Mazzeffi MA, Gammie JS, Banoub M, Pazhani Y, Herr D, et al. Characterization of postoperative infection risk in cardiac surgery patients with delayed sternal closure. J Cardiothorac Vasc Anesth. 2020;34:1238–43.PubMedCrossRef
67.
Zurück zum Zitat Kurazumi H, Suzuki R, Nawata R, Yokoyama T, Tsubone S, Matsuno Y, et al. Feasibility of open chest management with modified negative pressure wound therapy immediately after cardiac surgery. Interact Cardiovasc Thorac Surg. 2022;35:ivac041.PubMedPubMedCentralCrossRef Kurazumi H, Suzuki R, Nawata R, Yokoyama T, Tsubone S, Matsuno Y, et al. Feasibility of open chest management with modified negative pressure wound therapy immediately after cardiac surgery. Interact Cardiovasc Thorac Surg. 2022;35:ivac041.PubMedPubMedCentralCrossRef
68.
Zurück zum Zitat Crestanello JA, Greason K, Elsisy M, Lahr B, Bagameri G, Daly R, et al. Impact of time to chest closure on early and late survival in adults with delayed sternal closure. Eur J Cardiothorac Surg. 2023;63:ezad044.PubMedCrossRef Crestanello JA, Greason K, Elsisy M, Lahr B, Bagameri G, Daly R, et al. Impact of time to chest closure on early and late survival in adults with delayed sternal closure. Eur J Cardiothorac Surg. 2023;63:ezad044.PubMedCrossRef
69.
Zurück zum Zitat Zhu X, Wang Z, Ferrari MW, Ferrari-Kuehne K, Hsi DH, Tse G, et al. Management of anticoagulation in patients with infective endocarditis. Thromb Res. 2023;229:15–25.PubMedCrossRef Zhu X, Wang Z, Ferrari MW, Ferrari-Kuehne K, Hsi DH, Tse G, et al. Management of anticoagulation in patients with infective endocarditis. Thromb Res. 2023;229:15–25.PubMedCrossRef
70.
Zurück zum Zitat AATS Surgical Treatment of Infective Endocarditis Consensus Guidelines Writing Committee Chairs, Pettersson GB, Coselli JS, Writing Committee, Pettersson GB, Coselli JS, Hussain ST, Griffin B, Blackstone EH, Gordon SM. 2016 The American Association for Thoracic Surgery (AATS) consensus guidelines: surgical treatment of infective endocarditis: executive summary. J Thorac Cardiovasc Surg. 2017;153:1241–58.CrossRef AATS Surgical Treatment of Infective Endocarditis Consensus Guidelines Writing Committee Chairs, Pettersson GB, Coselli JS, Writing Committee, Pettersson GB, Coselli JS, Hussain ST, Griffin B, Blackstone EH, Gordon SM. 2016 The American Association for Thoracic Surgery (AATS) consensus guidelines: surgical treatment of infective endocarditis: executive summary. J Thorac Cardiovasc Surg. 2017;153:1241–58.CrossRef
71.
Zurück zum Zitat Tomaselli GF, Mahaffey KW, Cuker A, Dobesh PP, Doherty JU, Eikelboom JW, et al. 2020 ACC expert consensus decision pathway on management of bleeding in patients on oral anticoagulants: a report of the American College of Cardiology Solution Set Oversight Committee. J Am Coll Cardiol. 2020;76:594–622.PubMedCrossRef Tomaselli GF, Mahaffey KW, Cuker A, Dobesh PP, Doherty JU, Eikelboom JW, et al. 2020 ACC expert consensus decision pathway on management of bleeding in patients on oral anticoagulants: a report of the American College of Cardiology Solution Set Oversight Committee. J Am Coll Cardiol. 2020;76:594–622.PubMedCrossRef
72.
Zurück zum Zitat Chan KL, Dumesnil JG, Cujec B, Sanfilippo AJ, Jue J, Turek MA, et al. Investigators of the Multicenter Aspirin Study in Infective Endocarditis. A randomized trial of aspirin on the risk of embolic events in patients with infective endocarditis, J Am Coll Cardiol. 2003;42:775–80.PubMed Chan KL, Dumesnil JG, Cujec B, Sanfilippo AJ, Jue J, Turek MA, et al. Investigators of the Multicenter Aspirin Study in Infective Endocarditis. A randomized trial of aspirin on the risk of embolic events in patients with infective endocarditis, J Am Coll Cardiol. 2003;42:775–80.PubMed
75.
Zurück zum Zitat Chiba Y, Tashima Y, Ohama S, Tenaki K, Nakamura Y, Sano T, et al. Effect of nadir hematocrit during cardiopulmonary bypass on the early outcomes after surgical repair of acute type A aortic dissection. J Card Surg. 2022;37:2338–47.PubMedCrossRef Chiba Y, Tashima Y, Ohama S, Tenaki K, Nakamura Y, Sano T, et al. Effect of nadir hematocrit during cardiopulmonary bypass on the early outcomes after surgical repair of acute type A aortic dissection. J Card Surg. 2022;37:2338–47.PubMedCrossRef
78.
Zurück zum Zitat Tibi P, McClure S, Huang J, Baker RA, Fitzgerald D, Mazer CD, et al. STS/SCA/AmSECT/SABM Update to the clinical practice guidelines on patient blood management. J Cardiothorac Vasc Anesth. 2021;35:2569–91.PubMedCrossRef Tibi P, McClure S, Huang J, Baker RA, Fitzgerald D, Mazer CD, et al. STS/SCA/AmSECT/SABM Update to the clinical practice guidelines on patient blood management. J Cardiothorac Vasc Anesth. 2021;35:2569–91.PubMedCrossRef
79.
Zurück zum Zitat Kietaibl S, Ahmed A, Fshari A, Albaladejo P, Aldecoa C, Barauskas G, et al. Management of severe peri-operative bleeding: Guidelines from the European Society of Anaesthesiology and Intensive Care: Second update 2022. Eur J Anaesthesiol. 2023;40:226–304.PubMedCrossRef Kietaibl S, Ahmed A, Fshari A, Albaladejo P, Aldecoa C, Barauskas G, et al. Management of severe peri-operative bleeding: Guidelines from the European Society of Anaesthesiology and Intensive Care: Second update 2022. Eur J Anaesthesiol. 2023;40:226–304.PubMedCrossRef
80.
Zurück zum Zitat Raphael J, Mazer CD, Subramani S, Schroeder A, Abdalla M, Ferreira R, et al. Society of Cardiovascular Anesthesiologists Clinical Practice Improvement Advisory for Management of Perioperative Bleeding and Hemostasis in Cardiac Surgery Patients. Anesth Analg. 2019;129:1209–21.PubMedCrossRef Raphael J, Mazer CD, Subramani S, Schroeder A, Abdalla M, Ferreira R, et al. Society of Cardiovascular Anesthesiologists Clinical Practice Improvement Advisory for Management of Perioperative Bleeding and Hemostasis in Cardiac Surgery Patients. Anesth Analg. 2019;129:1209–21.PubMedCrossRef
81.
Zurück zum Zitat Liesenborghs K, Meters S, Vanassche T, Verhamme P. Coagulation: at the heart of infective endocarditis. J Thromb Haemost. 2020;18:995–1008.PubMedCrossRef Liesenborghs K, Meters S, Vanassche T, Verhamme P. Coagulation: at the heart of infective endocarditis. J Thromb Haemost. 2020;18:995–1008.PubMedCrossRef
82.
Zurück zum Zitat Czerwińska-Jelonkiewicz K, Sanetra K, Buszman PP, Gryszko L, Wood A, Creszenci O, et al. Hemostatic disorders in patients with infective endocarditis undergoing urgent surgical valve replacement - rethinking current beliefs. Int J Cardiol. 2023;388: 131112.PubMedCrossRef Czerwińska-Jelonkiewicz K, Sanetra K, Buszman PP, Gryszko L, Wood A, Creszenci O, et al. Hemostatic disorders in patients with infective endocarditis undergoing urgent surgical valve replacement - rethinking current beliefs. Int J Cardiol. 2023;388: 131112.PubMedCrossRef
83.
Zurück zum Zitat Koltsova EM, Sorokina MA, Pisaryuk AS, Pvalyaev NM, Ignatova AA, Polokhov DM, et al. Hypercoagulation detected by routine and global laboratory hemostasis assays in patients with infective endocarditis. PLoS ONE. 2021;16: e0261429.PubMedPubMedCentralCrossRef Koltsova EM, Sorokina MA, Pisaryuk AS, Pvalyaev NM, Ignatova AA, Polokhov DM, et al. Hypercoagulation detected by routine and global laboratory hemostasis assays in patients with infective endocarditis. PLoS ONE. 2021;16: e0261429.PubMedPubMedCentralCrossRef
84.
Zurück zum Zitat Breel JS, Wensing AGCL, Eberl S, Preckel B, Schober P, Müller MCA, et al. Patients with infective endocarditis undergoing cardiac surgery have distinct ROTEM profiles and more bleeding complications compared to patients without infective endocarditis. PLoS ONE. 2023;18: e0284329.PubMedPubMedCentralCrossRef Breel JS, Wensing AGCL, Eberl S, Preckel B, Schober P, Müller MCA, et al. Patients with infective endocarditis undergoing cardiac surgery have distinct ROTEM profiles and more bleeding complications compared to patients without infective endocarditis. PLoS ONE. 2023;18: e0284329.PubMedPubMedCentralCrossRef
85.
Zurück zum Zitat Kim J, Kim JH, Lee HJ, Lee SJ, Kim C, Lee JA, et al. Impact of the duration of postoperative antibiotics on the prognosis of patients with infective endocarditis. Antibiotics (Basel). 2023;12:173.PubMedCrossRef Kim J, Kim JH, Lee HJ, Lee SJ, Kim C, Lee JA, et al. Impact of the duration of postoperative antibiotics on the prognosis of patients with infective endocarditis. Antibiotics (Basel). 2023;12:173.PubMedCrossRef
86.
Zurück zum Zitat Rao VP, Wu J, Gillott R, Baig MW, Kaul P, Sandoe JA. Impact of the duration of antibiotic therapy on relapse and survival following surgery for active infective endocarditis. Eur J Cardiothorac Surg. 2019;55:760–5.PubMedCrossRef Rao VP, Wu J, Gillott R, Baig MW, Kaul P, Sandoe JA. Impact of the duration of antibiotic therapy on relapse and survival following surgery for active infective endocarditis. Eur J Cardiothorac Surg. 2019;55:760–5.PubMedCrossRef
87.
Zurück zum Zitat Morris AJ, Drinković D, Pottumarthy S, MacCulloch D, Kerr AR, West T. Bacteriological outcome after valve surgery for active infective endocarditis: implications for duration of treatment after surgery. Clin Infect Dis. 2005;41:187–94.PubMedCrossRef Morris AJ, Drinković D, Pottumarthy S, MacCulloch D, Kerr AR, West T. Bacteriological outcome after valve surgery for active infective endocarditis: implications for duration of treatment after surgery. Clin Infect Dis. 2005;41:187–94.PubMedCrossRef
88.
Zurück zum Zitat Hindricks G, Potpara T, Dagres N, Arbelo E, Bax JJ, Blomström-Lundqvist C, et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): The Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur Heart J. 2021;42:373–498.PubMedCrossRef Hindricks G, Potpara T, Dagres N, Arbelo E, Bax JJ, Blomström-Lundqvist C, et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): The Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur Heart J. 2021;42:373–498.PubMedCrossRef
89.
Zurück zum Zitat Whitlock RP, Belley-Cote EP, Paparella D, Healey JS, Brady K, Sharma M, et al. LAAOS III Investigators. Left atrial appendage occlusion during cardiac Surgery to prevent stroke. N Engl J Med. 2021;384:2081–91.PubMedCrossRef Whitlock RP, Belley-Cote EP, Paparella D, Healey JS, Brady K, Sharma M, et al. LAAOS III Investigators. Left atrial appendage occlusion during cardiac Surgery to prevent stroke. N Engl J Med. 2021;384:2081–91.PubMedCrossRef
91.
Zurück zum Zitat Waddingham PH, Behar JM, Roberts N, Dhillon G, Graham AJ, Hunter RJ. Post-operative cardiac implantable electronic devices in patients undergoing cardiac surgery: a contemporary experience. Europace. 2021;23:104–12.PubMedCrossRef Waddingham PH, Behar JM, Roberts N, Dhillon G, Graham AJ, Hunter RJ. Post-operative cardiac implantable electronic devices in patients undergoing cardiac surgery: a contemporary experience. Europace. 2021;23:104–12.PubMedCrossRef
92.
Zurück zum Zitat Jouan J, Mele A, Florens E, Chatellier G, Carpentier A, Achouh P. Conduction disorders after tricuspid annuloplasty with mitral valve surgery: implications for earlier tricuspid intervention. J Thorac Cardiovasc Surg. 2016;151:99–103.PubMedCrossRef Jouan J, Mele A, Florens E, Chatellier G, Carpentier A, Achouh P. Conduction disorders after tricuspid annuloplasty with mitral valve surgery: implications for earlier tricuspid intervention. J Thorac Cardiovasc Surg. 2016;151:99–103.PubMedCrossRef
93.
Zurück zum Zitat Mestres CA, Suri RM. Pacemaker risk associated with prophylactic tricuspid annuloplasty: Balancing beneficence and nonmaleficence. J Thorac Cardiovasc Surg. 2016;151:104–5.PubMedCrossRef Mestres CA, Suri RM. Pacemaker risk associated with prophylactic tricuspid annuloplasty: Balancing beneficence and nonmaleficence. J Thorac Cardiovasc Surg. 2016;151:104–5.PubMedCrossRef
Metadaten
Titel
Perioperative care in infective endocarditis
verfasst von
Eduard Quintana
Sara Ranchordas
Cristina Ibáñez
Polina Danchenko
Francis Edwin Smit
Carlos - Alberto Mestres
Publikationsdatum
14.05.2024
Verlag
Springer Nature Singapore
Erschienen in
Indian Journal of Thoracic and Cardiovascular Surgery / Ausgabe Sonderheft 1/2024
Print ISSN: 0970-9134
Elektronische ISSN: 0973-7723
DOI
https://doi.org/10.1007/s12055-024-01740-7

Weitere Artikel der Sonderheft 1/2024

Indian Journal of Thoracic and Cardiovascular Surgery 1/2024 Zur Ausgabe

Häusliche Gewalt in der orthopädischen Notaufnahme oft nicht erkannt

28.05.2024 Häusliche Gewalt Nachrichten

In der Notaufnahme wird die Chance, Opfer von häuslicher Gewalt zu identifizieren, von Orthopäden und Orthopädinnen offenbar zu wenig genutzt. Darauf deuten die Ergebnisse einer Fragebogenstudie an der Sahlgrenska-Universität in Schweden hin.

Fehlerkultur in der Medizin – Offenheit zählt!

28.05.2024 Fehlerkultur Podcast

Darüber reden und aus Fehlern lernen, sollte das Motto in der Medizin lauten. Und zwar nicht nur im Sinne der Patientensicherheit. Eine negative Fehlerkultur kann auch die Behandelnden ernsthaft krank machen, warnt Prof. Dr. Reinhard Strametz. Ein Plädoyer und ein Leitfaden für den offenen Umgang mit kritischen Ereignissen in Medizin und Pflege.

Mehr Frauen im OP – weniger postoperative Komplikationen

21.05.2024 Allgemeine Chirurgie Nachrichten

Ein Frauenanteil von mindestens einem Drittel im ärztlichen Op.-Team war in einer großen retrospektiven Studie aus Kanada mit einer signifikanten Reduktion der postoperativen Morbidität assoziiert.

TAVI versus Klappenchirurgie: Neue Vergleichsstudie sorgt für Erstaunen

21.05.2024 TAVI Nachrichten

Bei schwerer Aortenstenose und obstruktiver KHK empfehlen die Leitlinien derzeit eine chirurgische Kombi-Behandlung aus Klappenersatz plus Bypass-OP. Diese Empfehlung wird allerdings jetzt durch eine aktuelle Studie infrage gestellt – mit überraschender Deutlichkeit.

Update Chirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.

S3-Leitlinie „Diagnostik und Therapie des Karpaltunnelsyndroms“

Karpaltunnelsyndrom BDC Leitlinien Webinare
CME: 2 Punkte

Das Karpaltunnelsyndrom ist die häufigste Kompressionsneuropathie peripherer Nerven. Obwohl die Anamnese mit dem nächtlichen Einschlafen der Hand (Brachialgia parästhetica nocturna) sehr typisch ist, ist eine klinisch-neurologische Untersuchung und Elektroneurografie in manchen Fällen auch eine Neurosonografie erforderlich. Im Anfangsstadium sind konservative Maßnahmen (Handgelenksschiene, Ergotherapie) empfehlenswert. Bei nicht Ansprechen der konservativen Therapie oder Auftreten von neurologischen Ausfällen ist eine Dekompression des N. medianus am Karpaltunnel indiziert.

Prof. Dr. med. Gregor Antoniadis
Berufsverband der Deutschen Chirurgie e.V.

S2e-Leitlinie „Distale Radiusfraktur“

Radiusfraktur BDC Leitlinien Webinare
CME: 2 Punkte

Das Webinar beschäftigt sich mit Fragen und Antworten zu Diagnostik und Klassifikation sowie Möglichkeiten des Ausschlusses von Zusatzverletzungen. Die Referenten erläutern, welche Frakturen konservativ behandelt werden können und wie. Das Webinar beantwortet die Frage nach aktuellen operativen Therapiekonzepten: Welcher Zugang, welches Osteosynthesematerial? Auf was muss bei der Nachbehandlung der distalen Radiusfraktur geachtet werden?

PD Dr. med. Oliver Pieske
Dr. med. Benjamin Meyknecht
Berufsverband der Deutschen Chirurgie e.V.

S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“

Appendizitis BDC Leitlinien Webinare
CME: 2 Punkte

Inhalte des Webinars zur S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“ sind die Darstellung des Projektes und des Erstellungswegs zur S1-Leitlinie, die Erläuterung der klinischen Relevanz der Klassifikation EAES 2015, die wissenschaftliche Begründung der wichtigsten Empfehlungen und die Darstellung stadiengerechter Therapieoptionen.

Dr. med. Mihailo Andric
Berufsverband der Deutschen Chirurgie e.V.