Skip to main content
Erschienen in: Lasers in Medical Science 1/2024

01.12.2024 | Original Article

Photobiomodulation effects of blue light on osteogenesis are induced by reactive oxygen species

verfasst von: Maria Albaqami, Blanche Aguida, Ayda Pourmostafa, Margaret Ahmad, Vipuil Kishore

Erschienen in: Lasers in Medical Science | Ausgabe 1/2024

Einloggen, um Zugang zu erhalten

Abstract

Blue light–mediated photobiomodulation (PBM) is a promising approach to promote osteogenesis. However, the underlying mechanisms of PBM in osteogenesis are poorly understood. In this study, a human osteosarcoma cell line (i.e., Saos-2 cells) was subjected to intermittent blue light exposure (2500 µM/m2/s, 70 mW/cm2, 4.2 J/cm2, once every 48 h) and the effects on Saos-2 cell viability, metabolic activity, differentiation, and mineralization were investigated. In addition, this study addressed a possible role of blue light induced cellular oxidative stress as a mechanism for enhanced osteoblast differentiation and mineralization. Results showed that Saos-2 cell viability and metabolic activity were maintained upon blue light exposure compared to unilluminated controls, indicating no negative effects. To the contrary, blue light exposure significantly increased (p < 0.05) alkaline phosphatase activity and Saos-2 cell mediated mineralization. High-performance liquid chromatography (HPLC) assay was used for measurement of reactive oxygen species (ROS) activity and showed a significant increase (p < 0.05) in superoxide (O2•−) and hydrogen peroxide (H2O2) formed after blue light exposure. Together, these results suggest that the beneficial effects of blue light–mediated PBM on osteogenesis may be induced by controlled release of ROS.
Literatur
1.
2.
Zurück zum Zitat Burge R, Dawson-Hughes B, Solomon DH et al (2007) Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J Bone Miner Res 22(3):465–475CrossRefPubMed Burge R, Dawson-Hughes B, Solomon DH et al (2007) Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J Bone Miner Res 22(3):465–475CrossRefPubMed
3.
4.
5.
Zurück zum Zitat Zhao R, Yang R, Cooper PR et al (2021) Bone grafts and substitutes in dentistry: A review of current trends and developments. Molecules 26(10):1–27CrossRef Zhao R, Yang R, Cooper PR et al (2021) Bone grafts and substitutes in dentistry: A review of current trends and developments. Molecules 26(10):1–27CrossRef
6.
Zurück zum Zitat Pogorielov M (2017) Tissue engineering: challenges and selected application. Adv Tissue Eng Regen Med Open Access 3:330–334 Pogorielov M (2017) Tissue engineering: challenges and selected application. Adv Tissue Eng Regen Med Open Access 3:330–334
7.
Zurück zum Zitat Avci P, Gupta A, Sadasivam M et al (2013) Low-level laser (light) therapy (LLLT) in skin: stimulating, healing, restoring. Semin Cutan Med Surg 32(1):41–52PubMedPubMedCentral Avci P, Gupta A, Sadasivam M et al (2013) Low-level laser (light) therapy (LLLT) in skin: stimulating, healing, restoring. Semin Cutan Med Surg 32(1):41–52PubMedPubMedCentral
8.
Zurück zum Zitat Dungel P, Hartinger J, Chaudary S et al (2014) Low level light therapy by LED of different wavelength induces angiogenesis and improves ischemic wound healing. Lasers Surg Med 46(10):773–780CrossRefPubMed Dungel P, Hartinger J, Chaudary S et al (2014) Low level light therapy by LED of different wavelength induces angiogenesis and improves ischemic wound healing. Lasers Surg Med 46(10):773–780CrossRefPubMed
10.
Zurück zum Zitat Chaves MEA, Piancastelli ACC, Araujo AR, Pinotti M (2014) Effects of low-power light therapy on wound healing : LASER x LED. An Bras Dermatol 89(4):616–623CrossRefPubMedPubMedCentral Chaves MEA, Piancastelli ACC, Araujo AR, Pinotti M (2014) Effects of low-power light therapy on wound healing : LASER x LED. An Bras Dermatol 89(4):616–623CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Stern M, Broja M, Sansone R et al (2018) Blue light exposure decreases systolic blood pressure, arterial stiffness, and improves endothelial function in humans. Eur J Prev Cardiol 25(17):1875–1883CrossRefPubMed Stern M, Broja M, Sansone R et al (2018) Blue light exposure decreases systolic blood pressure, arterial stiffness, and improves endothelial function in humans. Eur J Prev Cardiol 25(17):1875–1883CrossRefPubMed
12.
Zurück zum Zitat Magni G, Tatini F, De SG et al (2022) Blue-LED-light photobiomodulation of inflammatory responses and new tissue formation in mouse-skin wounds. Life 12(10):871CrossRef Magni G, Tatini F, De SG et al (2022) Blue-LED-light photobiomodulation of inflammatory responses and new tissue formation in mouse-skin wounds. Life 12(10):871CrossRef
13.
Zurück zum Zitat Wang Y, Huang Y-Y, Wang Y et al (2016) Photobiomodulation (blue and green light) encourages osteoblastic-differentiation of human adipose-derived stem cells: role of intracellular calcium and light-gated ion channels. Sci Rep 6(1):33719CrossRefPubMedPubMedCentral Wang Y, Huang Y-Y, Wang Y et al (2016) Photobiomodulation (blue and green light) encourages osteoblastic-differentiation of human adipose-derived stem cells: role of intracellular calcium and light-gated ion channels. Sci Rep 6(1):33719CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Zhu T, Wu Y, Zhou X et al (2019) Irradiation by blue light-emitting diode enhances osteogenic differentiation in gingival mesenchymal stem cells in vitro. Lasers Med Sci 34:1473–1481CrossRefPubMed Zhu T, Wu Y, Zhou X et al (2019) Irradiation by blue light-emitting diode enhances osteogenic differentiation in gingival mesenchymal stem cells in vitro. Lasers Med Sci 34:1473–1481CrossRefPubMed
15.
Zurück zum Zitat Yang Y, Zhu T, Wu Y et al (2020) Irradiation with blue light-emitting diode enhances osteogenic differentiation of stem cells from the apical papilla. Lasers Med Sci 35:1981–1988CrossRefPubMed Yang Y, Zhu T, Wu Y et al (2020) Irradiation with blue light-emitting diode enhances osteogenic differentiation of stem cells from the apical papilla. Lasers Med Sci 35:1981–1988CrossRefPubMed
16.
Zurück zum Zitat Yuan Y, Yan G, Gong R et al (2017) Effects of blue light emitting diode irradiation on the proliferation, apoptosis and differentiation of bone marrow-derived mesenchymal stem cells. Cell Physiol Biochem 43(1):237–246CrossRefPubMed Yuan Y, Yan G, Gong R et al (2017) Effects of blue light emitting diode irradiation on the proliferation, apoptosis and differentiation of bone marrow-derived mesenchymal stem cells. Cell Physiol Biochem 43(1):237–246CrossRefPubMed
17.
Zurück zum Zitat Rajendran NK, George BP, Chandran R et al (2019) The influence of light on reactive oxygen species and NF-кB in disease progression. Antioxidants 8(12):640CrossRef Rajendran NK, George BP, Chandran R et al (2019) The influence of light on reactive oxygen species and NF-кB in disease progression. Antioxidants 8(12):640CrossRef
18.
Zurück zum Zitat Pizzino G, Irrera N, Cucinotta M et al (2017) Oxidative stress: harms and benefits for human health. Oxid Med Cell Longev 2017:1–13 Pizzino G, Irrera N, Cucinotta M et al (2017) Oxidative stress: harms and benefits for human health. Oxid Med Cell Longev 2017:1–13
19.
Zurück zum Zitat Escudero JSB, Perez MGB, de Oliveira Rosso MP et al (2019) Photobiomodulation therapy (PBMT) in bone repair: a systematic review. Injury 50(11):1853–1867CrossRefPubMed Escudero JSB, Perez MGB, de Oliveira Rosso MP et al (2019) Photobiomodulation therapy (PBMT) in bone repair: a systematic review. Injury 50(11):1853–1867CrossRefPubMed
20.
Zurück zum Zitat Kishore V, Iyer R, Frandsen A, Nguyen TU (2016) In vitro characterization of electrochemically compacted collagen matrices for corneal applications. Biomed Mater 11(5):55008CrossRef Kishore V, Iyer R, Frandsen A, Nguyen TU (2016) In vitro characterization of electrochemically compacted collagen matrices for corneal applications. Biomed Mater 11(5):55008CrossRef
21.
Zurück zum Zitat Nguyen TU, Watkins KE, Kishore V (2019) Photochemically crosslinked cell-laden methacrylated collagen hydrogels with high cell viability and functionality. J Biomed Mater Res 107(7):1541–1550CrossRef Nguyen TU, Watkins KE, Kishore V (2019) Photochemically crosslinked cell-laden methacrylated collagen hydrogels with high cell viability and functionality. J Biomed Mater Res 107(7):1541–1550CrossRef
22.
Zurück zum Zitat Patrawalla NY, Kajave NS, Kishore V (2023) A comparative study of bone bioactivity and osteogenic potential of different bioceramics in methacrylated collagen hydrogels. J Biomed Mater Res 111(2):224–233CrossRef Patrawalla NY, Kajave NS, Kishore V (2023) A comparative study of bone bioactivity and osteogenic potential of different bioceramics in methacrylated collagen hydrogels. J Biomed Mater Res 111(2):224–233CrossRef
23.
Zurück zum Zitat Fernandes DC, Gonçalves RC, Laurindo FRM (2017) Measurement of superoxide production and NADPH oxidase activity by HPLC analysis of dihydroethidium oxidation. Hypertension: Methods and protocols, pp 233–249 Fernandes DC, Gonçalves RC, Laurindo FRM (2017) Measurement of superoxide production and NADPH oxidase activity by HPLC analysis of dihydroethidium oxidation. Hypertension: Methods and protocols, pp 233–249
25.
Zurück zum Zitat Magri AMP, Parisi JR, de Andrade ALM, Rennó ACM (2021) Bone substitutes and photobiomodulation in bone regeneration: a systematic review in animal experimental studies. J Biomed Mater Res 109(9):1765–1775CrossRef Magri AMP, Parisi JR, de Andrade ALM, Rennó ACM (2021) Bone substitutes and photobiomodulation in bone regeneration: a systematic review in animal experimental studies. J Biomed Mater Res 109(9):1765–1775CrossRef
26.
Zurück zum Zitat Mohamad SA, Milward MR, Hadis MA et al (2021) Photobiomodulation of mineralisation in mesenchymal stem cells. Photochem Photobiol Sci 20(5):699–714CrossRefPubMed Mohamad SA, Milward MR, Hadis MA et al (2021) Photobiomodulation of mineralisation in mesenchymal stem cells. Photochem Photobiol Sci 20(5):699–714CrossRefPubMed
27.
Zurück zum Zitat Mandal CC, Ganapathy S, Gorin Y et al (2015) Reactive oxygen species derived from Nox4 mediate BMP2 gene transcription and osteoblast differentiation. Biochem J 433(2):393–402CrossRef Mandal CC, Ganapathy S, Gorin Y et al (2015) Reactive oxygen species derived from Nox4 mediate BMP2 gene transcription and osteoblast differentiation. Biochem J 433(2):393–402CrossRef
28.
Zurück zum Zitat Arakaki N, Yamashita A, Niimi S, Yamazaki T (2013) Involvement of reactive oxygen species in osteoblastic differentiation of MC3T3-E1 cells accompanied by mitochondrial morphological dynamics. Biomed Res 34(3):161–166CrossRefPubMed Arakaki N, Yamashita A, Niimi S, Yamazaki T (2013) Involvement of reactive oxygen species in osteoblastic differentiation of MC3T3-E1 cells accompanied by mitochondrial morphological dynamics. Biomed Res 34(3):161–166CrossRefPubMed
29.
Zurück zum Zitat Sies H (2000) What is Oxidative Stress? In: Keaney JF (ed) Oxidative stress and vascular disease. Springer, Boston, MA, pp 1–8 Sies H (2000) What is Oxidative Stress? In: Keaney JF (ed) Oxidative stress and vascular disease. Springer, Boston, MA, pp 1–8
30.
Zurück zum Zitat Oh PS, Na KS, Hwang H et al (2015) Effect of blue light emitting diodes on melanoma cells: involvement of apoptotic signaling. J Photochem Photobiol B Biol 142:197–203CrossRef Oh PS, Na KS, Hwang H et al (2015) Effect of blue light emitting diodes on melanoma cells: involvement of apoptotic signaling. J Photochem Photobiol B Biol 142:197–203CrossRef
31.
Zurück zum Zitat Yoshida A, Yoshino F, Makita T et al (2013) Reactive oxygen species production in mitochondria of human gingival fibroblast induced by blue light irradiation. J Photochem Photobiol B Biol 129:1–5CrossRef Yoshida A, Yoshino F, Makita T et al (2013) Reactive oxygen species production in mitochondria of human gingival fibroblast induced by blue light irradiation. J Photochem Photobiol B Biol 129:1–5CrossRef
32.
Zurück zum Zitat Zhang F, Peng W, Zhang J et al (2019) New strategy of bone marrow mesenchymal stem cells against oxidative stress injury via Nrf2 pathway: oxidative stress preconditioning. J Cell Biochem 120(12):19902–19914CrossRefPubMedPubMedCentral Zhang F, Peng W, Zhang J et al (2019) New strategy of bone marrow mesenchymal stem cells against oxidative stress injury via Nrf2 pathway: oxidative stress preconditioning. J Cell Biochem 120(12):19902–19914CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Nouri F, Nematollahi-Mahani SN, Sharifi AM (2019) Preconditioning of mesenchymal stem cells with non-toxic concentration of hydrogen peroxide against oxidative stress induced cell death: the role of hypoxia-inducible factor-1. Adv Pharm Bull 9(1):76–83CrossRefPubMedPubMedCentral Nouri F, Nematollahi-Mahani SN, Sharifi AM (2019) Preconditioning of mesenchymal stem cells with non-toxic concentration of hydrogen peroxide against oxidative stress induced cell death: the role of hypoxia-inducible factor-1. Adv Pharm Bull 9(1):76–83CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat He Y, Ma M, Yan Y et al (2020) Combined pre-conditioning with salidroside and hypoxia improves proliferation, migration and stress tolerance of adipose-derived stem cells. J Cell Mol Med 24(17):9958–9971CrossRefPubMedPubMedCentral He Y, Ma M, Yan Y et al (2020) Combined pre-conditioning with salidroside and hypoxia improves proliferation, migration and stress tolerance of adipose-derived stem cells. J Cell Mol Med 24(17):9958–9971CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Guo L, Du J, Yuan DF et al (2020) Optimal H2O2preconditioning to improve bone marrow mesenchymal stem cells’ engraftment in wound healing. Stem Cell Res Ther 11(1):1–17CrossRef Guo L, Du J, Yuan DF et al (2020) Optimal H2O2preconditioning to improve bone marrow mesenchymal stem cells’ engraftment in wound healing. Stem Cell Res Ther 11(1):1–17CrossRef
36.
Zurück zum Zitat Tonelli P, Duvina M, Barbato L et al (2011) Bone regeneration in dentistry. Clin Cases Miner Bone Metab 8(3):24–28PubMedPubMedCentral Tonelli P, Duvina M, Barbato L et al (2011) Bone regeneration in dentistry. Clin Cases Miner Bone Metab 8(3):24–28PubMedPubMedCentral
Metadaten
Titel
Photobiomodulation effects of blue light on osteogenesis are induced by reactive oxygen species
verfasst von
Maria Albaqami
Blanche Aguida
Ayda Pourmostafa
Margaret Ahmad
Vipuil Kishore
Publikationsdatum
01.12.2024
Verlag
Springer London
Erschienen in
Lasers in Medical Science / Ausgabe 1/2024
Print ISSN: 0268-8921
Elektronische ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-023-03951-7

Weitere Artikel der Ausgabe 1/2024

Lasers in Medical Science 1/2024 Zur Ausgabe