Skip to main content
Erschienen in: Inflammation 5/2023

25.05.2023 | RESEARCH

Protective Effect of a Novel RIPK1 Inhibitor, Compound 4–155, in Systemic Inflammatory Response Syndrome and Sepsis

verfasst von: Zhong-Yi Ling, Quan-Zhen Lv, Jiao Li, Ren-Yi Lu, Lin-Lin Chen, Wei-Heng Xu, Yan Wang, Chun-Lin Zhuang

Erschienen in: Inflammation | Ausgabe 5/2023

Einloggen, um Zugang zu erhalten

Abstract

Excessive inflammatory response is a critical pathogenic factor for the tissue damage and organ failure caused by systemic inflammatory response syndrome (SIRS) and sepsis. In recent years, drugs targeting RIPK1 have proved to be an effective anti-inflammatory strategy. In this study, we identified a novel anti-inflammatory lead compound 4–155 that selectively targets RIPK1. Compound 4–155 significantly inhibited necroptosis of cells, and its activity is about 10 times higher than the widely studied Nec-1 s. The anti-necroptosis effect of 4–155 was mainly dependent on the inhibition of phosphorylation of RIPK1, RIPK3, and MLKL. In addition, we demonstrated that 4–155 specifically binds RIPK1 by drug affinity responsive target stability (DARTS), immunoprecipitation, kinase assay, and immunofluorescence microscopy. More importantly, compound 4–155 could inhibit excessive inflammation in vivo by blocking RIPK1-mediated necroptosis and not influence the activation of MAPK and NF-κB, which is more potential for the subsequent drug development. Compound 4–155 effectively protected mice from TNF-induced SIRS and sepsis. Using different doses, we found that 6 mg/kg oral administration of compound 4–155 could increase the survival rate of SIRS mice from 0 to 90%, and the anti-inflammatory effect of 4–155 in vivo was significantly stronger than Nec-1 s at the same dose. Consistently, 4–155 significantly reduced serum levels of pro-inflammatory cytokines (TNF-α and IL-6) and protected the liver and kidney from excessive inflammatory damages. Taken together, our results suggested that compound 4–155 could inhibit excessive inflammation in vivo by blocking RIPK1-mediated necroptosis, providing a new lead compound for the treatment of SIRS and sepsis.
Literatur
1.
Zurück zum Zitat Mignot-Evers, L., V. Raaijmakers, G. Buunk, S. Brouns, L. Romano, T. van Herpt, et al. 2021. Comparison of SIRS criteria and qSOFA score for identifying culture-positive sepsis in the emergency department: A prospective cross-sectional multicentre study. British Medical Journal Open 11. Mignot-Evers, L., V. Raaijmakers, G. Buunk, S. Brouns, L. Romano, T. van Herpt, et al. 2021. Comparison of SIRS criteria and qSOFA score for identifying culture-positive sepsis in the emergency department: A prospective cross-sectional multicentre study. British Medical Journal Open 11.
2.
Zurück zum Zitat Chakraborty, R.K., and B. Burns. 2022 Systemic inflammatory response syndrome. In: StatPearls. Treasure Island (FL). Chakraborty, R.K., and B. Burns. 2022 Systemic inflammatory response syndrome. In: StatPearls. Treasure Island (FL).
3.
Zurück zum Zitat Berkow, E.L., S.R. Lockhart, and L. Ostrosky-Zeichner. Antifungal susceptibility testing: current approaches. Clin Microbiol Rev 2020;33. Berkow, E.L., S.R. Lockhart, and L. Ostrosky-Zeichner. Antifungal susceptibility testing: current approaches. Clin Microbiol Rev 2020;33.
4.
Zurück zum Zitat Ruan, H., D. Ke, and D. Liao. 2022. Prognostic Accuracy of qSOFA and SIRS for Mortality in the emergency department: A meta-analysis and systematic review of prospective studies. Emergency Medicine International 2022: 1802707.PubMedPubMedCentral Ruan, H., D. Ke, and D. Liao. 2022. Prognostic Accuracy of qSOFA and SIRS for Mortality in the emergency department: A meta-analysis and systematic review of prospective studies. Emergency Medicine International 2022: 1802707.PubMedPubMedCentral
5.
Zurück zum Zitat Rudd, K.E., S.C. Johnson, K.M. Agesa, K.A. Shackelford, D. Tsoi, D.R. Kievlan, et al. 2020. Global, regional, and national sepsis incidence and mortality, 1990–2017: Analysis for the Global Burden of Disease Study. Lancet 395: 200–211.PubMedPubMedCentral Rudd, K.E., S.C. Johnson, K.M. Agesa, K.A. Shackelford, D. Tsoi, D.R. Kievlan, et al. 2020. Global, regional, and national sepsis incidence and mortality, 1990–2017: Analysis for the Global Burden of Disease Study. Lancet 395: 200–211.PubMedPubMedCentral
6.
Zurück zum Zitat Fleischmann-Struzek, C., and D. Schwarzkopf. 2022. Reinhart K [Sepsis incidence in Germany and worldwide : Current knowledge and limitations of research using health claims data]. Medizinische Klinik - Intensivmedizin und Notfallmedizin 117: 264–268.PubMed Fleischmann-Struzek, C., and D. Schwarzkopf. 2022. Reinhart K [Sepsis incidence in Germany and worldwide : Current knowledge and limitations of research using health claims data]. Medizinische Klinik - Intensivmedizin und Notfallmedizin 117: 264–268.PubMed
7.
Zurück zum Zitat Septimus, E.J. 2020. Sepsis Perspective 2020. Journal of Infectious Diseases 222: S71–S73.PubMed Septimus, E.J. 2020. Sepsis Perspective 2020. Journal of Infectious Diseases 222: S71–S73.PubMed
8.
Zurück zum Zitat Vandewalle, J., and C. Libert. 2020. Glucocorticoids in sepsis: To be or not to be. Frontiers in Immunology 11: 1318.PubMedPubMedCentral Vandewalle, J., and C. Libert. 2020. Glucocorticoids in sepsis: To be or not to be. Frontiers in Immunology 11: 1318.PubMedPubMedCentral
9.
Zurück zum Zitat Cavaillon, J.M. 2018. Exotoxins and endotoxins: Inducers of inflammatory cytokines. Toxicon 149: 45–53.PubMed Cavaillon, J.M. 2018. Exotoxins and endotoxins: Inducers of inflammatory cytokines. Toxicon 149: 45–53.PubMed
10.
Zurück zum Zitat Wang, L., X. Shi, S. Zheng, and S. Xu. 2020. Selenium deficiency exacerbates LPS-induced necroptosis by regulating miR-16-5p targeting PI3K in chicken tracheal tissue. Metallomics 12: 562–571.PubMed Wang, L., X. Shi, S. Zheng, and S. Xu. 2020. Selenium deficiency exacerbates LPS-induced necroptosis by regulating miR-16-5p targeting PI3K in chicken tracheal tissue. Metallomics 12: 562–571.PubMed
11.
Zurück zum Zitat Kaczmarek, A., P. Vandenabeele, and D.V. Krysko. 2013. Necroptosis: The release of damage-associated molecular patterns and its physiological relevance. Immunity 38: 209–223.PubMed Kaczmarek, A., P. Vandenabeele, and D.V. Krysko. 2013. Necroptosis: The release of damage-associated molecular patterns and its physiological relevance. Immunity 38: 209–223.PubMed
12.
Zurück zum Zitat Chen, J., R. Kos, J. Garssen, and F. Redegeld. 2019. Molecular insights into the mechanism of necroptosis: the necrosome as a potential therapeutic target. Cells-Basel. 8. Chen, J., R. Kos, J. Garssen, and F. Redegeld. 2019. Molecular insights into the mechanism of necroptosis: the necrosome as a potential therapeutic target. Cells-Basel. 8.
13.
Zurück zum Zitat Degterev, A., D. Ofengeim, and J. Yuan. 2019. Targeting RIPK1 for the treatment of human diseases. Proceedings of the National academy of Sciences of the United States of America 116: 9714–9722.PubMedPubMedCentral Degterev, A., D. Ofengeim, and J. Yuan. 2019. Targeting RIPK1 for the treatment of human diseases. Proceedings of the National academy of Sciences of the United States of America 116: 9714–9722.PubMedPubMedCentral
14.
Zurück zum Zitat Newton, K. 2015. RIPK1 and RIPK3: Critical regulators of inflammation and cell death. Trends in Cell Biology 25: 347–353.PubMed Newton, K. 2015. RIPK1 and RIPK3: Critical regulators of inflammation and cell death. Trends in Cell Biology 25: 347–353.PubMed
15.
Zurück zum Zitat Zarrin, A.A., K. Bao, P. Lupardus, and D. Vucic. 2021. Kinase inhibition in autoimmunity and inflammation. Nature Reviews. Drug Discovery 20: 39–63.PubMed Zarrin, A.A., K. Bao, P. Lupardus, and D. Vucic. 2021. Kinase inhibition in autoimmunity and inflammation. Nature Reviews. Drug Discovery 20: 39–63.PubMed
16.
Zurück zum Zitat Duprez, L., N. Takahashi, F. Van Hauwermeiren, B. Vandendriessche, V. Goossens, T. Vanden Berghe, et al. 2011. RIP kinase-dependent necrosis drives lethal systemic inflammatory response syndrome. Immunity 35: 908–918.PubMed Duprez, L., N. Takahashi, F. Van Hauwermeiren, B. Vandendriessche, V. Goossens, T. Vanden Berghe, et al. 2011. RIP kinase-dependent necrosis drives lethal systemic inflammatory response syndrome. Immunity 35: 908–918.PubMed
17.
Zurück zum Zitat Oeckinghaus, A., M.S. Hayden, and S. Ghosh. 2011. Crosstalk in NF-kappaB signaling pathways. Nature Immunology 12: 695–708.PubMed Oeckinghaus, A., M.S. Hayden, and S. Ghosh. 2011. Crosstalk in NF-kappaB signaling pathways. Nature Immunology 12: 695–708.PubMed
18.
Zurück zum Zitat Mifflin, L., D. Ofengeim, and J.Y. Yuan. 2020. Receptor-interacting protein kinase 1 (RIPK1) as a therapeutic target. Nature Reviews Drug Discovery 19: 553–571.PubMedPubMedCentral Mifflin, L., D. Ofengeim, and J.Y. Yuan. 2020. Receptor-interacting protein kinase 1 (RIPK1) as a therapeutic target. Nature Reviews Drug Discovery 19: 553–571.PubMedPubMedCentral
19.
Zurück zum Zitat Chen, L.Z.X., Y. Ou, M. Liu, D. Yu, Z. Song, L. Niu, L. Zhang, and J. Shi. 2022. Advances in RIPK1 kinase inhibitors. Front Pharmacol. 13. Chen, L.Z.X., Y. Ou, M. Liu, D. Yu, Z. Song, L. Niu, L. Zhang, and J. Shi. 2022. Advances in RIPK1 kinase inhibitors. Front Pharmacol. 13.
20.
Zurück zum Zitat Degterev, A., J.L. Maki, and J. Yuan. 2013. Activity and specificity of necrostatin-1, small-molecule inhibitor of RIP1 kinase. Cell Death and Differentiation 20: 366.PubMed Degterev, A., J.L. Maki, and J. Yuan. 2013. Activity and specificity of necrostatin-1, small-molecule inhibitor of RIP1 kinase. Cell Death and Differentiation 20: 366.PubMed
21.
Zurück zum Zitat Zhang, X., H. Zhang, C. Xu, X. Li, M. Li, X. Wu, et al. 2019. Ubiquitination of RIPK1 suppresses programmed cell death by regulating RIPK1 kinase activation during embryogenesis. Nature Communications 10: 4158.PubMedPubMedCentral Zhang, X., H. Zhang, C. Xu, X. Li, M. Li, X. Wu, et al. 2019. Ubiquitination of RIPK1 suppresses programmed cell death by regulating RIPK1 kinase activation during embryogenesis. Nature Communications 10: 4158.PubMedPubMedCentral
22.
Zurück zum Zitat Huang, X., S. Tan, Y. Li, S. Cao, X. Li, H. Pan, et al. 2021. Caspase inhibition prolongs inflammation by promoting a signaling complex with activated RIPK1. Journal of Cell Biology 220. Huang, X., S. Tan, Y. Li, S. Cao, X. Li, H. Pan, et al. 2021. Caspase inhibition prolongs inflammation by promoting a signaling complex with activated RIPK1. Journal of Cell Biology 220.
23.
Zurück zum Zitat Xia, C., Z. Yao, L. Xu, W. Zhang, H. Chen, and C. Zhuang. 2021. Structure-based bioisosterism design of thio-benzoxazepinones as novel necroptosis inhibitors. European Journal of Medicinal Chemistry 220.PubMed Xia, C., Z. Yao, L. Xu, W. Zhang, H. Chen, and C. Zhuang. 2021. Structure-based bioisosterism design of thio-benzoxazepinones as novel necroptosis inhibitors. European Journal of Medicinal Chemistry 220.PubMed
24.
Zurück zum Zitat Chen, X., C. Zhuang, Y. Ren, H. Zhang, X. Qin, L. Hu, et al. 2019. Identification of the Raf kinase inhibitor TAK-632 and its analogues as potent inhibitors of necroptosis by targeting RIPK1 and RIPK3. British Journal of Pharmacology 176: 2095–2108.PubMedPubMedCentral Chen, X., C. Zhuang, Y. Ren, H. Zhang, X. Qin, L. Hu, et al. 2019. Identification of the Raf kinase inhibitor TAK-632 and its analogues as potent inhibitors of necroptosis by targeting RIPK1 and RIPK3. British Journal of Pharmacology 176: 2095–2108.PubMedPubMedCentral
25.
Zurück zum Zitat Lomphithak, T., P. Akara-Amornthum, K. Murakami, M. Hashimoto, H. Usubuchi, E. Iwabuchi, et al. 2021. Tumor necroptosis is correlated with a favorable immune cell signature and programmed death-ligand 1 expression in cholangiocarcinoma. Science and Reports 11: 11743. Lomphithak, T., P. Akara-Amornthum, K. Murakami, M. Hashimoto, H. Usubuchi, E. Iwabuchi, et al. 2021. Tumor necroptosis is correlated with a favorable immune cell signature and programmed death-ligand 1 expression in cholangiocarcinoma. Science and Reports 11: 11743.
26.
Zurück zum Zitat Xu, J., K.Q. Wang, W.H. Xu, Y.H. Li, Y. Qi, H.Y. Wu, et al. 2016. The matrine derivate MASM prolongs survival, attenuates inflammation, and reduces organ injury in murine established lethal sepsis. Journal of Infectious Diseases 214: 1762–1772.PubMed Xu, J., K.Q. Wang, W.H. Xu, Y.H. Li, Y. Qi, H.Y. Wu, et al. 2016. The matrine derivate MASM prolongs survival, attenuates inflammation, and reduces organ injury in murine established lethal sepsis. Journal of Infectious Diseases 214: 1762–1772.PubMed
27.
Zurück zum Zitat Zhu, J., M. Xin, C. Xu, Y. He, W. Zhang, Z. Wang, et al. 2021. Ligand-based substituent-anchoring design of selective receptor-interacting protein kinase 1 necroptosis inhibitors for ulcerative colitis therapy. Acta Pharm Sin B 11: 3193–3205.PubMedPubMedCentral Zhu, J., M. Xin, C. Xu, Y. He, W. Zhang, Z. Wang, et al. 2021. Ligand-based substituent-anchoring design of selective receptor-interacting protein kinase 1 necroptosis inhibitors for ulcerative colitis therapy. Acta Pharm Sin B 11: 3193–3205.PubMedPubMedCentral
28.
Zurück zum Zitat Zhang, J.X., W.H. Xu, X.H. Xing, L.L. Chen, Q.J. Zhao, and Y. Wang. 2022. ARG1 as a promising biomarker for sepsis diagnosis and prognosis: evidence from WGCNA and PPI network. Hereditas 159. Zhang, J.X., W.H. Xu, X.H. Xing, L.L. Chen, Q.J. Zhao, and Y. Wang. 2022. ARG1 as a promising biomarker for sepsis diagnosis and prognosis: evidence from WGCNA and PPI network. Hereditas 159.
29.
Zurück zum Zitat Pasparakis, M., and P. Vandenabeele. 2015. Necroptosis and its role in inflammation. Nature 517: 311–320.PubMed Pasparakis, M., and P. Vandenabeele. 2015. Necroptosis and its role in inflammation. Nature 517: 311–320.PubMed
30.
Zurück zum Zitat Ofengeim, D., S. Mazzitelli, Y. Ito, J.P. DeWitt, L. Mifflin, C. Zou, et al. 2017. RIPK1 mediates a disease-associated microglial response in Alzheimer’s disease. Proceedings of the National Academy of Sciences of United States of America 114: E8788–E8797. Ofengeim, D., S. Mazzitelli, Y. Ito, J.P. DeWitt, L. Mifflin, C. Zou, et al. 2017. RIPK1 mediates a disease-associated microglial response in Alzheimer’s disease. Proceedings of the National Academy of Sciences of United States of America 114: E8788–E8797.
31.
Zurück zum Zitat Degterev, A., J. Hitomi, M. Germscheid, I.L. Ch’en, O. Korkina, X. Teng, et al. 2008. Identification of RIP1 kinase as a specific cellular target of necrostatins. Nature Chemical Biology 4: 313–321.PubMedPubMedCentral Degterev, A., J. Hitomi, M. Germscheid, I.L. Ch’en, O. Korkina, X. Teng, et al. 2008. Identification of RIP1 kinase as a specific cellular target of necrostatins. Nature Chemical Biology 4: 313–321.PubMedPubMedCentral
32.
Zurück zum Zitat Degterev, A., Z. Huang, M. Boyce, Y. Li, P. Jagtap, N. Mizushima, et al. 2005. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nature Chemical Biology 1: 112–119.PubMed Degterev, A., Z. Huang, M. Boyce, Y. Li, P. Jagtap, N. Mizushima, et al. 2005. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nature Chemical Biology 1: 112–119.PubMed
33.
Zurück zum Zitat Pai, M.Y., B. Lomenick, H. Hwang, R. Schiestl, W. McBride, J.A. Loo, et al. 2015. Drug affinity responsive target stability (DARTS) for small-molecule target identification. Methods in Molecular Biology 1263: 287–298.PubMed Pai, M.Y., B. Lomenick, H. Hwang, R. Schiestl, W. McBride, J.A. Loo, et al. 2015. Drug affinity responsive target stability (DARTS) for small-molecule target identification. Methods in Molecular Biology 1263: 287–298.PubMed
34.
Zurück zum Zitat Zhang, H., X. Wu, X. Li, M. Li, F. Li, L. Wang, et al. 2020. Crucial roles of the RIP homotypic interaction motifs of RIPK3 in RIPK1-dependent cell death and lymphoproliferative disease. Cell Reports 31.PubMed Zhang, H., X. Wu, X. Li, M. Li, F. Li, L. Wang, et al. 2020. Crucial roles of the RIP homotypic interaction motifs of RIPK3 in RIPK1-dependent cell death and lymphoproliferative disease. Cell Reports 31.PubMed
35.
Zurück zum Zitat Mompean, M., W. Li, J. Li, S. Laage, A.B. Siemer, G. Bozkurt, et al. 2018. The structure of the necrosome RIPK1-RIPK3 core, a human hetero-amyloid signaling complex. Cell 173 (1244–53). Mompean, M., W. Li, J. Li, S. Laage, A.B. Siemer, G. Bozkurt, et al. 2018. The structure of the necrosome RIPK1-RIPK3 core, a human hetero-amyloid signaling complex. Cell 173 (1244–53).
36.
Zurück zum Zitat Takahashi, N., L. Duprez, S. Grootjans, A. Cauwels, W. Nerinckx, J.B. DuHadaway, et al. 2012. Necrostatin-1 analogues: Critical issues on the specificity, activity and in vivo use in experimental disease models. Cell Death & Disease 3. Takahashi, N., L. Duprez, S. Grootjans, A. Cauwels, W. Nerinckx, J.B. DuHadaway, et al. 2012. Necrostatin-1 analogues: Critical issues on the specificity, activity and in vivo use in experimental disease models. Cell Death & Disease 3.
37.
Zurück zum Zitat Qi, W., and J. Yuan. 2022. RIPK1 and RIPK3 form mosaic necrosomes. Nature Cell Biology 24: 406–407.PubMed Qi, W., and J. Yuan. 2022. RIPK1 and RIPK3 form mosaic necrosomes. Nature Cell Biology 24: 406–407.PubMed
38.
Zurück zum Zitat Iorga, A., K. Donovan, L. Shojaie, H. Johnson, J. Kwok, J. Suda, et al. 2021. Interaction of RIPK1 and A20 modulates MAPK signaling in murine acetaminophen toxicity. Journal of Biological Chemistry 296. Iorga, A., K. Donovan, L. Shojaie, H. Johnson, J. Kwok, J. Suda, et al. 2021. Interaction of RIPK1 and A20 modulates MAPK signaling in murine acetaminophen toxicity. Journal of Biological Chemistry 296.
39.
Zurück zum Zitat Gao, Y.L., J.H. Zhai, and Y.F. Chai. 2018. Recent advances in the molecular mechanisms underlying pyroptosis in sepsis. Mediators of Inflammation 2018: 5823823.PubMedPubMedCentral Gao, Y.L., J.H. Zhai, and Y.F. Chai. 2018. Recent advances in the molecular mechanisms underlying pyroptosis in sepsis. Mediators of Inflammation 2018: 5823823.PubMedPubMedCentral
40.
Zurück zum Zitat Gaddis, M.L., and Gaddis, G.M. 2021. Detecting sepsis in an emergency department: SIRS vs. qSOFA. MoMed 118:253–8. Gaddis, M.L., and Gaddis, G.M. 2021. Detecting sepsis in an emergency department: SIRS vs. qSOFA. MoMed 118:253–8.
41.
Zurück zum Zitat Wang, Y., H. Ma, J. Huang, Z. Yao, J. Yu, W. Zhang, et al. 2021. Discovery of bardoxolone derivatives as novel orally active necroptosis inhibitors. European Journal of Medicinal Chemistry 212.PubMed Wang, Y., H. Ma, J. Huang, Z. Yao, J. Yu, W. Zhang, et al. 2021. Discovery of bardoxolone derivatives as novel orally active necroptosis inhibitors. European Journal of Medicinal Chemistry 212.PubMed
42.
Zurück zum Zitat Wang, X., Y. Chai, Z. Guo, Z. Wang, H. Liao, Z. Wang, et al. 2023. A new perspective on the potential application of RIPK1 in the treatment of sepsis. Immunotherapy. Wang, X., Y. Chai, Z. Guo, Z. Wang, H. Liao, Z. Wang, et al. 2023. A new perspective on the potential application of RIPK1 in the treatment of sepsis. Immunotherapy.
43.
Zurück zum Zitat Xu, G., Y. Li, S. Zhang, H. Peng, Y. Wang, D. Li, et al. 2021. SARS-CoV-2 promotes RIPK1 activation to facilitate viral propagation. Cell Research 31: 1230–1243.PubMedPubMedCentral Xu, G., Y. Li, S. Zhang, H. Peng, Y. Wang, D. Li, et al. 2021. SARS-CoV-2 promotes RIPK1 activation to facilitate viral propagation. Cell Research 31: 1230–1243.PubMedPubMedCentral
44.
Zurück zum Zitat Tao, P., J. Sun, Z. Wu, S. Wang, J. Wang, W. Li, et al. 2020. A dominant autoinflammatory disease caused by non-cleavable variants of RIPK1. Nature 577: 109–114.PubMed Tao, P., J. Sun, Z. Wu, S. Wang, J. Wang, W. Li, et al. 2020. A dominant autoinflammatory disease caused by non-cleavable variants of RIPK1. Nature 577: 109–114.PubMed
45.
Zurück zum Zitat Newton, K., V.M. Dixit, and N. Kayagaki. 2021. Dying cells fan the flames of inflammation. Science 374: 1076–1080.PubMed Newton, K., V.M. Dixit, and N. Kayagaki. 2021. Dying cells fan the flames of inflammation. Science 374: 1076–1080.PubMed
46.
Zurück zum Zitat Jin, L., P. Liu, M. Yin, M. Zhang, Y. Kuang, and W. Zhu. 2020. RIPK1: A rising star in inflammatory and neoplastic skin diseases. Journal of Dermatological Science 99: 146–151.PubMed Jin, L., P. Liu, M. Yin, M. Zhang, Y. Kuang, and W. Zhu. 2020. RIPK1: A rising star in inflammatory and neoplastic skin diseases. Journal of Dermatological Science 99: 146–151.PubMed
47.
Zurück zum Zitat Harris, P.A. 2021. Inhibitors of RIP1 kinase: A patent review (2016-present). Expert Opinion on Therapeutic Patents 31: 137–151.PubMed Harris, P.A. 2021. Inhibitors of RIP1 kinase: A patent review (2016-present). Expert Opinion on Therapeutic Patents 31: 137–151.PubMed
48.
Zurück zum Zitat Christofferson, D.E., Y. Li, J. Hitomi, W. Zhou, C. Upperman, H. Zhu, et al. 2012. A novel role for RIP1 kinase in mediating TNFalpha production. Cell Death & Disease 3. Christofferson, D.E., Y. Li, J. Hitomi, W. Zhou, C. Upperman, H. Zhu, et al. 2012. A novel role for RIP1 kinase in mediating TNFalpha production. Cell Death & Disease 3.
49.
Zurück zum Zitat Evans, T. 2018. Diagnosis and management of sepsis. Clinical Medicine (London, England) 18: 146–149.PubMed Evans, T. 2018. Diagnosis and management of sepsis. Clinical Medicine (London, England) 18: 146–149.PubMed
50.
Zurück zum Zitat Jarczak, D., S. Kluge, and A. Nierhaus. 2021. Sepsis-pathophysiology and therapeutic concepts. Front Med (Lausanne) 8.PubMed Jarczak, D., S. Kluge, and A. Nierhaus. 2021. Sepsis-pathophysiology and therapeutic concepts. Front Med (Lausanne) 8.PubMed
51.
Zurück zum Zitat Chen, L., X. Zhang, Y. Ou, M. Liu, D. Yu, Z. Song, et al. 2022. Advances in RIPK1 kinase inhibitors. Frontiers in Pharmacology 13.PubMedPubMedCentral Chen, L., X. Zhang, Y. Ou, M. Liu, D. Yu, Z. Song, et al. 2022. Advances in RIPK1 kinase inhibitors. Frontiers in Pharmacology 13.PubMedPubMedCentral
52.
Zurück zum Zitat Xie, T., W. Peng, Y. Liu, C. Yan, J. Maki, A. Degterev, et al. 2013. Structural basis of RIP1 inhibition by necrostatins. Structure 21: 493–499.PubMed Xie, T., W. Peng, Y. Liu, C. Yan, J. Maki, A. Degterev, et al. 2013. Structural basis of RIP1 inhibition by necrostatins. Structure 21: 493–499.PubMed
53.
Zurück zum Zitat Najjar, M., C. Suebsuwong, S.S. Ray, R.J. Thapa, J.L. Maki, S. Nogusa, et al. 2015. Structure guided design of potent and selective ponatinib-based hybrid inhibitors for RIPK1. Cell Reports 10: 1850–1860.PubMed Najjar, M., C. Suebsuwong, S.S. Ray, R.J. Thapa, J.L. Maki, S. Nogusa, et al. 2015. Structure guided design of potent and selective ponatinib-based hybrid inhibitors for RIPK1. Cell Reports 10: 1850–1860.PubMed
54.
Zurück zum Zitat Zhou, T., Q. Wang, N. Phan, J. Ren, H. Yang, C.C. Feldman, J.B. Feltenberger, et al. 2019. Identification of a novel class of RIP1/RIP3 dual inhibitors that impede cell death and inflammation in mouse abdominal aortic aneurysm models. Cell Death & Disease 10(3):226. Zhou, T., Q. Wang, N. Phan, J. Ren, H. Yang, C.C. Feldman, J.B. Feltenberger, et al. 2019. Identification of a novel class of RIP1/RIP3 dual inhibitors that impede cell death and inflammation in mouse abdominal aortic aneurysm models. Cell Death & Disease 10(3):226.
55.
Zurück zum Zitat Xu, L., and C. Zhuang. 2023. Profiling of small‐molecule necroptosis inhibitors based on the subpockets of kinase–ligand interactions. Medicinal Research Reviews 1–51 Xu, L., and C. Zhuang. 2023. Profiling of small‐molecule necroptosis inhibitors based on the subpockets of kinase–ligand interactions. Medicinal Research Reviews 1–51
Metadaten
Titel
Protective Effect of a Novel RIPK1 Inhibitor, Compound 4–155, in Systemic Inflammatory Response Syndrome and Sepsis
verfasst von
Zhong-Yi Ling
Quan-Zhen Lv
Jiao Li
Ren-Yi Lu
Lin-Lin Chen
Wei-Heng Xu
Yan Wang
Chun-Lin Zhuang
Publikationsdatum
25.05.2023
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 5/2023
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-023-01842-1

Weitere Artikel der Ausgabe 5/2023

Inflammation 5/2023 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

Nach Herzinfarkt mit Typ-1-Diabetes schlechtere Karten als mit Typ 2?

29.05.2024 Herzinfarkt Nachrichten

Bei Menschen mit Typ-2-Diabetes sind die Chancen, einen Myokardinfarkt zu überleben, in den letzten 15 Jahren deutlich gestiegen – nicht jedoch bei Betroffenen mit Typ 1.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.