Skip to main content
Erschienen in: Journal of Cardiovascular Magnetic Resonance 1/2020

Open Access 01.12.2020 | Research

Prevalence and pattern of cardiovascular magnetic resonance late gadolinium enhancement in highly trained endurance athletes

verfasst von: B. Domenech-Ximenos, M. Sanz-de la Garza, S. Prat-González, A. Sepúlveda-Martínez, F. Crispi, K. Duran-Fernandez, R. J. Perea, B. Bijnens, M. Sitges

Erschienen in: Journal of Cardiovascular Magnetic Resonance | Ausgabe 1/2020

Abstract

Background

Intensive endurance exercise may induce a broad spectrum of right ventricular (RV) adaptation/remodelling patterns. Late gadolinium enhancement (LGE) has also been described in cardiovascular magnetic resonance (CMR) of some endurance athletes and its clinical meaning remains controversial. Our aim was to characterize the features of contrast CMR and the observed patterns of the LGE distribution in a cohort of highly trained endurance athletes.

Methods

Ninety-three highly trained endurance athletes (> 12 h training/week at least during the last 5 years; 36 ± 6 years old; 53% male) and 72 age and gender-matched controls underwent a resting contrast CMR. In a subgroup of 28 athletes, T1 mapping was also performed.

Results

High endurance training load was associated with larger bi-ventricular and bi-atrial sizes and a slight reduction of biventricular ejection fraction, as compared to controls in both genders (p < 0.05). Focal LGE was significantly more prevalent in athletes than in healthy subjects (37.6% vs 2.8%; p < 0.001), with a typical pattern in the RV insertion points. In T1 mapping, those athletes who had focal LGE had higher extracellular volume (ECV) at the remote myocardium than those without (27 ± 2.2% vs 25.2 ± 2.1%; p < 0.05).

Conclusions

Highly trained endurance athletes showed a ten-fold increase in the prevalence of focal LGE as compared to control subjects, always confined to the hinge points. Additionally, those athletes with focal LGE demonstrated globally higher myocardial ECV values. This matrix remodelling and potential presence of myocardial fibrosis may be another feature of the athlete’s heart, of which the clinical and prognostic significance remains to be determined.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
BSA
Body surface area
CMR
Cardiovascular magnetic resonance
ECG
Electrocardiogram
ECV
Extracellular volume fraction
EDV
End-diastolic volume
EDVI
End-diastolic volume index
ESV
End-systolic volume
ESVI
End-systolic volume index
HR
Heart rate
LAA
Left atrial area
LAAI
Left atrial area index
LGE
Late gadolinium enhancement
LV
Left ventricle/left ventricular
LVEF
Left ventricle ejection fraction
MOLLI   Modified Look-Locker inversion recovery   RAA
Right atrial area
RAAI
right atrial area index
RV
Right ventricle/right ventricular
RVEF
Right ventricle ejection fraction
VO2max
Maximal oxygen consumption

Key points

1.
Highly trained endurance athletes showed a ten-fold increase in the prevalence of focal LGE as compared to control subjects, always confined to the hinge points.
 
2.
Those athletes with focal LGE demonstrated globally higher myocardial ECV values.
 
3.
This matrix remodelling and potential presence of myocardial fibrosis may be another feature of the athlete’s heart, of which the clinical and prognostic significance remains to be determined.
 

Introduction

Long-lasting athletic training leads to structural, functional and electric cardiac adaptations known as the ‘athlete’s heart’ [13]. This occurs predominantly in endurance athletes since they undergo high training loads with a dynamic component. Nonetheless, adaptation to endurance exercise seems to be variable among individuals even when performing equivalent exercise training loads [4].
Late gadolinium enhancement (LGE) in the myocardium as assessed by contrast cardiovascular magnetic resonance (CMR) is associated with a poor prognosis in patients with cardiomyopathy [57]. Nevertheless, LGE has been also shown by CMR in some endurance athletes [812] and even in the general population [1315]. However, the prevalence and prognostic relevance, of isolated LGE in athletes in the absence of overt structural cardiomyopathy, in terms of arrhythmogenesis, remains controversial [16].
CMR imaging is useful to assess cardiac morphology and function, and contrast enhanced CMR imaging with LGE correlates with histological indications of myocardial fibrosis in patients with previous myocardial infarction [17, 18]. In patients with an underlying cardiomyopathy, LGE has been suggested as a sensitive tool for the detection of focal myocardial fibrosis [57]. The presence and location of diffuse LGE and interstitial myocardial fibrosis, might be overlooked with conventional sequences. Therefore, the extracellular volume (ECV) assessment through T1-mapping sequences has been suggested as complementary information where ECV values have been correlated with myocardial fibrosis by histology [1921] and, if increased, has been found to be an independent predictor of death and cardiac events in patients with heart failure [22].
The relationship between long-term endurance exercise and the presence of LGE is controversial. Current data are limited since a number of series that reported higher LGE in asymptomatic athletes [11, 23, 24], included older athletes with mixed patterns of LGE, such as subendocardial, transmural or subepicardial [11], or they only included male athletes, ignoring female competitive athletes [11, 23, 25].
Therefore, the purpose of this study was to evaluate the prevalence and the distribution pattern of LGE and ECV as potential indicators of myocardial fibrosis in highly-trained endurance athletes of both gender and to compare them to those observed in age- and gender-matched control subjects.

Methods

Study population

We recruited 93 triathletes from local triathlon clubs by invitation to participate in our study, between March 2015 and December 2017. Inclusion criteria were: (a) highly-trained endurance athletes (20–45 years) who had trained for a minimum of 12 h per week in the previous 5 years, (b) no cardiac symptoms or cardiovascular disease risk factors and (c) no family history of sudden cardiac death. The control group comprised 72 age- and gender-matched individuals. They were eligible if they only performed recreational sports of mild-moderate intensity for less than 3 h per week, and if they had no known history of cardiovascular disease.
The subjects were evaluated through the following tests: detailed anamnesis, physical examination, blood test and 12-lead surface electrocardiograms (ECG), and also a maximal cardiopulmonary exercise test in an upright cycloergometer (Ergoselected 100, Ergoline, Bitz, Germany) following an incremental ramp protocol. Study exclusion criteria were the presence of heart disease, renal failure (creatinine > 1,5 mg/dL), claustrophobia or any other contraindication for CMR. Lifetime training history and current training load were registered by direct reporting of the athletes. The study protocol complied with the declaration of Helsinki, institutional review board and ethics committee approval were obtained for this study. All subjects provided written informed consent.

CMR imaging acquisition protocol

All athletes underwent CMR imaging with either a 3 T (n = 65) or a 1.5 T (n = 28) CMR scanner (Magnetom Trio or MagnetomAera, respectively; Siemens Healthineers, Erlangen, Germany), using a dedicated cardiac coil and ECG gating. Control subjects were scanned with the same 3 T scanner. After standardized CMR planning [26], conventional balanced steady-state free-precession cine imaging in a short-axis (8 mm slice thickness, 2 mm gap), covering the left ventricle (LV) and right ventricle (RV) from above the atrioventricular groove to the apex, in 2- and 4- chamber view were acquired [27]. In addition, after 10–15 min of 0.15 mmol/Kg gadobutrol (Gadovist®, Bayer Healthcare, Berlin, Germany) intravenous bolus injection, LGE images were obtained with standard phase-sensitive inversion recovery sequence matching cine images. Finally, in a subgroup of 28 athletes, whose studies were performed in the 1.5 T scanner, T1-mapping was also added using a modified look-locker inversion recovery sequence (MOLLI 5–3-3) in short axis (basal, mid ventricular and apical) and 4-chamber view. They were acquired at baseline and 15 min after a bolus of gadobutrol to quantify the ECV. Blood samples were drawn at the same moment of the CMR study and the hematocrit was determined. The acquired images were digitally stored in DICOM format.

CMR data analysis

CMR images analysis were performed with specialized software (Argus, Siemens Medical Solutions, Germany) and were blindly evaluated by two experienced investigators, who had more than twelve years of CMR clinical expertise. Cardiac function quantification was performed using the summation of discs method; LV endo- and epicardial borders and RV endocardial borders were manually traced to quantify volumes at end-diastole (EDV) and end-systole (ESV), as well as the LV mass. Data were normalized to the subject’s body surface area (BSA). LGE was identified in contrast sequences and was deemed significant if the LGE pattern and extent was visually identified by both clinicians at least in two consecutive images. Native T1 and post-contrast T1 values were measured in regions of interest drawn in the LV septum (midventricular) and in the LV cavity (blood pool) to quantify ECV [ECV = (1 - Hematocrit) x (ΔR1myocardium/ΔR1blood)] [28]. Areas of focal LGE were excluded in order to evaluate these parameters unbiased from the presence of LGE.

Statistical analysis

Data were analysed with SPSS for Windows (V.19.0, Statistical Package for the Social Sciences, International Business Machines, Inc., Armonk, New York, USA). A Gaussian distribution of all continuous variables was confirmed using a Kolmogorov–Smirnov test and values were reported as mean ± standard deviation (SD). To compare qualitative variables, a chi-squared test was used. An unpaired Student t-test was used to compare differences between athletes with and without LGE. Intraclass correlation coefficient for absolute agreement was used to evaluate the concordance between CMR measures performed by the two independent observers. A p-value of less than 0.05 was considered to indicate statistical significance.

Results

Baseline population characteristics

Characteristics of the male and female triathletes and control subjects are shown in Table 1. All four groups presented a similar distribution of age. Female athletes had lower BSA than male athletes, and BSA was also lower in athletes as compared to controls (p < 0.05). As expected, athletes showed a lower heart rate and higher maximal oxygen consumption (VO2max) as compared with the control group. All controls had a normal ECG and athletes presented with exercise-induced adaptive ECG changes such as incomplete right bundle branch block (male vs female: 20.4% vs 18.2%; p = 0.78) and mild or moderate sinus bradycardia (male vs female: 61% vs 64%; p = 0.81). No ECG pathological abnormalities were found in controls or in the athlete’s population.
Table 1
Baseline characteristics of the athletes and control subjects
 
Athletes
(n = 93)
Controls
(n = 72)
p-value
Age, years
35.7 ± 5.8
34 ± 3.6
0.038
BSA, m2
1.78 ± 0.18
1.85 ± 0.21
0.014
Systolic blood pressure, mmHg
114 ± 15.9
113.9 ± 12.9
0.613
Diastolic blood pressure, mmHg
74.7 ± 9.8
76.1 ± 10.1
0.617
Peak exercise systolic blood pressure, mmHg
184.8 ± 35.6
NA
HR, bpm
57.5 ± 8.4
65.6 ± 10
0.001
VO2 max, ml/min/kg
43.7 ± 7.6
28.9 ± 7.8
0.032
Training load per week, METs x min
7619 ± 2837
NA
Training load, years
13.7 ± 7.7
NA
Values are mean SD or n (%). Values in bold indicate significant differences between groups
BSA Body surface area, HR Heart rate, VO2max Maximal oxygen consumption, MET Metabolic equivalent of task, NA Not applicable

Left and right cavity remodelling

Table 2 depicts cardiac dimensions and function as well as the results of contrast CMR in the different groups. Athletes showed a slight reduction of biventricular ejection fraction and larger biventricular volumes, particularly in the RV, resulting in a higher RV EDV-to-LV EDV ratio in athletes as compared to controls subjects (0.97 ± 0.1 vs 0.89 ± 0.1; p < 0.001). Male athletes presented larger biventricular and right atrial cavities as compared to female athletes (p < 0.05). LV mass and bi-atrial size were also larger in athletes as compared to controls.
Table 2
Cardiovascular magnetic resonance parameters in male and female athletes and control subjects
 
Male
Female
Athletes vs controls
Athletes
(n = 49)
Controls
(n = 42)
p-value
Athletes
(n = 44)
Controls
(n = 30)
p-value
LVEF, %
56 ± 5
60 ± 5
0.004
58 ± 5
61 ± 4
0.003
0.001
LV mass index, g/m2
66 ± 10
49 ± 10
0.001
55 ± 8
40 ± 8
0.001
0.001
LVEDVI, ml/m2
109 ± 13
90 ± 15
0.001
98 ± 15
81 ± 9
0.001
0.001
LVESVI, ml/m2
47 ± 8
36 ± 8
0.001
41 ± 8
31 ± 5
0.001
0.001
LVSV, ml/m2
61 ± 8
53 ± 9
0.001
57 ± 10
50 ± 7
0.001
0.001
RVEF, %
52 ± 6
54 ± 5
0.201
54 ± 4
57 ± 5
0.013
0.034
RVEDVI, ml/m2
110 ± 15
82 ± 17
0.001
92 ± 16
72 ± 11
0.001
0.001
RVESVI, ml/m2
53 ± 11
38 ± 9
0.001
42 ± 8
31 ± 7
0.001
0.001
RVSVI, ml/m2
58 ± 9
44 ± 10
0.001
50 ± 9
41 ± 6
0.001
0.001
LAAI, cm2/m2
14 ± 2
12 ± 2
0.001
14 ± 2
13 ± 2
0.349
0.001
RAAI, cm2/m2
13 ± 2
12 ± 2
0.002
11 ± 2
10 ± 2
0.489
0.012
LGE present*
17 (35)
2 (5)
0.001
18 (41)
0
0.001
0.001
Pericardial effusion
1 (2)
5 (12)
0.059
15 (34)
16 (53)
0.100
0.068
Values are mean SD or n (%). Values in bold indicate significant differences between groups
LVEF Left ventricular ejection fraction, LVEDVI Left ventricular end-diastolic volume index, LVESVI Left ventricular end-systolic volume index, LVSVI Left ventricular stroke volume index, RVEF Right ventricular ejection fraction, RVEDVI Right ventricular end-diastolic volume index, RVESVI Right ventricular end-systolic volume index, RVSVI Right ventricular stroke volume indexd, LAAI Left atrial area index, RAAI Right atrial area index, LGE Late gadolinium enhancement
*Two female athletes CMR study did not include late gadolinium enhancement sequence due to technical problems

Prevalence, localization and pattern of LGE

The presence of LGE was significantly more prevalent in athletes than in controls: 35 of 93 athletes (37.6%) showed LGE [17 of 49 males (34.7%) and 18 of 44 females (40.9%)], while only two of 72 (2.8%) controls had evidence of LGE. Thus, the presence of LGE was markedly increased in highly trained endurance athletes (in both genders) as compared to age- and gender-matched control subjects. All LGE+ triathletes had a similar pattern consisting of a small volume of focal LGE confined to the inferior interventricular septum, commonly where the RV attaches to the septum – insertion point or hinge point (Figs. 1 and 2). Other specific LGE patterns, such as subendocardial, transmural or subepicardial, were not identified in our population of healthy asymptomatic athletes.

Differences between LGE+ and LGE athletes

Table 3 depicts population characteristics and CMR parameters for athletes with and without LGE. Both groups were of similar age, height, weight or BSA and had a similar training load.
Table 3
Clinical, athletic training and cardiovascular magnetic resonance parameters in male and female athletes with and without late gadolinium enhancement
 
LGE+ Athletes
(n = 49)
LGE Athletes
(n = 44)
p-value
Clinical parameters
 Age, years
36 ± 6
35 ± 6
0.910
 Female, n (%)
19 (39)
25 (57)
0.216
 Weight, kg
68 ± 12
67 ± 11
0.643
 Height, m
1.7 ± 0.9
1.7 ± 0.2
0.865
 BSA, m2
1.8 ± 0.2
1.8 ± 0.1
0.569
 Peak systolic blood pressure, mm Hg
188.5 ± 33.2
182.3 ± 38.1
0.995
 HR, bpm
67.5 ± 11.3
59.9 ± 10.9
0.854
 VO2 max, ml/min/kg
43.3 ± 8.2
44.0 ± 7.8
0.387
Athletic training history
 Active years, n
12 ± 5
12 ± 7
0.607
 Training load per week
(METs/h/min)
8856 ± 2959
7348 ± 2507
0.906
 Endurance training during childhooda, n (%)
10 (20)
16 (36)
0.130
CMR parameters
 LVEF, %
57 ± 5
58 ± 5
0.372
 LV mass indexed, g/m2
60 ± 12
61 ± 10
0.798
 LVEDVI, ml/m2
102 ± 15
105 ± 14
0.381
 LVESVI, ml/m2
43 ± 9
44 ± 8
0.792
 LVSVI, ml/m2
57 ± 8
60 ± 9
0.125
 RVEF, %
52 ± 4
54 ± 6
0.228
 RVEDVI, ml/m2
101 ± 19
102 ± 18
0.717
 RVESVI, ml/m2
48 ± 10
47 ± 11
0.909
 RVSVI, ml/m2
52 ± 9
55 ± 10
0.257
Underlined values signify p < 0.05 by independent. Values are mean SD or n (%)
aTotal number of subjects that performed high intense endurance training during childhood and the corresponding percentage within each group of the study population
The exercise-induced increase in systolic blood pressure was equivalent in LGE+ and LGE- athletes. Among men, their competition history revealed that those athletes with LGE+ had a trend toward more hours of training per week (14.9 ± 2.6 vs 13.3 ± 2.3; p = 0.06). Nevertheless, LGE+ athletes (both genders) showed no differences in LV and RV volumes and ejection fraction as compared to LGE athletes.

T1 mapping and ECV

In a subgroup of 28 athletes (71% female), that were studied in the 1.5 T scanner, T1 mapping sequences were also included in the contrast CMR protocol. Globally, ECV mean values were 26.0 ± 2.3%, and within the range of previously reported normal intervals (ECV 25.3 ± 3.5%) [29, 30].
Additionally, 13 of those 28 athletes (46.4%) had LGE confined to the interventricular septum. Those LGE+ athletes, had higher ECV at remote LV myocardium (areas where focal LGE was not identified) as compared to LGE- athletes (27.1% ± 2.2 vs 25.2% ± 2.1; p < 0.05), despite still within the reference limits of normality. These data are shown in Fig. 3. ECV above the reference limits of normality were only found in 2 of 28 athletes and they were not associated with gender (p = 0.82), training load (p = 0.59), or with structural (considering LV EDV; p = 0.32) or functional (considering left ventricular ejection fraction (LVEF); p = 0.11) ventricular changes. Concordance was high between the two observers for ECV values (intraclass correlation coefficient -absolute agreement- > 0.85).

Discussion

The current study provides a comprehensive analysis of cardiac remodelling and the findings from CMR LGE and ECV assessment in asymptomatic highly trained endurance male and female athletes compared to age- and gender-matched controls.
The major findings of our study were: 1) as expected, highly trained endurance athletes showed an increase of biventricular and biatrial cavity sizes and a slight reduction of biventricular ejection fraction; 2) the presence of LGE, as a potential marker of focal fibrosis, was ten-fold more prevalent in athletes (both genders) as compared to controls, and it was always located in the inferior insertion point; 3) the presence of focal LGE did not result in significant differences in ventricular volumes and ejection fraction or in parameters of maximum aerobic capacity; and 4) athletes with LGE+ showed higher ECV values, despite they were globally still within the normal reference range.

Left and right cavity remodelling

As expected, our results are in line with previous data proving that long-term endurance training promotes cardiac remodelling that consists of significant biventricular and biatrial dilatation in both genders and a slight reduction of biventricular ejection fraction (at rest). These changes are part of a common adaptation in trained athletes, known as the athlete’s heart [2, 3, 31, 32]. A mild decrease in resting LVEF and right ventricular ejection fraction (RVEF) was generally associated with more significant LV and RV enlargement; this is typically considered as adaptive since dilated ventricles have increased volume- and contractile reserve [31, 33].

Prevalence and distribution of LGE on contrast CMR in athletes

Our study provides additional evidence that highly trained endurance athletes show a significantly higher prevalence of focal LGE than age- and gender-matched control subjects [4, 11, 23]. The prevalence of LGE, as a potential marker of focal fibrosis, was up to 37.6% in our group of athletes, ten-fold higher than that observed in the control group. This prevalence was significantly higher than reported in other series of athletes [11, 24, 34]. Even though Tahir et al. [34] did not find focal LGE in female athletes, we found a similar prevalence between male and female athletes (p > 0.05), as also previously described in other reports [24]; this could be due to the homogeneity of our cohort of athletes. Additionally, we did not find differences regarding training load between female and male athletes, unlike Tahir et al. [34], who noted that their female athletes reported less training load.
In our study, all athletes with LGE showed a similar pattern, consisting of a small volume of focal LGE confined to the interventricular septum, commonly where the RV attaches to the septum (the inferior insertion point or hinge point). This pattern corresponds to a typical non-ischemic substrate. Other specific LGE patterns, such as subendocardial, transmural or subepicardial, were not identified in our population.
This observation may be because our population was constituted by completely asymptomatic, otherwise healthy, young athletes, while in previous studies the athlete’s cohort was older [11, 12, 23, 34, 35] or had abnormal findings on their regular screening check-ups [36]. Breuckman and colleagues [11] studied a cohort of 102 veteran athletes and found that 12% had LGE, of which almost half showed a coronary artery disease pattern. Bohm et al. [12] in 33 endurance athletes found 3 of them having subepicardial LGE, which is typical for old myocarditis/pericarditis. Wilson and colleagues [23] in a small cohort of 12 veteran athletes found that 42% exhibited a non-coronary LGE pattern. They also included 17 young athletes in which no LGE was found. Likewise, Merghani et al. [35] included 152 master athletes, of which 14% revealed LGE. Nevertheless, they did not find relationship between myocardial fibrosis and exercise intensity, years of training, or number of competitions. Only in the study of Schnell et al. [36], athlete’s population was younger than ours. This study included 7 asymptomatic athletes who all showed LGE; including four with pathological T-wave inversions and two with ventricular arrhythmias on a screening exercise test. To our understanding, ours is the largest cohort of young, healthy and asymptomatic athletes published, and we assume that, unlike other studies, we probably did not find clearly pathological LGE patterns since our athletes were strictly recruited by invitation to participate in a research project, and not because they presented any type of clinical or electrical abnormality.
Regarding the presence of focal fibrosis in the insertion point, La Gerche et al. [32] has suggested that the RV may remodel slightly more than the LV in endurance athletes, since RV wall stress increases more than LV wall stress during exercise and this places an additional pressure load on the RV. Focal LGE in the RV inferior interventricular septum has been related to RV pressure overload and systolic pulmonary hypertension [37, 38]. Specifically, the presence of focal LGE in the RV inferior interventricular septum, as well as the extent of hyperenhancement, has been inversely related to measures of RV systolic function in patients with severe symptomatic pulmonary artery hypertension [37]. However, the clinical significance and the real impact on outcome of the presence of small regions of LGE in the RV insertion point, in asymptomatic subjects, are still uncertain and these aforementioned prognostic implications should not be extrapolated.

Differences between LGE+ and LGE athletes

LGE+ athletes showed no significant differences in LV and RV volumes or function as compared to LGE athletes. However, other authors [11, 23, 24, 34] have reported that those athletes with LGE had been competing in endurance sports for longer and had greater RV EDV and lower RVEF. Additionally, our athletes did not show a hypertensive response to exercise and, unlike Tahir et al. [34], we did not find significant differences regarding the peak exercise systolic blood pressure between LGE+ and LGE- athletes.
Our data demonstrates balanced biventricular and biatrial dilatation with a slight reduction of biventricular ejection fraction in athletes with and without LGE; this may arise, given the inclusion criteria, from the fact that our athletes practise the same endurance sport discipline and have similar training load. Thus, all this data potentially suggests that this LGE pattern might be another feature of the athlete’s heart, related to local mechanical stress due to the exercise-induced cardiac overload. While LGE has been correlated to focal fibrosis in chronic infarction, LGE dynamics are still controversial and not fully understood in other settings. The presence of LGE indicates that the local matrix and fibre structure has changed, similarly to what happens indeed in histologic fibrosis and scar; however, LGE could also be present due to localized structural remodelling regardless of the presence of real fibrosis. Experimental models of endurance training might shed some light in the real clinical significance of the observed LGE in athletes.

T1 mapping sequence and ECV assessment

Considering that the increased LV mass, observed in athletes, is due to an expansion of the cellular compartment, a decreased ECV is to be expected [39]. In fact, McDiarmid et al. presented data showing that increasing degrees of training load linearly increase myocyte hypertrophy and inversely ECV in the athletic group in a cohort of 30 athletes (athletes vs controls; 22.5% ± 2.6 versus 24.5% ± 2.2; p = 0.02) [39].
Nevertheless, in our study we did not find a decrease in ECV in athletes. And when we separately analysed those athletes with focal LGE confined to the inferior insertion point, we observed that they had slightly higher ECV at remote LV myocardium than those without LGE, despite still being within the limits of normality [29, 30]. These data are in line with previous published literature [34] suggesting that the potential myocardial fibrosis might involve the entire myocardium of athletes, with focal LGE, and would not be confined only to the LGE areas. There might be other explanations to the increase of ECV; Coelho-Filho and colleagues [40] worked with hypertensive patients with LV mass within the gender-specific normal range, and found that their ECV was significantly higher than in controls. They suggested that expansion of the ECV could precede significant increase of LV mass. Nevertheless, our patients did not have hypertension, which indeed was an exclusion criterion for the study, and there were no significant differences in LV mass between LGE+ and LGE- athletes.
Further studies with long-term follow-up are clearly warranted to understand if these slightly higher ECV values are another feature of the athlete’s heart or if this may be able to early identify athletes who are starting to potentially develop diffuse interstitial fibrosis and have indeed an abnormal adaptation to training.

Study limitations

The quantification of the training load by assessing self-reported training load represents a potential limitation, because these parameters depend on the individual perception and accuracy of athletes. Currently, no long-term follow-up data on outcomes is available to assess the prognostic and clinical implications of the observed LGE. The T1 mapping sequence was available in only 30% of athletes, among whom 71% were female; thus, findings need to be confirmed in larger populations.

Conclusions

Highly trained endurance athletes showed a ten-fold increase in the prevalence of focal LGE as compared to age-matched control subjects, always with a constant pattern confined to the hinge point of the inferior interventricular septum. This was observed together with balanced biventricular and biatrial dilatation. These findings suggest that this distribution pattern of LGE might be another feature of the athlete’s heart, with a clinical and prognostic significance that remains to be determined. In addition, those athletes with focal LGE demonstrated globally higher myocardial ECV values. The underlying mechanisms leading to these findings are unknown and beyond the target of the present study but might be related to local mechanical stress due to the exercise-induced cardiac (pressure) overload.

Acknowledgments

Not applicable.
The study protocol complied with the declaration of Helsinki, institutional review board and ethics committee approval (Comitè ètic Hospital Clínic de Barcelona) were obtained for this study, and all subjects provided a written informed consent.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
3.
Zurück zum Zitat Van de Schoor FR, Aengevaeren VL, Hopman MTE, et al. Myocardial fibrosis in athletes. Mayo Clin Proc. 2016;91:1617–31.PubMedCrossRef Van de Schoor FR, Aengevaeren VL, Hopman MTE, et al. Myocardial fibrosis in athletes. Mayo Clin Proc. 2016;91:1617–31.PubMedCrossRef
5.
Zurück zum Zitat Chan RH, Maron BJ, Olivotto I, et al. Prognostic value of quantitative contrast-enhanced cardiovascular magnetic resonance for the evaluation of sudden death risck in patients with hypertrophic cardiomyopathy. Circulation. 2014;130:484–95.PubMedCrossRef Chan RH, Maron BJ, Olivotto I, et al. Prognostic value of quantitative contrast-enhanced cardiovascular magnetic resonance for the evaluation of sudden death risck in patients with hypertrophic cardiomyopathy. Circulation. 2014;130:484–95.PubMedCrossRef
6.
Zurück zum Zitat Bogaert J, Olivotto I. MR imaging in hypertrophic cardiomyopathy: from magnet to bedside. Radiology. 2014;273:329–48.PubMedCrossRef Bogaert J, Olivotto I. MR imaging in hypertrophic cardiomyopathy: from magnet to bedside. Radiology. 2014;273:329–48.PubMedCrossRef
7.
Zurück zum Zitat Masci PG, Doulaptsis C, Bertella E, et al. Incremental prognostic value of myocardial fibrosis in patients with non-ischemic cardiomyopathy without congestive heart failure. Circ Heart Fail. 2014;7:448–56.PubMedCrossRef Masci PG, Doulaptsis C, Bertella E, et al. Incremental prognostic value of myocardial fibrosis in patients with non-ischemic cardiomyopathy without congestive heart failure. Circ Heart Fail. 2014;7:448–56.PubMedCrossRef
8.
Zurück zum Zitat Trivax JE, Franklin BA, Goldstein JA, et al. Acute cardiac effects of marathon running. J ApplPhysiol. 2010;108:1148–53. Trivax JE, Franklin BA, Goldstein JA, et al. Acute cardiac effects of marathon running. J ApplPhysiol. 2010;108:1148–53.
9.
Zurück zum Zitat Mousavi N, Czarnecki A, Kumar K, et al. Relation biomarkers and cardiac magnetic resonance imaging after marathon running. Am J Cardiol. 2009;103:1467–72.PubMedCrossRef Mousavi N, Czarnecki A, Kumar K, et al. Relation biomarkers and cardiac magnetic resonance imaging after marathon running. Am J Cardiol. 2009;103:1467–72.PubMedCrossRef
10.
Zurück zum Zitat Gaudreault V, Tizon-Marcos H, Poirer P, et al. Transient myocardial tissue and function changes during a marathon in less fit marathon runners. Can J Cardiol. 2013;29(10):1269–76.PubMedCrossRef Gaudreault V, Tizon-Marcos H, Poirer P, et al. Transient myocardial tissue and function changes during a marathon in less fit marathon runners. Can J Cardiol. 2013;29(10):1269–76.PubMedCrossRef
11.
Zurück zum Zitat Breuckmann F, Möhlenkamp S, Nassenstein K, et al. Myocardial late gadolinium enhancement: prevalence, pattern, and prognostic relevance in marathon runners. Radiology. 2009;251(1):50–7.PubMedCrossRef Breuckmann F, Möhlenkamp S, Nassenstein K, et al. Myocardial late gadolinium enhancement: prevalence, pattern, and prognostic relevance in marathon runners. Radiology. 2009;251(1):50–7.PubMedCrossRef
12.
Zurück zum Zitat Bohm P, Schneider G, Linneweber L, et al. Right and left ventricular function and mass in male elite master athletes: a controlled contrast-enhanced cardiovascular magnetic resonance study. Circulation. 2016;133:1927–35.PubMedCrossRef Bohm P, Schneider G, Linneweber L, et al. Right and left ventricular function and mass in male elite master athletes: a controlled contrast-enhanced cardiovascular magnetic resonance study. Circulation. 2016;133:1927–35.PubMedCrossRef
14.
Zurück zum Zitat Schelbert EB, Cao JJ, Sigurdsson S, et al. Prevalence and prognosis of unrecognized myocardial infarction determined by cardiac magnetic resonance in older adults. JAMA. 2012;308(9):890–6.PubMedPubMedCentralCrossRef Schelbert EB, Cao JJ, Sigurdsson S, et al. Prevalence and prognosis of unrecognized myocardial infarction determined by cardiac magnetic resonance in older adults. JAMA. 2012;308(9):890–6.PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Barbier CE, Bjerner T, Johansson L, et al. Myocardial scars more frequent than expected: magnetic resonance imaging detects potential risk group. J Am Coll Cardiol. 2006;48(4):765–71.PubMedCrossRef Barbier CE, Bjerner T, Johansson L, et al. Myocardial scars more frequent than expected: magnetic resonance imaging detects potential risk group. J Am Coll Cardiol. 2006;48(4):765–71.PubMedCrossRef
16.
Zurück zum Zitat La Gerche A, Baggish AL, Knuuti J, et al. Cardiac imaging and stress testing asymptomatic athletes to identify those at risk of sudden cardiac death. JACC Cardiovasc Imaging. 2013;6:993–1007.PubMedCrossRef La Gerche A, Baggish AL, Knuuti J, et al. Cardiac imaging and stress testing asymptomatic athletes to identify those at risk of sudden cardiac death. JACC Cardiovasc Imaging. 2013;6:993–1007.PubMedCrossRef
19.
Zurück zum Zitat Kammerlander AA, Mazluf BA, ZotterTufaro C, et al. T1 mapping by CMR imaging: from histological validation to clinical implication. J Am Coll CardiolImg. 2016;9:14–23.CrossRef Kammerlander AA, Mazluf BA, ZotterTufaro C, et al. T1 mapping by CMR imaging: from histological validation to clinical implication. J Am Coll CardiolImg. 2016;9:14–23.CrossRef
20.
Zurück zum Zitat Diao K-Y, Yang Z-G, Xu H-Y, et al. Hystologic validation of myocardial fibrosis measured by T1 mapping: a systematic review and meta-analysis. J Cardiovasc MagnReson. 2016;18:92.CrossRef Diao K-Y, Yang Z-G, Xu H-Y, et al. Hystologic validation of myocardial fibrosis measured by T1 mapping: a systematic review and meta-analysis. J Cardiovasc MagnReson. 2016;18:92.CrossRef
22.
Zurück zum Zitat Schelbert EB, Piehler KM, Zareba KM, et al. Myocardial fibrosis quantified by extracellular volume is associated with subsequent hospitalization for heart failure, death, or both across the spectrum of ejection fraction and heart failure stage. J Am Heart Assoc. 2015;4:e002613.PubMedPubMedCentral Schelbert EB, Piehler KM, Zareba KM, et al. Myocardial fibrosis quantified by extracellular volume is associated with subsequent hospitalization for heart failure, death, or both across the spectrum of ejection fraction and heart failure stage. J Am Heart Assoc. 2015;4:e002613.PubMedPubMedCentral
23.
Zurück zum Zitat Wilson M, O’Hanlon R, Prasad S, et al. Diverse patterns of myocardial fibrosis in lifelong veteran endurance athletes. J Appl Physiol. 2011;110(6):1622–6.PubMedPubMedCentralCrossRef Wilson M, O’Hanlon R, Prasad S, et al. Diverse patterns of myocardial fibrosis in lifelong veteran endurance athletes. J Appl Physiol. 2011;110(6):1622–6.PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Mc Diarmid AK, Swoboda PP, Erhayiem B, et al. Ahtletic cardiac adapation in males is a consequence of elevated myocyte mass. Circ Cardiovasc Imaging. 2016;9:e003579. Mc Diarmid AK, Swoboda PP, Erhayiem B, et al. Ahtletic cardiac adapation in males is a consequence of elevated myocyte mass. Circ Cardiovasc Imaging. 2016;9:e003579.
26.
Zurück zum Zitat Kramer CM, Barkhausen J, Flamm SD, Society for Cardiovascular Magnetic Resonance Board of Trustees Task Force on Standardized Protocols, et al. Standardized cardiovascular magnetic resonance (CMR) protocols 2013 update. J CardioavcMagnReson. 2013;15:91. https://doi.org/10.1186/1532-429X-15-91.CrossRef Kramer CM, Barkhausen J, Flamm SD, Society for Cardiovascular Magnetic Resonance Board of Trustees Task Force on Standardized Protocols, et al. Standardized cardiovascular magnetic resonance (CMR) protocols 2013 update. J CardioavcMagnReson. 2013;15:91. https://​doi.​org/​10.​1186/​1532-429X-15-91.CrossRef
27.
Zurück zum Zitat Schulz-Menger J, Bluemke DA, Bremerich J, et al. Standardized image interpretation and post processing in cardiovascular magnetic resonance: Society for Cardiovascular Magnetic Resonance (SCMR) board of trustees task force on standardized post processing. J Cardiovasc MagnReson. 2013;15:35.CrossRef Schulz-Menger J, Bluemke DA, Bremerich J, et al. Standardized image interpretation and post processing in cardiovascular magnetic resonance: Society for Cardiovascular Magnetic Resonance (SCMR) board of trustees task force on standardized post processing. J Cardiovasc MagnReson. 2013;15:35.CrossRef
28.
Zurück zum Zitat Flett AS, Hayward MP, Ashworth MT, et al. Equilibrium contrast cardiovascular magnetic resonance for the measurement of diffuse myocardial fibrosis: preliminary validation in humans. Circulation. 2010;122:138–44.PubMedCrossRef Flett AS, Hayward MP, Ashworth MT, et al. Equilibrium contrast cardiovascular magnetic resonance for the measurement of diffuse myocardial fibrosis: preliminary validation in humans. Circulation. 2010;122:138–44.PubMedCrossRef
35.
Zurück zum Zitat Merghani A, Maestrini V, Rosmini S, et al. Prevalence of subclinical coronary artery disease in masters endurance athletes with a low atherosclerotic risk profile. Circulation. 2017;136:126–37.PubMedCrossRef Merghani A, Maestrini V, Rosmini S, et al. Prevalence of subclinical coronary artery disease in masters endurance athletes with a low atherosclerotic risk profile. Circulation. 2017;136:126–37.PubMedCrossRef
37.
Zurück zum Zitat Blyth KG, Groenning BA, Martin TN, et al. Contrast enhanced-cardiovascular magnetic resonance imaging in patients with pulmonary hypertension. Eur Heart J. 2005;26(19):1993–9.PubMedCrossRef Blyth KG, Groenning BA, Martin TN, et al. Contrast enhanced-cardiovascular magnetic resonance imaging in patients with pulmonary hypertension. Eur Heart J. 2005;26(19):1993–9.PubMedCrossRef
38.
Zurück zum Zitat McCann GP, Beek AM, Vonk-Noordegraaf A, et al. Delayed contrast-enhanced magnetic resonance imaging in pulmonary arterial hypertension. Circulation. 2005;112(16):e268.PubMedCrossRef McCann GP, Beek AM, Vonk-Noordegraaf A, et al. Delayed contrast-enhanced magnetic resonance imaging in pulmonary arterial hypertension. Circulation. 2005;112(16):e268.PubMedCrossRef
40.
Zurück zum Zitat Coelho-Filho OR, Mongeon FP, Mitchell R, et al. The role of transcytolemmal water-exchange in magnetic resonance measurements of diffuse myocardial fibrosis in hypertensive heart disease. Circ Cardiovasc Imaging. 2013;6(1):134–41.PubMedCrossRef Coelho-Filho OR, Mongeon FP, Mitchell R, et al. The role of transcytolemmal water-exchange in magnetic resonance measurements of diffuse myocardial fibrosis in hypertensive heart disease. Circ Cardiovasc Imaging. 2013;6(1):134–41.PubMedCrossRef
Metadaten
Titel
Prevalence and pattern of cardiovascular magnetic resonance late gadolinium enhancement in highly trained endurance athletes
verfasst von
B. Domenech-Ximenos
M. Sanz-de la Garza
S. Prat-González
A. Sepúlveda-Martínez
F. Crispi
K. Duran-Fernandez
R. J. Perea
B. Bijnens
M. Sitges
Publikationsdatum
01.12.2020
Verlag
BioMed Central
Erschienen in
Journal of Cardiovascular Magnetic Resonance / Ausgabe 1/2020
Elektronische ISSN: 1532-429X
DOI
https://doi.org/10.1186/s12968-020-00660-w

Weitere Artikel der Ausgabe 1/2020

Journal of Cardiovascular Magnetic Resonance 1/2020 Zur Ausgabe

Mammakarzinom: Brustdichte beeinflusst rezidivfreies Überleben

26.05.2024 Mammakarzinom Nachrichten

Frauen, die zum Zeitpunkt der Brustkrebsdiagnose eine hohe mammografische Brustdichte aufweisen, haben ein erhöhtes Risiko für ein baldiges Rezidiv, legen neue Daten nahe.

„Übersichtlicher Wegweiser“: Lauterbachs umstrittener Klinik-Atlas ist online

17.05.2024 Klinik aktuell Nachrichten

Sie sei „ethisch geboten“, meint Gesundheitsminister Karl Lauterbach: mehr Transparenz über die Qualität von Klinikbehandlungen. Um sie abzubilden, lässt er gegen den Widerstand vieler Länder einen virtuellen Klinik-Atlas freischalten.

Klinikreform soll zehntausende Menschenleben retten

15.05.2024 Klinik aktuell Nachrichten

Gesundheitsminister Lauterbach hat die vom Bundeskabinett beschlossene Klinikreform verteidigt. Kritik an den Plänen kommt vom Marburger Bund. Und in den Ländern wird über den Gang zum Vermittlungsausschuss spekuliert.

Darf man die Behandlung eines Neonazis ablehnen?

08.05.2024 Gesellschaft Nachrichten

In einer Leseranfrage in der Zeitschrift Journal of the American Academy of Dermatology möchte ein anonymer Dermatologe bzw. eine anonyme Dermatologin wissen, ob er oder sie einen Patienten behandeln muss, der eine rassistische Tätowierung trägt.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.