Skip to main content
Erschienen in: Cancer and Metastasis Reviews 1/2023

14.01.2023

Role of myeloid-derived suppressor cells in tumor recurrence

verfasst von: Kathryn Cole, Zaid Al-Kadhimi, James E. Talmadge

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 1/2023

Einloggen, um Zugang zu erhalten

Abstract

The establishment of primary tumor cells in distant organs, termed metastasis, is the principal cause of cancer mortality and is a crucial therapeutic target in oncology. Thus, it is critical to establish a better understanding of metastatic progression for the future development of improved therapeutic approaches. Indeed, such development requires insight into the timing of tumor cell dissemination and seeding of distant organs resulting in occult lesions. Following dissemination of tumor cells from the primary tumor, they can reside in niches in distant organs for years or decades, following which they can emerge as an overt metastasis. This timeline of metastatic dormancy is regulated by interactions between the tumor, its microenvironment, angiogenesis, and tumor antigen-specific T-cell responses. An improved understanding of the mechanisms and interactions responsible for immune evasion and tumor cell release from dormancy would help identify and aid in the development of novel targeted therapeutics. One such mediator of dormancy is myeloid derived suppressor cells (MDSC), whose number in the peripheral blood (PB) or infiltrating tumors has been associated with cancer stage, grade, patient survival, and metastasis in a broad range of tumor pathologies. Thus, extensive studies have revealed a role for MDSCs in tumor escape from adoptive and innate immune responses, facilitating tumor progression and metastasis; however, few studies have considered their role in dormancy. We have posited that MDSCs may regulate disseminated tumor cells resulting in resurgence of senescent tumor cells. In this review, we discuss clinical studies that address mechanisms of tumor recurrence including from dormancy, the role of MDSCs in their escape from dormancy during recurrence, the development of occult metastases, and the potential for MDSC inhibition as an approach to prolong the survival of patients with advanced malignancies. We stress that assessing the impact of therapies on MDSCs versus other cellular targets is challenging within the multimodality interventions required clinically.
Literatur
1.
Zurück zum Zitat Coleman, C. (2017). Early detection and screening for breast cancer. Seminars in Oncology Nursing, 33, 141–155.PubMedCrossRef Coleman, C. (2017). Early detection and screening for breast cancer. Seminars in Oncology Nursing, 33, 141–155.PubMedCrossRef
2.
Zurück zum Zitat Tsodikov, A., et al. (2017). Reconciling the effects of screening on prostate cancer mortality in the ERSPC and PLCO trials. Annals of Internal Medicine, 167, 449–455.PubMedPubMedCentralCrossRef Tsodikov, A., et al. (2017). Reconciling the effects of screening on prostate cancer mortality in the ERSPC and PLCO trials. Annals of Internal Medicine, 167, 449–455.PubMedPubMedCentralCrossRef
3.
Zurück zum Zitat Bivona, T. G., & Doebele, R. C. (2016). A framework for understanding and targeting residual disease in oncogene-driven solid cancers. Nature Medicine, 22, 472–478.PubMedPubMedCentralCrossRef Bivona, T. G., & Doebele, R. C. (2016). A framework for understanding and targeting residual disease in oncogene-driven solid cancers. Nature Medicine, 22, 472–478.PubMedPubMedCentralCrossRef
4.
Zurück zum Zitat Dasari, A., Grothey, A., & Kopetz, S. (2018). Circulating tumor DNA-defined minimal residual disease in solid tumors: Opportunities to accelerate the development of adjuvant therapies. Journal Clinical Oncology, 36(35), 3437.CrossRef Dasari, A., Grothey, A., & Kopetz, S. (2018). Circulating tumor DNA-defined minimal residual disease in solid tumors: Opportunities to accelerate the development of adjuvant therapies. Journal Clinical Oncology, 36(35), 3437.CrossRef
5.
Zurück zum Zitat Sosa, M. S., Avivar-Valderas, A., Bragado, P., Wen, H. C., & Aguirre-Ghiso, J. A. (2011). ERK1/2 and p38alpha/beta signaling in tumor cell quiescence: Opportunities to control dormant residual disease. Clinical Cancer Research, 17, 5850–5857.PubMedPubMedCentralCrossRef Sosa, M. S., Avivar-Valderas, A., Bragado, P., Wen, H. C., & Aguirre-Ghiso, J. A. (2011). ERK1/2 and p38alpha/beta signaling in tumor cell quiescence: Opportunities to control dormant residual disease. Clinical Cancer Research, 17, 5850–5857.PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Sosa, M. S., Bragado, P., & Aguirre-Ghiso, J. A. (2014). Mechanisms of disseminated cancer cell dormancy: An awakening field. Nature Reviews Cancer, 14, 611–622.PubMedPubMedCentralCrossRef Sosa, M. S., Bragado, P., & Aguirre-Ghiso, J. A. (2014). Mechanisms of disseminated cancer cell dormancy: An awakening field. Nature Reviews Cancer, 14, 611–622.PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Nicolini, A., Ferrari, P., Rossi, G., & Carpi, A. (2018). Tumour growth and immune evasion as targets for a new strategy in advanced cancer. Endocrine-Related Cancer, 25, R577–R604.PubMedCrossRef Nicolini, A., Ferrari, P., Rossi, G., & Carpi, A. (2018). Tumour growth and immune evasion as targets for a new strategy in advanced cancer. Endocrine-Related Cancer, 25, R577–R604.PubMedCrossRef
11.
Zurück zum Zitat DeSantis, C. E., et al. (2014). Cancer treatment and survivorship statistics, 2014. CA: A Cancer Journal for Clinicians, 64, 252–271.PubMed DeSantis, C. E., et al. (2014). Cancer treatment and survivorship statistics, 2014. CA: A Cancer Journal for Clinicians, 64, 252–271.PubMed
12.
Zurück zum Zitat Jahanban-Esfahlan, R., et al. (2019). Tumor cell dormancy: Threat or opportunity in the fight against cancer. Cancers (Basel), 11, 1207.PubMedCrossRef Jahanban-Esfahlan, R., et al. (2019). Tumor cell dormancy: Threat or opportunity in the fight against cancer. Cancers (Basel), 11, 1207.PubMedCrossRef
13.
Zurück zum Zitat Yuhas, J. M., & Tarleton, A. E. (1978). Dormancy and spontaneous recurrence of human breast cancer in vitro. Cancer Research, 38, 3584–3589.PubMed Yuhas, J. M., & Tarleton, A. E. (1978). Dormancy and spontaneous recurrence of human breast cancer in vitro. Cancer Research, 38, 3584–3589.PubMed
14.
Zurück zum Zitat Romero, I., Garrido, F., & Garcia-Lora, A. M. (2014). Metastases in immune-mediated dormancy: A new opportunity for targeting cancer. Cancer Research, 74, 6750–6757.PubMedCrossRef Romero, I., Garrido, F., & Garcia-Lora, A. M. (2014). Metastases in immune-mediated dormancy: A new opportunity for targeting cancer. Cancer Research, 74, 6750–6757.PubMedCrossRef
15.
Zurück zum Zitat Luzzi, K. J., et al. (1998). Multistep nature of metastatic inefficiency: Dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. American Journal of Pathology, 153, 865–873.PubMedPubMedCentralCrossRef Luzzi, K. J., et al. (1998). Multistep nature of metastatic inefficiency: Dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. American Journal of Pathology, 153, 865–873.PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat Bissell, M. J., & Hines, W. C. (2011). Why don’t we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nature Medicine, 17, 320–329.PubMedPubMedCentralCrossRef Bissell, M. J., & Hines, W. C. (2011). Why don’t we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nature Medicine, 17, 320–329.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Willis, R. (1934) The spread of tumours in the human body. By Rupert A. Willis. M.D., B.S., D.Sc. (Melbourne), 1934 London: J. & A. Churchill. 25s. net. BJS (British Journal of Surgery), 22, 196–196. Willis, R. (1934) The spread of tumours in the human body. By Rupert A. Willis. M.D., B.S., D.Sc. (Melbourne), 1934 London: J. & A. Churchill. 25s. net. BJS (British Journal of Surgery), 22, 196–196.
19.
20.
Zurück zum Zitat Braun, S., et al. (2000). Cytokeratin-positive cells in the bone marrow and survival of patients with stage I, II, or III breast cancer. New England Journal of Medicine, 342, 525–533.PubMedCrossRef Braun, S., et al. (2000). Cytokeratin-positive cells in the bone marrow and survival of patients with stage I, II, or III breast cancer. New England Journal of Medicine, 342, 525–533.PubMedCrossRef
21.
Zurück zum Zitat Braun, S., et al. (2005). A pooled analysis of bone marrow micrometastasis in breast cancer. New England Journal of Medicine, 353, 793–802.PubMedCrossRef Braun, S., et al. (2005). A pooled analysis of bone marrow micrometastasis in breast cancer. New England Journal of Medicine, 353, 793–802.PubMedCrossRef
22.
23.
Zurück zum Zitat Morris-Stiff, G., et al. (2004). Transmission of donor melanoma to multiple organ transplant recipients. American Journal of Transplantation, 4, 444–446.PubMedCrossRef Morris-Stiff, G., et al. (2004). Transmission of donor melanoma to multiple organ transplant recipients. American Journal of Transplantation, 4, 444–446.PubMedCrossRef
25.
Zurück zum Zitat Gimbrone, M. A., Jr., Leapman, S. B., Cotran, R. S., & Folkman, J. (1972). Tumor dormancy in vivo by prevention of neovascularization. Journal of Experimental Medicine, 136, 261–276.PubMedPubMedCentralCrossRef Gimbrone, M. A., Jr., Leapman, S. B., Cotran, R. S., & Folkman, J. (1972). Tumor dormancy in vivo by prevention of neovascularization. Journal of Experimental Medicine, 136, 261–276.PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Holmgren, L., O’Reilly, M. S., & Folkman, J. (1995). Dormancy of micrometastases: Balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nature Medicine, 1, 149–153.PubMedCrossRef Holmgren, L., O’Reilly, M. S., & Folkman, J. (1995). Dormancy of micrometastases: Balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nature Medicine, 1, 149–153.PubMedCrossRef
27.
Zurück zum Zitat Stewart, T. H. (1996). Immune mechanisms and tumor dormancy. Medicina (B Aires), 56: (Suppl 1), 74–82. Stewart, T. H. (1996). Immune mechanisms and tumor dormancy. Medicina (B Aires), 56: (Suppl 1), 74–82.
28.
Zurück zum Zitat Goddard, E. T., Bozic, I., Riddell, S. R., & Ghajar, C. M. (2018). Dormant tumour cells, their niches and the influence of immunity. Nature Cell Biology, 20, 1240–1249.PubMedCrossRef Goddard, E. T., Bozic, I., Riddell, S. R., & Ghajar, C. M. (2018). Dormant tumour cells, their niches and the influence of immunity. Nature Cell Biology, 20, 1240–1249.PubMedCrossRef
29.
Zurück zum Zitat Rusciano, D., & Burger, M. M. (1992). Why do cancer cells metastasize into particular organs? BioEssays, 14, 185–194.PubMedCrossRef Rusciano, D., & Burger, M. M. (1992). Why do cancer cells metastasize into particular organs? BioEssays, 14, 185–194.PubMedCrossRef
30.
Zurück zum Zitat Nicolson, G. L. (1988). Cancer metastasis: Tumor cell and host organ properties important in metastasis to specific secondary sites. Biochimica et Biophysica Acta, 948, 175–224.PubMed Nicolson, G. L. (1988). Cancer metastasis: Tumor cell and host organ properties important in metastasis to specific secondary sites. Biochimica et Biophysica Acta, 948, 175–224.PubMed
31.
Zurück zum Zitat Graf, A. H., Buchberger, W., Langmayr, H., & Schmid, K. W. (1988). Site preference of metastatic tumours of the brain. Virchows Arch A Pathol Anat Histopathol, 412, 493–498.PubMedCrossRef Graf, A. H., Buchberger, W., Langmayr, H., & Schmid, K. W. (1988). Site preference of metastatic tumours of the brain. Virchows Arch A Pathol Anat Histopathol, 412, 493–498.PubMedCrossRef
32.
Zurück zum Zitat Paget, S. (1989). The distribution of secondary growths in cancer of the breast 1889. Cancer Metastasis Rev, 8, 98–101.PubMed Paget, S. (1989). The distribution of secondary growths in cancer of the breast 1889. Cancer Metastasis Rev, 8, 98–101.PubMed
33.
Zurück zum Zitat Riihimäki, M., et al. (2014). Metastatic sites and survival in lung cancer. Lung Cancer, 86, 78–84.PubMedCrossRef Riihimäki, M., et al. (2014). Metastatic sites and survival in lung cancer. Lung Cancer, 86, 78–84.PubMedCrossRef
34.
Zurück zum Zitat Talmadge, J. E., Donkor, M., & Scholar, E. (2007). Inflammatory cell infiltration of tumors: Jekyll or Hyde. Cancer and Metastasis Reviews, 26, 373–400.PubMedCrossRef Talmadge, J. E., Donkor, M., & Scholar, E. (2007). Inflammatory cell infiltration of tumors: Jekyll or Hyde. Cancer and Metastasis Reviews, 26, 373–400.PubMedCrossRef
35.
Zurück zum Zitat Tarin, D., et al. (1984). Mechanisms of human tumor metastasis studied in patients with peritoneovenous shunts. Cancer Research, 44, 3584–3592.PubMed Tarin, D., et al. (1984). Mechanisms of human tumor metastasis studied in patients with peritoneovenous shunts. Cancer Research, 44, 3584–3592.PubMed
36.
Zurück zum Zitat Fidler, I. J. (1970). Metastasis: Quantitative analysis of distribution and fate of tumor emboli labeled with 125 I-5-iodo-2′-deoxyuridine. Journal of the National Cancer Institute, 45, 773–782.PubMed Fidler, I. J. (1970). Metastasis: Quantitative analysis of distribution and fate of tumor emboli labeled with 125 I-5-iodo-2′-deoxyuridine. Journal of the National Cancer Institute, 45, 773–782.PubMed
37.
Zurück zum Zitat Riethdorf, S., et al. (2007). Detection of circulating tumor cells in peripheral blood of patients with metastatic breast cancer: A validation study of the cell search system. Clinical Cancer Research, 13, 920–928.PubMedCrossRef Riethdorf, S., et al. (2007). Detection of circulating tumor cells in peripheral blood of patients with metastatic breast cancer: A validation study of the cell search system. Clinical Cancer Research, 13, 920–928.PubMedCrossRef
38.
Zurück zum Zitat Wang, C., et al. (2021). Improved prognostic stratification using circulating tumor cell clusters in patients with metastatic castration-resistant prostate cancer. Cancers (Basel), 13, 268.PubMedCrossRef Wang, C., et al. (2021). Improved prognostic stratification using circulating tumor cell clusters in patients with metastatic castration-resistant prostate cancer. Cancers (Basel), 13, 268.PubMedCrossRef
39.
Zurück zum Zitat Klein, C. A. (2009). Parallel progression of primary tumours and metastases. Nature Reviews Cancer, 9, 302–312.PubMedCrossRef Klein, C. A. (2009). Parallel progression of primary tumours and metastases. Nature Reviews Cancer, 9, 302–312.PubMedCrossRef
40.
Zurück zum Zitat Weiss, L. (1983). Random and nonrandom processes in metastasis, and metastatic inefficiency. Invasion and Metastasis, 3, 193–207.PubMed Weiss, L. (1983). Random and nonrandom processes in metastasis, and metastatic inefficiency. Invasion and Metastasis, 3, 193–207.PubMed
41.
Zurück zum Zitat Arnerlöv, C., et al. (1992). Breast carcinoma growth rate described by mammographic doubling time and S-phase fraction Correlations to clinical and histopathologic factors in a screened population. Cancer, 70, 1928–1934.PubMedCrossRef Arnerlöv, C., et al. (1992). Breast carcinoma growth rate described by mammographic doubling time and S-phase fraction Correlations to clinical and histopathologic factors in a screened population. Cancer, 70, 1928–1934.PubMedCrossRef
42.
Zurück zum Zitat Klein, C. A., et al. (2002). Genetic heterogeneity of single disseminated tumour cells in minimal residual cancer. Lancet, 360, 683–689.PubMedCrossRef Klein, C. A., et al. (2002). Genetic heterogeneity of single disseminated tumour cells in minimal residual cancer. Lancet, 360, 683–689.PubMedCrossRef
43.
Zurück zum Zitat Gruber, I. V., et al. (2016). Relationship between hematogenous tumor cell dissemination and cellular immunity in DCIS patients. Anticancer Research, 36, 2345–2351.PubMed Gruber, I. V., et al. (2016). Relationship between hematogenous tumor cell dissemination and cellular immunity in DCIS patients. Anticancer Research, 36, 2345–2351.PubMed
44.
Zurück zum Zitat Sänger, N., et al. (2011). Disseminated tumor cells in the bone marrow of patients with ductal carcinoma in situ. International Journal of Cancer, 129, 2522–2526.PubMedCrossRef Sänger, N., et al. (2011). Disseminated tumor cells in the bone marrow of patients with ductal carcinoma in situ. International Journal of Cancer, 129, 2522–2526.PubMedCrossRef
46.
Zurück zum Zitat Alix-Panabieres, C., & Pantel, K. (2014). Challenges in circulating tumour cell research. Nature Reviews Cancer, 14, 623–631.PubMedCrossRef Alix-Panabieres, C., & Pantel, K. (2014). Challenges in circulating tumour cell research. Nature Reviews Cancer, 14, 623–631.PubMedCrossRef
47.
Zurück zum Zitat Dasgupta, A., Lim, A. R., & Ghajar, C. M. (2017). Circulating and disseminated tumor cells: Harbingers or initiators of metastasis? Molecular Oncology, 11, 40–61.PubMedPubMedCentralCrossRef Dasgupta, A., Lim, A. R., & Ghajar, C. M. (2017). Circulating and disseminated tumor cells: Harbingers or initiators of metastasis? Molecular Oncology, 11, 40–61.PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Schardt, J. A., et al. (2005). Genomic analysis of single cytokeratin-positive cells from bone marrow reveals early mutational events in breast cancer. Cancer Cell, 8, 227–239.PubMedCrossRef Schardt, J. A., et al. (2005). Genomic analysis of single cytokeratin-positive cells from bone marrow reveals early mutational events in breast cancer. Cancer Cell, 8, 227–239.PubMedCrossRef
49.
Zurück zum Zitat Schmidt-Kittler, O., et al. (2003). From latent disseminated cells to overt metastasis: Genetic analysis of systemic breast cancer progression. Proc Natl Acad Sci U S A, 100, 7737–7742.PubMedPubMedCentralCrossRef Schmidt-Kittler, O., et al. (2003). From latent disseminated cells to overt metastasis: Genetic analysis of systemic breast cancer progression. Proc Natl Acad Sci U S A, 100, 7737–7742.PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Gray, J. W. (2003). Evidence emerges for early metastasis and parallel evolution of primary and metastatic tumors. Cancer Cell, 4, 4–6.PubMedCrossRef Gray, J. W. (2003). Evidence emerges for early metastasis and parallel evolution of primary and metastatic tumors. Cancer Cell, 4, 4–6.PubMedCrossRef
51.
Zurück zum Zitat Weigelt, B. (2003). Gene expression profiles of primary breast tumors maintained in distant metastases. Proceedings of the National Academy of Sciences, 100, 15901–15905.CrossRef Weigelt, B. (2003). Gene expression profiles of primary breast tumors maintained in distant metastases. Proceedings of the National Academy of Sciences, 100, 15901–15905.CrossRef
52.
Zurück zum Zitat Magrì, A., & Bardelli, A. (2019). Does early metastatic seeding occur in colorectal cancer? Nature Reviews. Gastroenterology & Hepatology, 16, 651–653.CrossRef Magrì, A., & Bardelli, A. (2019). Does early metastatic seeding occur in colorectal cancer? Nature Reviews. Gastroenterology & Hepatology, 16, 651–653.CrossRef
53.
Zurück zum Zitat Jones, S., et al. (2008). Comparative lesion sequencing provides insights into tumor evolution. Proceeding National Academic Science U S A, 105, 4283–4288.PubMedPubMedCentralCrossRef Jones, S., et al. (2008). Comparative lesion sequencing provides insights into tumor evolution. Proceeding National Academic Science U S A, 105, 4283–4288.PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat Stoecklein, N. H., et al. (2008). Direct genetic analysis of single disseminated cancer cells for prediction of outcome and therapy selection in esophageal cancer. Cancer Cell, 13, 441–453.PubMedCrossRef Stoecklein, N. H., et al. (2008). Direct genetic analysis of single disseminated cancer cells for prediction of outcome and therapy selection in esophageal cancer. Cancer Cell, 13, 441–453.PubMedCrossRef
56.
Zurück zum Zitat Birkbak, N. J., & McGranahan, N. (2020). Cancer genome evolutionary trajectories in metastasis. Cancer Cell, 37, 8–19.PubMedCrossRef Birkbak, N. J., & McGranahan, N. (2020). Cancer genome evolutionary trajectories in metastasis. Cancer Cell, 37, 8–19.PubMedCrossRef
57.
Zurück zum Zitat Hocking, W., Goodman, J., & Golde, D. (1983). Granulocytosis associated with tumor cell production of colony-stimulating activity. Blood, 61, 600–603.PubMedCrossRef Hocking, W., Goodman, J., & Golde, D. (1983). Granulocytosis associated with tumor cell production of colony-stimulating activity. Blood, 61, 600–603.PubMedCrossRef
58.
Zurück zum Zitat Fredeau, L., et al. (2020). Paraneoplastic neutrophilic leukaemoid reaction in a patient with melanoma: Association between tumour volume and leucocytosis. British Journal of Dermatology, 183, 579–580.PubMedCrossRef Fredeau, L., et al. (2020). Paraneoplastic neutrophilic leukaemoid reaction in a patient with melanoma: Association between tumour volume and leucocytosis. British Journal of Dermatology, 183, 579–580.PubMedCrossRef
59.
Zurück zum Zitat Diaz-Montero, C. M., et al. (2009). Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunology, Immunotherapy, 58, 49–59.PubMedCrossRef Diaz-Montero, C. M., et al. (2009). Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunology, Immunotherapy, 58, 49–59.PubMedCrossRef
60.
Zurück zum Zitat Wang, L., et al. (2013). Increased myeloid-derived suppressor cells in gastric cancer correlate with cancer stage and plasma S100A8/A9 proinflammatory proteins. The Journal of Immunology, 190, 794–804.PubMedCrossRef Wang, L., et al. (2013). Increased myeloid-derived suppressor cells in gastric cancer correlate with cancer stage and plasma S100A8/A9 proinflammatory proteins. The Journal of Immunology, 190, 794–804.PubMedCrossRef
61.
Zurück zum Zitat Talmadge, J. E. (2007). Pathways mediating the expansion and immunosuppressive activity of myeloid-derived suppressor cells and their relevance to cancer therapy. Clinical Cancer Research, 13, 5243–5248.PubMedCrossRef Talmadge, J. E. (2007). Pathways mediating the expansion and immunosuppressive activity of myeloid-derived suppressor cells and their relevance to cancer therapy. Clinical Cancer Research, 13, 5243–5248.PubMedCrossRef
63.
Zurück zum Zitat Lane, T. A., et al. (1999). Mobilization of blood-derived stem and progenitor cells in normal subjects by granulocyte-macrophage- and granulocyte-colony-stimulating factors. Transfusion, 39, 39–47.PubMedCrossRef Lane, T. A., et al. (1999). Mobilization of blood-derived stem and progenitor cells in normal subjects by granulocyte-macrophage- and granulocyte-colony-stimulating factors. Transfusion, 39, 39–47.PubMedCrossRef
64.
Zurück zum Zitat Slavin, S., & Strober, S. (1979). Induction of allograft tolerance after total lymphoid irradiation (TLI): Development of suppressor cells of the mixed leukocyte reaction (MLR). The Journal of Immunology, 123, 942–946.PubMedCrossRef Slavin, S., & Strober, S. (1979). Induction of allograft tolerance after total lymphoid irradiation (TLI): Development of suppressor cells of the mixed leukocyte reaction (MLR). The Journal of Immunology, 123, 942–946.PubMedCrossRef
65.
Zurück zum Zitat Pak, A. S., et al. (1995). Mechanisms of immune suppression in patients with head and neck cancer: Presence of CD34(+) cells which suppress immune functions within cancers that secrete granulocyte-macrophage colony-stimulating factor. Clinical Cancer Research, 1, 95–103.PubMed Pak, A. S., et al. (1995). Mechanisms of immune suppression in patients with head and neck cancer: Presence of CD34(+) cells which suppress immune functions within cancers that secrete granulocyte-macrophage colony-stimulating factor. Clinical Cancer Research, 1, 95–103.PubMed
66.
Zurück zum Zitat Dumitru, C. A., Moses, K., Trellakis, S., Lang, S., & Brandau, S. (2012). Neutrophils and granulocytic myeloid-derived suppressor cells: Immunophenotyping, cell biology and clinical relevance in human oncology. Cancer Immunology, Immunotherapy, 61, 1155–1167.PubMedCrossRef Dumitru, C. A., Moses, K., Trellakis, S., Lang, S., & Brandau, S. (2012). Neutrophils and granulocytic myeloid-derived suppressor cells: Immunophenotyping, cell biology and clinical relevance in human oncology. Cancer Immunology, Immunotherapy, 61, 1155–1167.PubMedCrossRef
67.
Zurück zum Zitat Poschke, I., Mougiakakos, D., Hansson, J., Masucci, G. V., & Kiessling, R. (2010). Immature immunosuppressive CD14+HLA-DR-/low cells in melanoma patients are Stat3hi and overexpress CD80, CD83, and DC-sign. Cancer Research, 70, 4335–4345.PubMedCrossRef Poschke, I., Mougiakakos, D., Hansson, J., Masucci, G. V., & Kiessling, R. (2010). Immature immunosuppressive CD14+HLA-DR-/low cells in melanoma patients are Stat3hi and overexpress CD80, CD83, and DC-sign. Cancer Research, 70, 4335–4345.PubMedCrossRef
68.
Zurück zum Zitat Rodriguez, P. C., et al. (2009). Arginase I-producing myeloid-derived suppressor cells in renal cell carcinoma are a subpopulation of activated granulocytes. Cancer Research, 69, 1553–1560.PubMedPubMedCentralCrossRef Rodriguez, P. C., et al. (2009). Arginase I-producing myeloid-derived suppressor cells in renal cell carcinoma are a subpopulation of activated granulocytes. Cancer Research, 69, 1553–1560.PubMedPubMedCentralCrossRef
70.
Zurück zum Zitat Schmielau, J., & Finn, O. J. (2001). Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of t-cell function in advanced cancer patients. Cancer Research, 61, 4756–4760.PubMed Schmielau, J., & Finn, O. J. (2001). Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of t-cell function in advanced cancer patients. Cancer Research, 61, 4756–4760.PubMed
71.
Zurück zum Zitat Corzo, C. A., et al. (2009). Mechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cells. The Journal of Immunology, 182, 5693–5701.PubMedCrossRef Corzo, C. A., et al. (2009). Mechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cells. The Journal of Immunology, 182, 5693–5701.PubMedCrossRef
72.
Zurück zum Zitat Zea, A. H., et al. (2005). Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: A mechanism of tumor evasion. Cancer Research, 65, 3044–3048.PubMedCrossRef Zea, A. H., et al. (2005). Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: A mechanism of tumor evasion. Cancer Research, 65, 3044–3048.PubMedCrossRef
73.
Zurück zum Zitat Khadge, S., et al. (2018). Immune regulation and anti-cancer activity by lipid inflammatory mediators. International Immunopharmacology, 65, 580–592.PubMedPubMedCentralCrossRef Khadge, S., et al. (2018). Immune regulation and anti-cancer activity by lipid inflammatory mediators. International Immunopharmacology, 65, 580–592.PubMedPubMedCentralCrossRef
74.
Zurück zum Zitat Durante, W., Johnson, F. K., & Johnson, R. A. (2007). Arginase: A critical regulator of nitric oxide synthesis and vascular function. Clinical and Experimental Pharmacology and Physiology, 34, 906–911.PubMedCrossRef Durante, W., Johnson, F. K., & Johnson, R. A. (2007). Arginase: A critical regulator of nitric oxide synthesis and vascular function. Clinical and Experimental Pharmacology and Physiology, 34, 906–911.PubMedCrossRef
75.
Zurück zum Zitat Czystowska-Kuzmicz, M., et al. (2019). Small extracellular vesicles containing arginase-1 suppress T-cell responses and promote tumor growth in ovarian carcinoma. Nature Communications, 10, 3000.PubMedPubMedCentralCrossRef Czystowska-Kuzmicz, M., et al. (2019). Small extracellular vesicles containing arginase-1 suppress T-cell responses and promote tumor growth in ovarian carcinoma. Nature Communications, 10, 3000.PubMedPubMedCentralCrossRef
76.
77.
Zurück zum Zitat Raber, P., Ochoa, A. C., & Rodríguez, P. C. (2012). Metabolism of L-arginine by myeloid-derived suppressor cells in cancer: Mechanisms of T cell suppression and therapeutic perspectives. Immunological Investigations, 41, 614–634.PubMedPubMedCentralCrossRef Raber, P., Ochoa, A. C., & Rodríguez, P. C. (2012). Metabolism of L-arginine by myeloid-derived suppressor cells in cancer: Mechanisms of T cell suppression and therapeutic perspectives. Immunological Investigations, 41, 614–634.PubMedPubMedCentralCrossRef
78.
Zurück zum Zitat Rodriguez, P. C., et al. (2004). Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. Cancer Research, 64, 5839–5849.PubMedCrossRef Rodriguez, P. C., et al. (2004). Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. Cancer Research, 64, 5839–5849.PubMedCrossRef
79.
Zurück zum Zitat Rodriguez, P. C., Quiceno, D. G., & Ochoa, A. C. (2006). l-arginine availability regulates T-lymphocyte cell-cycle progression. Blood, 109, 1568–1573.PubMedCrossRef Rodriguez, P. C., Quiceno, D. G., & Ochoa, A. C. (2006). l-arginine availability regulates T-lymphocyte cell-cycle progression. Blood, 109, 1568–1573.PubMedCrossRef
80.
Zurück zum Zitat Rodriguez, P. C., et al. (2002). Regulation of T cell receptor CD3zeta chain expression by L-arginine. Journal of Biological Chemistry, 277, 21123–21129.PubMedCrossRef Rodriguez, P. C., et al. (2002). Regulation of T cell receptor CD3zeta chain expression by L-arginine. Journal of Biological Chemistry, 277, 21123–21129.PubMedCrossRef
81.
Zurück zum Zitat Bronte, V., Serafini, P., Mazzoni, A., Segal, D. M., & Zanovello, P. (2003). L-arginine metabolism in myeloid cells controls T-lymphocyte functions. Trends in Immunology, 24, 302–306.PubMedCrossRef Bronte, V., Serafini, P., Mazzoni, A., Segal, D. M., & Zanovello, P. (2003). L-arginine metabolism in myeloid cells controls T-lymphocyte functions. Trends in Immunology, 24, 302–306.PubMedCrossRef
82.
Zurück zum Zitat Eiserich, J. P. (2003). Nitric oxide: A simple free radical with complex chemistry and biology. In M. P. Schneider (ed.), Chemical Probes in Biology (pp. 1-19). © 2003 Kluwer Academic Publishers. Eiserich, J. P. (2003). Nitric oxide: A simple free radical with complex chemistry and biology. In M. P. Schneider (ed.), Chemical Probes in Biology (pp. 1-19). © 2003 Kluwer Academic Publishers.
83.
Zurück zum Zitat Jayaraman, P., et al. (2012). Tumor-expressed inducible nitric oxide synthase controls induction of functional myeloid-derived suppressor cells through modulation of vascular endothelial growth factor release. The Journal of Immunology, 188, 5365–5376.PubMedCrossRef Jayaraman, P., et al. (2012). Tumor-expressed inducible nitric oxide synthase controls induction of functional myeloid-derived suppressor cells through modulation of vascular endothelial growth factor release. The Journal of Immunology, 188, 5365–5376.PubMedCrossRef
84.
Zurück zum Zitat Mazzoni, A., et al. (2002). Myeloid suppressor lines inhibit T cell responses by an NO-dependent mechanism. The Journal of Immunology, 168, 689–695.PubMedCrossRef Mazzoni, A., et al. (2002). Myeloid suppressor lines inhibit T cell responses by an NO-dependent mechanism. The Journal of Immunology, 168, 689–695.PubMedCrossRef
85.
86.
Zurück zum Zitat Kusmartsev, S., Nefedova, Y., Yoder, D., & Gabrilovich, D. I. (2004). Antigen-specific inhibition of CD8<sup>+</sup> T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species. The Journal of Immunology, 172, 989–999.PubMedCrossRef Kusmartsev, S., Nefedova, Y., Yoder, D., & Gabrilovich, D. I. (2004). Antigen-specific inhibition of CD8<sup>+</sup> T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species. The Journal of Immunology, 172, 989–999.PubMedCrossRef
87.
Zurück zum Zitat Markowitz, J., et al. (2017). Nitric oxide mediated inhibition of antigen presentation from DCs to CD4+ T cells in cancer and measurement of STAT1 nitration. Scientific Reports, 7, 15424.PubMedPubMedCentralCrossRef Markowitz, J., et al. (2017). Nitric oxide mediated inhibition of antigen presentation from DCs to CD4+ T cells in cancer and measurement of STAT1 nitration. Scientific Reports, 7, 15424.PubMedPubMedCentralCrossRef
88.
Zurück zum Zitat Nagaraj, S., Schrum, A. G., Cho, H.-I., Celis, E., & Gabrilovich, D. I. (2010). Mechanism of T cell tolerance induced by myeloid-derived suppressor cells. The Journal of Immunology, 184, 3106–3116.PubMedCrossRef Nagaraj, S., Schrum, A. G., Cho, H.-I., Celis, E., & Gabrilovich, D. I. (2010). Mechanism of T cell tolerance induced by myeloid-derived suppressor cells. The Journal of Immunology, 184, 3106–3116.PubMedCrossRef
89.
Zurück zum Zitat Wesolowski, R., Markowitz, J., & Carson, W. E. (2013). Myeloid derived suppressor cells – a new therapeutic target in the treatment of cancer. Journal for ImmunoTherapy of Cancer, 1, 10.PubMedPubMedCentralCrossRef Wesolowski, R., Markowitz, J., & Carson, W. E. (2013). Myeloid derived suppressor cells – a new therapeutic target in the treatment of cancer. Journal for ImmunoTherapy of Cancer, 1, 10.PubMedPubMedCentralCrossRef
90.
Zurück zum Zitat Feng, S., et al. (2018). Myeloid-derived suppressor cells inhibit T cell activation through nitrating LCK in mouse cancers. Proc Natl Acad Sci U S A, 115, 10094–10099.PubMedPubMedCentralCrossRef Feng, S., et al. (2018). Myeloid-derived suppressor cells inhibit T cell activation through nitrating LCK in mouse cancers. Proc Natl Acad Sci U S A, 115, 10094–10099.PubMedPubMedCentralCrossRef
91.
Zurück zum Zitat Yaseen, M. M., Abuharfeil, N. M., Darmani, H., & Daoud, A. (2020). Mechanisms of immune suppression by myeloid-derived suppressor cells: The role of interleukin-10 as a key immunoregulatory cytokine. Open Biology, 10, 200111.PubMedPubMedCentralCrossRef Yaseen, M. M., Abuharfeil, N. M., Darmani, H., & Daoud, A. (2020). Mechanisms of immune suppression by myeloid-derived suppressor cells: The role of interleukin-10 as a key immunoregulatory cytokine. Open Biology, 10, 200111.PubMedPubMedCentralCrossRef
92.
Zurück zum Zitat Talmadge, J. E., et al. (1996). Immunologic attributes of cytokine mobilized peripheral blood stem cells and recovery following transplantation. Bone Marrow Transplantation, 17, 101–109.PubMed Talmadge, J. E., et al. (1996). Immunologic attributes of cytokine mobilized peripheral blood stem cells and recovery following transplantation. Bone Marrow Transplantation, 17, 101–109.PubMed
93.
Zurück zum Zitat Shojaei, F., et al. (2007). Bv8 regulates myeloid-cell-dependent tumour angiogenesis. Nature, 450, 825–831.PubMedCrossRef Shojaei, F., et al. (2007). Bv8 regulates myeloid-cell-dependent tumour angiogenesis. Nature, 450, 825–831.PubMedCrossRef
94.
95.
Zurück zum Zitat Nguyen, D. X., Bos, P. D., & Massague, J. (2009). Metastasis: From dissemination to organ-specific colonization. Nature Reviews Cancer, 9, 274–284.PubMedCrossRef Nguyen, D. X., Bos, P. D., & Massague, J. (2009). Metastasis: From dissemination to organ-specific colonization. Nature Reviews Cancer, 9, 274–284.PubMedCrossRef
96.
97.
Zurück zum Zitat Horikawa, N., et al. (2017). Expression of vascular endothelial growth factor in ovarian cancer inhibits tumor immunity through the accumulation of myeloid-derived suppressor cells. Clinical Cancer Research, 23, 587–599.PubMedCrossRef Horikawa, N., et al. (2017). Expression of vascular endothelial growth factor in ovarian cancer inhibits tumor immunity through the accumulation of myeloid-derived suppressor cells. Clinical Cancer Research, 23, 587–599.PubMedCrossRef
98.
Zurück zum Zitat Karakhanova, S., et al. (2015). Characterization of myeloid leukocytes and soluble mediators in pancreatic cancer: importance of myeloid-derived suppressor cells. Oncoimmunology, 4, e998519.PubMedPubMedCentralCrossRef Karakhanova, S., et al. (2015). Characterization of myeloid leukocytes and soluble mediators in pancreatic cancer: importance of myeloid-derived suppressor cells. Oncoimmunology, 4, e998519.PubMedPubMedCentralCrossRef
99.
Zurück zum Zitat Hoggatt, J., & Pelus, L. M. (2011). Many mechanisms mediating mobilization: An alliterative review. Current Opinion in Hematology, 18, 231–238.PubMedPubMedCentralCrossRef Hoggatt, J., & Pelus, L. M. (2011). Many mechanisms mediating mobilization: An alliterative review. Current Opinion in Hematology, 18, 231–238.PubMedPubMedCentralCrossRef
100.
Zurück zum Zitat Levesque, J. P., Hendy, J., Takamatsu, Y., Simmons, P. J., & Bendall, L. J. (2003). Disruption of the CXCR4/CXCL12 chemotactic interaction during hematopoietic stem cell mobilization induced by GCSF or cyclophosphamide. The Journal of Clinical Investigation, 111, 187–196.PubMedPubMedCentralCrossRef Levesque, J. P., Hendy, J., Takamatsu, Y., Simmons, P. J., & Bendall, L. J. (2003). Disruption of the CXCR4/CXCL12 chemotactic interaction during hematopoietic stem cell mobilization induced by GCSF or cyclophosphamide. The Journal of Clinical Investigation, 111, 187–196.PubMedPubMedCentralCrossRef
101.
Zurück zum Zitat Saito, T., et al. (2007). Elevated serum levels of human matrix metalloproteinase-9 (MMP-9) during the induction of peripheral blood stem cell mobilization by granulocyte colony-stimulating factor (G-CSF). Journal of Infection and Chemotherapy, 13, 426–428.PubMedCrossRef Saito, T., et al. (2007). Elevated serum levels of human matrix metalloproteinase-9 (MMP-9) during the induction of peripheral blood stem cell mobilization by granulocyte colony-stimulating factor (G-CSF). Journal of Infection and Chemotherapy, 13, 426–428.PubMedCrossRef
102.
Zurück zum Zitat Xu, M., et al. (2005). Constitutive mobilization of CD34+ cells into the peripheral blood in idiopathic myelofibrosis may be due to the action of a number of proteases. Blood, 105, 4508–4515.PubMedCrossRef Xu, M., et al. (2005). Constitutive mobilization of CD34+ cells into the peripheral blood in idiopathic myelofibrosis may be due to the action of a number of proteases. Blood, 105, 4508–4515.PubMedCrossRef
103.
Zurück zum Zitat Heissig, B., et al. (2002). Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell, 109, 625–637.PubMedPubMedCentralCrossRef Heissig, B., et al. (2002). Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell, 109, 625–637.PubMedPubMedCentralCrossRef
104.
Zurück zum Zitat Zeng, Z. S., Cohen, A. M., & Guillem, J. G. (1999). Loss of basement membrane type IV collagen is associated with increased expression of metalloproteinases 2 and 9 (MMP-2 and MMP-9) during human colorectal tumorigenesis. Carcinogenesis, 20, 749–755.PubMedCrossRef Zeng, Z. S., Cohen, A. M., & Guillem, J. G. (1999). Loss of basement membrane type IV collagen is associated with increased expression of metalloproteinases 2 and 9 (MMP-2 and MMP-9) during human colorectal tumorigenesis. Carcinogenesis, 20, 749–755.PubMedCrossRef
105.
Zurück zum Zitat Davies, B., et al. (1993). Levels of matrix metalloproteases in bladder cancer correlate with tumor grade and invasion. Cancer Research, 53, 5365–5369.PubMed Davies, B., et al. (1993). Levels of matrix metalloproteases in bladder cancer correlate with tumor grade and invasion. Cancer Research, 53, 5365–5369.PubMed
106.
Zurück zum Zitat Hamdy, F. C., et al. (1994). Matrix metalloproteinase 9 expression in primary human prostatic adenocarcinoma and benign prostatic hyperplasia. British Journal of Cancer, 69, 177–182.PubMedPubMedCentralCrossRef Hamdy, F. C., et al. (1994). Matrix metalloproteinase 9 expression in primary human prostatic adenocarcinoma and benign prostatic hyperplasia. British Journal of Cancer, 69, 177–182.PubMedPubMedCentralCrossRef
107.
108.
Zurück zum Zitat Wu, C., et al. (2018). Spleen mediates a distinct hematopoietic progenitor response supporting tumor-promoting myelopoiesis. The Journal of Clinical Investigation, 128, 3425–3438.PubMedPubMedCentralCrossRef Wu, C., et al. (2018). Spleen mediates a distinct hematopoietic progenitor response supporting tumor-promoting myelopoiesis. The Journal of Clinical Investigation, 128, 3425–3438.PubMedPubMedCentralCrossRef
109.
Zurück zum Zitat Klein, B., et al. (1987). Splenomegaly and solitary spleen metastasis in solid tumors. Cancer, 60, 100–102.PubMedCrossRef Klein, B., et al. (1987). Splenomegaly and solitary spleen metastasis in solid tumors. Cancer, 60, 100–102.PubMedCrossRef
110.
Zurück zum Zitat Kiely, J. M., & Silverstein, M. N. (1969). Metastatic carcinoma simulating agnogenic myeloid metaplasia and myelofibrosis. Cancer, 24, 1041–1044.PubMedCrossRef Kiely, J. M., & Silverstein, M. N. (1969). Metastatic carcinoma simulating agnogenic myeloid metaplasia and myelofibrosis. Cancer, 24, 1041–1044.PubMedCrossRef
111.
Zurück zum Zitat Schlitt, H. J., et al. (1995). Extramedullary erythropoiesis in human liver grafts. Hepatology, 21, 689–696.PubMedCrossRef Schlitt, H. J., et al. (1995). Extramedullary erythropoiesis in human liver grafts. Hepatology, 21, 689–696.PubMedCrossRef
112.
Zurück zum Zitat Craig, C. E. H., Quaglia, A., & Dhillon, A. P. (2004). Extramedullary haematopoiesis in massive hepatic necrosis. Histopathology, 45, 518–525.PubMedCrossRef Craig, C. E. H., Quaglia, A., & Dhillon, A. P. (2004). Extramedullary haematopoiesis in massive hepatic necrosis. Histopathology, 45, 518–525.PubMedCrossRef
113.
Zurück zum Zitat Mohyuddin, G. R., & Yacoub, A. (2016). Primary myelofibrosis presenting as extramedullary hematopoiesis in a transplanted liver graft: Case report and review of the literature. Case Rep Hematol, 2016, 9515404.PubMedPubMedCentral Mohyuddin, G. R., & Yacoub, A. (2016). Primary myelofibrosis presenting as extramedullary hematopoiesis in a transplanted liver graft: Case report and review of the literature. Case Rep Hematol, 2016, 9515404.PubMedPubMedCentral
114.
Zurück zum Zitat Yablonski-Peretz, T., et al. (1985). Secondary myelofibrosis with metastatic breast cancer simulating agnogenic myeloid metaplasia: Report of a case and review of the literature. Medical and Pediatric Oncology, 13, 92–96.PubMedCrossRef Yablonski-Peretz, T., et al. (1985). Secondary myelofibrosis with metastatic breast cancer simulating agnogenic myeloid metaplasia: Report of a case and review of the literature. Medical and Pediatric Oncology, 13, 92–96.PubMedCrossRef
115.
Zurück zum Zitat Oliveira, A. C., et al. (2019). Chemokine signaling axis between endothelial and myeloid cells regulates development of pulmonary hypertension associated with pulmonary fibrosis and hypoxia. American Journal of Physiology. Lung Cellular and Molecular Physiology, 317, L434–L444.PubMedPubMedCentralCrossRef Oliveira, A. C., et al. (2019). Chemokine signaling axis between endothelial and myeloid cells regulates development of pulmonary hypertension associated with pulmonary fibrosis and hypoxia. American Journal of Physiology. Lung Cellular and Molecular Physiology, 317, L434–L444.PubMedPubMedCentralCrossRef
116.
Zurück zum Zitat Ostrand-Rosenberg, S., & Fenselau, C. (2018). Myeloid-derived suppressor cells: Immune-suppressive cells that impair antitumor immunity and are sculpted by their environment. The Journal of Immunology, 200, 422–431.PubMedCrossRef Ostrand-Rosenberg, S., & Fenselau, C. (2018). Myeloid-derived suppressor cells: Immune-suppressive cells that impair antitumor immunity and are sculpted by their environment. The Journal of Immunology, 200, 422–431.PubMedCrossRef
117.
Zurück zum Zitat Bryant, A. J., et al. (2018). Myeloid-derived suppressor cells are necessary for development of pulmonary hypertension. American Journal of Respiratory Cell and Molecular Biology, 58, 170–180.PubMedPubMedCentralCrossRef Bryant, A. J., et al. (2018). Myeloid-derived suppressor cells are necessary for development of pulmonary hypertension. American Journal of Respiratory Cell and Molecular Biology, 58, 170–180.PubMedPubMedCentralCrossRef
118.
Zurück zum Zitat Pan, H., et al. (2017). 20-year risks of breast-cancer recurrence after stopping endocrine therapy at 5 years. New England Journal of Medicine, 377, 1836–1846.PubMedCrossRef Pan, H., et al. (2017). 20-year risks of breast-cancer recurrence after stopping endocrine therapy at 5 years. New England Journal of Medicine, 377, 1836–1846.PubMedCrossRef
119.
Zurück zum Zitat Folkman, J. (1971). Tumor angiogenesis: Therapeutic implications. New England Journal of Medicine, 285, 1182–1186.PubMedCrossRef Folkman, J. (1971). Tumor angiogenesis: Therapeutic implications. New England Journal of Medicine, 285, 1182–1186.PubMedCrossRef
120.
Zurück zum Zitat Hanahan, D., & Folkman, J. (1996). Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell, 86, 353–364.PubMedCrossRef Hanahan, D., & Folkman, J. (1996). Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell, 86, 353–364.PubMedCrossRef
121.
Zurück zum Zitat Siemann, D. W., & Horsman, M. R. (2015). Modulation of the tumor vasculature and oxygenation to improve therapy. Pharmacology & Therapeutics, 153, 107–124.CrossRef Siemann, D. W., & Horsman, M. R. (2015). Modulation of the tumor vasculature and oxygenation to improve therapy. Pharmacology & Therapeutics, 153, 107–124.CrossRef
122.
Zurück zum Zitat Retsky, M., et al. (2013). Reduction of breast cancer relapses with perioperative non-steroidal anti-inflammatory drugs: New findings and a review. Current Medicinal Chemistry, 20, 4163–4176.PubMedPubMedCentralCrossRef Retsky, M., et al. (2013). Reduction of breast cancer relapses with perioperative non-steroidal anti-inflammatory drugs: New findings and a review. Current Medicinal Chemistry, 20, 4163–4176.PubMedPubMedCentralCrossRef
123.
Zurück zum Zitat Farrar, J. D., et al. (1999). Cancer dormancy. VII. A regulatory role for CD8+ T cells and IFN-gamma in establishing and maintaining the tumor-dormant state. J Immunol, 162, 2842–2849.PubMedCrossRef Farrar, J. D., et al. (1999). Cancer dormancy. VII. A regulatory role for CD8+ T cells and IFN-gamma in establishing and maintaining the tumor-dormant state. J Immunol, 162, 2842–2849.PubMedCrossRef
124.
Zurück zum Zitat Dunn, G. P., Old, L. J., & Schreiber, R. D. (2004). The immunobiology of cancer immunosurveillance and immunoediting. Immunity, 21, 137–148.PubMedCrossRef Dunn, G. P., Old, L. J., & Schreiber, R. D. (2004). The immunobiology of cancer immunosurveillance and immunoediting. Immunity, 21, 137–148.PubMedCrossRef
125.
Zurück zum Zitat Wheelock, E. F., Weinhold, K. J., & Levich, J. (1981). The tumor dormant state. Advances in Cancer Research, 34, 107–140.PubMedCrossRef Wheelock, E. F., Weinhold, K. J., & Levich, J. (1981). The tumor dormant state. Advances in Cancer Research, 34, 107–140.PubMedCrossRef
126.
Zurück zum Zitat Koebel, C. M., et al. (2007). Adaptive immunity maintains occult cancer in an equilibrium state. Nature, 450, 903–907.PubMedCrossRef Koebel, C. M., et al. (2007). Adaptive immunity maintains occult cancer in an equilibrium state. Nature, 450, 903–907.PubMedCrossRef
127.
Zurück zum Zitat Sidky, Y. A., & Borden, E. C. (1987). Inhibition of angiogenesis by interferons: Effects on tumor- and lymphocyte-induced vascular responses. Cancer Research, 47, 5155–5161.PubMed Sidky, Y. A., & Borden, E. C. (1987). Inhibition of angiogenesis by interferons: Effects on tumor- and lymphocyte-induced vascular responses. Cancer Research, 47, 5155–5161.PubMed
128.
Zurück zum Zitat Voest, E. E., et al. (1995). Inhibition of angiogenesis in vivo by interleukin 12. Journal of the National Cancer Institute, 87, 581–586.PubMedCrossRef Voest, E. E., et al. (1995). Inhibition of angiogenesis in vivo by interleukin 12. Journal of the National Cancer Institute, 87, 581–586.PubMedCrossRef
129.
Zurück zum Zitat Sleeman, J. P. (2012). The metastatic niche and stromal progression. Cancer and Metastasis Reviews, 31, 429–440.PubMedCrossRef Sleeman, J. P. (2012). The metastatic niche and stromal progression. Cancer and Metastasis Reviews, 31, 429–440.PubMedCrossRef
130.
Zurück zum Zitat Fane, M., & Weeraratna, A. T. (2020). How the ageing microenvironment influences tumour progression. Nature Reviews Cancer, 20, 89–106.PubMedCrossRef Fane, M., & Weeraratna, A. T. (2020). How the ageing microenvironment influences tumour progression. Nature Reviews Cancer, 20, 89–106.PubMedCrossRef
132.
Zurück zum Zitat Nakajima, M., Morikawa, K., Fabra, A., Bucana, C. D., & Fidler, I. J. (1990). Influence of organ environment on extracellular matrix degradative activity and metastasis of human colon carcinoma cells. Journal of the National Cancer Institute, 82, 1890–1898.PubMedCrossRef Nakajima, M., Morikawa, K., Fabra, A., Bucana, C. D., & Fidler, I. J. (1990). Influence of organ environment on extracellular matrix degradative activity and metastasis of human colon carcinoma cells. Journal of the National Cancer Institute, 82, 1890–1898.PubMedCrossRef
133.
Zurück zum Zitat Casimiro, S., Guise, T. A., & Chirgwin, J. (2009). The critical role of the bone microenvironment in cancer metastases. Molecular and Cellular Endocrinology, 310, 71–81.PubMedCrossRef Casimiro, S., Guise, T. A., & Chirgwin, J. (2009). The critical role of the bone microenvironment in cancer metastases. Molecular and Cellular Endocrinology, 310, 71–81.PubMedCrossRef
134.
Zurück zum Zitat Sceneay, J., Smyth, M. J., & Möller, A. (2013). The pre-metastatic niche: Finding common ground. Cancer and Metastasis Reviews, 32, 449–464.PubMedCrossRef Sceneay, J., Smyth, M. J., & Möller, A. (2013). The pre-metastatic niche: Finding common ground. Cancer and Metastasis Reviews, 32, 449–464.PubMedCrossRef
135.
Zurück zum Zitat Lindau, D., Gielen, P., Kroesen, M., Wesseling, P., & Adema, G. J. (2013). The immunosuppressive tumour network: Myeloid-derived suppressor cells, regulatory T cells and natural killer T cells. Immunology, 138, 105–115.PubMedPubMedCentralCrossRef Lindau, D., Gielen, P., Kroesen, M., Wesseling, P., & Adema, G. J. (2013). The immunosuppressive tumour network: Myeloid-derived suppressor cells, regulatory T cells and natural killer T cells. Immunology, 138, 105–115.PubMedPubMedCentralCrossRef
136.
Zurück zum Zitat Wilson, A., et al. (2007). Dormant and self-renewing hematopoietic stem cells and their niches. Annals of the New York Academy of Sciences, 1106, 64–75.PubMedCrossRef Wilson, A., et al. (2007). Dormant and self-renewing hematopoietic stem cells and their niches. Annals of the New York Academy of Sciences, 1106, 64–75.PubMedCrossRef
137.
Zurück zum Zitat Liekens, S., Schols, D., & Hatse, S. (2010). CXCL12-CXCR4 axis in angiogenesis, metastasis and stem cell mobilization. Current Pharmaceutical Design, 16, 3903–3920.PubMedCrossRef Liekens, S., Schols, D., & Hatse, S. (2010). CXCL12-CXCR4 axis in angiogenesis, metastasis and stem cell mobilization. Current Pharmaceutical Design, 16, 3903–3920.PubMedCrossRef
138.
Zurück zum Zitat Sugiyama, T., Kohara, H., Noda, M., & Nagasawa, T. (2006). Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity, 25, 977–988.PubMedCrossRef Sugiyama, T., Kohara, H., Noda, M., & Nagasawa, T. (2006). Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity, 25, 977–988.PubMedCrossRef
139.
Zurück zum Zitat Price, T. T., et al. (2016). Dormant breast cancer micrometastases reside in specific bone marrow niches that regulate their transit to and from bone. Sci Transl Med, 8, 340ra–34373.CrossRef Price, T. T., et al. (2016). Dormant breast cancer micrometastases reside in specific bone marrow niches that regulate their transit to and from bone. Sci Transl Med, 8, 340ra–34373.CrossRef
140.
Zurück zum Zitat Albrengues, J., et al. (2018). Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science, 361, 6409.CrossRef Albrengues, J., et al. (2018). Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science, 361, 6409.CrossRef
141.
Zurück zum Zitat Aguirre Ghiso, J. A., Kovalski, K., & Ossowski, L. (1999). Tumor dormancy induced by downregulation of urokinase receptor in human carcinoma involves integrin and MAPK signaling. J Cell Biol, 147, 89–104.PubMedCrossRef Aguirre Ghiso, J. A., Kovalski, K., & Ossowski, L. (1999). Tumor dormancy induced by downregulation of urokinase receptor in human carcinoma involves integrin and MAPK signaling. J Cell Biol, 147, 89–104.PubMedCrossRef
142.
Zurück zum Zitat Shiozawa, Y., et al. (2011). Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow. The Journal of Clinical Investigation, 121, 1298–1312.PubMedPubMedCentralCrossRef Shiozawa, Y., et al. (2011). Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow. The Journal of Clinical Investigation, 121, 1298–1312.PubMedPubMedCentralCrossRef
143.
Zurück zum Zitat Vora, A. J., Toh, C. H., Peel, J., & Greaves, M. (1994). Use of granulocyte colony-stimulating factor (G-CSF) for mobilizing peripheral blood stem cells: Risk of mobilizing clonal myeloma cells in patients with bone marrow infiltration. British Journal of Haematology, 86, 180–182.PubMedCrossRef Vora, A. J., Toh, C. H., Peel, J., & Greaves, M. (1994). Use of granulocyte colony-stimulating factor (G-CSF) for mobilizing peripheral blood stem cells: Risk of mobilizing clonal myeloma cells in patients with bone marrow infiltration. British Journal of Haematology, 86, 180–182.PubMedCrossRef
144.
Zurück zum Zitat Nie, Y., Han, Y. C., & Zou, Y. R. (2008). CXCR4 is required for the quiescence of primitive hematopoietic cells. Journal of Experimental Medicine, 205, 777–783.PubMedPubMedCentralCrossRef Nie, Y., Han, Y. C., & Zou, Y. R. (2008). CXCR4 is required for the quiescence of primitive hematopoietic cells. Journal of Experimental Medicine, 205, 777–783.PubMedPubMedCentralCrossRef
145.
Zurück zum Zitat McCabe, N. P., De, S., Vasanji, A., Brainard, J., & Byzova, T. V. (2007). Prostate cancer specific integrin alphavbeta3 modulates bone metastatic growth and tissue remodeling. Oncogene, 26, 6238–6243.PubMedPubMedCentralCrossRef McCabe, N. P., De, S., Vasanji, A., Brainard, J., & Byzova, T. V. (2007). Prostate cancer specific integrin alphavbeta3 modulates bone metastatic growth and tissue remodeling. Oncogene, 26, 6238–6243.PubMedPubMedCentralCrossRef
146.
Zurück zum Zitat Taichman, R. S., et al. (2002). Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone. Cancer Research, 62, 1832–1837.PubMed Taichman, R. S., et al. (2002). Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone. Cancer Research, 62, 1832–1837.PubMed
147.
Zurück zum Zitat Muller, A., et al. (2001). Involvement of chemokine receptors in breast cancer metastasis. Nature, 410, 50–56.PubMedCrossRef Muller, A., et al. (2001). Involvement of chemokine receptors in breast cancer metastasis. Nature, 410, 50–56.PubMedCrossRef
148.
Zurück zum Zitat Boyerinas, B., et al. (2013). Adhesion to osteopontin in the bone marrow niche regulates lymphoblastic leukemia cell dormancy. Blood, 121, 4821–4831.PubMedPubMedCentralCrossRef Boyerinas, B., et al. (2013). Adhesion to osteopontin in the bone marrow niche regulates lymphoblastic leukemia cell dormancy. Blood, 121, 4821–4831.PubMedPubMedCentralCrossRef
149.
Zurück zum Zitat Taichman, R. S., et al. (2010). Prospective identification and skeletal localization of cells capable of multilineage differentiation in vivo. Stem Cells Dev, 19, 1557–1570.PubMedPubMedCentralCrossRef Taichman, R. S., et al. (2010). Prospective identification and skeletal localization of cells capable of multilineage differentiation in vivo. Stem Cells Dev, 19, 1557–1570.PubMedPubMedCentralCrossRef
150.
Zurück zum Zitat Whetton, A. D., & Graham, G. J. (1999). Homing and mobilization in the stem cell niche. Trends in Cell Biology, 9, 233–238.PubMedCrossRef Whetton, A. D., & Graham, G. J. (1999). Homing and mobilization in the stem cell niche. Trends in Cell Biology, 9, 233–238.PubMedCrossRef
151.
Zurück zum Zitat Jung, Y., et al. (2011). Annexin-2 is a regulator of stromal cell-derived factor-1/CXCL12 function in the hematopoietic stem cell endosteal niche. Experimental Hematology, 39, 151-166.e151.PubMedCrossRef Jung, Y., et al. (2011). Annexin-2 is a regulator of stromal cell-derived factor-1/CXCL12 function in the hematopoietic stem cell endosteal niche. Experimental Hematology, 39, 151-166.e151.PubMedCrossRef
152.
Zurück zum Zitat Jung, Y., et al. (2015). Annexin 2-CXCL12 interactions regulate metastatic cell targeting and growth in the bone marrow. Molecular Cancer Research, 13, 197–207.PubMedCrossRef Jung, Y., et al. (2015). Annexin 2-CXCL12 interactions regulate metastatic cell targeting and growth in the bone marrow. Molecular Cancer Research, 13, 197–207.PubMedCrossRef
153.
Zurück zum Zitat Waight, J. D., Hu, Q., Miller, A., Liu, S., & Abrams, S. I. (2011). Tumor-derived G-CSF facilitates neoplastic growth through a granulocytic myeloid-derived suppressor cell-dependent mechanism. PLoS One, 6, e27690.PubMedPubMedCentralCrossRef Waight, J. D., Hu, Q., Miller, A., Liu, S., & Abrams, S. I. (2011). Tumor-derived G-CSF facilitates neoplastic growth through a granulocytic myeloid-derived suppressor cell-dependent mechanism. PLoS One, 6, e27690.PubMedPubMedCentralCrossRef
154.
Zurück zum Zitat van der Toom, E. E., Verdone, J. E., & Pienta, K. J. (2016). Disseminated tumor cells and dormancy in prostate cancer metastasis. Current Opinion in Biotechnology, 40, 9–15.PubMedPubMedCentralCrossRef van der Toom, E. E., Verdone, J. E., & Pienta, K. J. (2016). Disseminated tumor cells and dormancy in prostate cancer metastasis. Current Opinion in Biotechnology, 40, 9–15.PubMedPubMedCentralCrossRef
155.
Zurück zum Zitat Morris, K. T., et al. (2014). G-CSF and G-CSFR are highly expressed in human gastric and colon cancers and promote carcinoma cell proliferation and migration. British Journal of Cancer, 110, 1211–1220.PubMedPubMedCentralCrossRef Morris, K. T., et al. (2014). G-CSF and G-CSFR are highly expressed in human gastric and colon cancers and promote carcinoma cell proliferation and migration. British Journal of Cancer, 110, 1211–1220.PubMedPubMedCentralCrossRef
156.
Zurück zum Zitat Groblewska, M., et al. (2007). Serum levels of granulocyte colony-stimulating factor (G-CSF) and macrophage colony-stimulating factor (M-CSF) in pancreatic cancer patients. Clinical Chemistry and Laboratory Medicine, 45, 30–34.PubMedCrossRef Groblewska, M., et al. (2007). Serum levels of granulocyte colony-stimulating factor (G-CSF) and macrophage colony-stimulating factor (M-CSF) in pancreatic cancer patients. Clinical Chemistry and Laboratory Medicine, 45, 30–34.PubMedCrossRef
157.
Zurück zum Zitat OuYang, L. Y., et al. (2015). Tumor-induced myeloid-derived suppressor cells promote tumor progression through oxidative metabolism in human colorectal cancer. Journal of Translational Medicine, 13, 47.PubMedPubMedCentralCrossRef OuYang, L. Y., et al. (2015). Tumor-induced myeloid-derived suppressor cells promote tumor progression through oxidative metabolism in human colorectal cancer. Journal of Translational Medicine, 13, 47.PubMedPubMedCentralCrossRef
158.
Zurück zum Zitat Yan, H. H., et al. (2010). Gr-1+CD11b+ myeloid cells tip the balance of immune protection to tumor promotion in the premetastatic lung. Cancer Research, 70, 6139–6149.PubMedPubMedCentralCrossRef Yan, H. H., et al. (2010). Gr-1+CD11b+ myeloid cells tip the balance of immune protection to tumor promotion in the premetastatic lung. Cancer Research, 70, 6139–6149.PubMedPubMedCentralCrossRef
159.
Zurück zum Zitat Shi, H., et al. (2017). Recruited monocytic myeloid-derived suppressor cells promote the arrest of tumor cells in the premetastatic niche through an IL-1beta-mediated increase in E-selectin expression. International Journal of Cancer, 140, 1370–1383.PubMedCrossRef Shi, H., et al. (2017). Recruited monocytic myeloid-derived suppressor cells promote the arrest of tumor cells in the premetastatic niche through an IL-1beta-mediated increase in E-selectin expression. International Journal of Cancer, 140, 1370–1383.PubMedCrossRef
160.
Zurück zum Zitat Talmadge, J. E., & Fidler, I. J. (2010). AACR centennial series: The biology of cancer metastasis: Historical perspective. Cancer Research, 70, 5649–5669.PubMedPubMedCentralCrossRef Talmadge, J. E., & Fidler, I. J. (2010). AACR centennial series: The biology of cancer metastasis: Historical perspective. Cancer Research, 70, 5649–5669.PubMedPubMedCentralCrossRef
161.
Zurück zum Zitat Mitchell, K. G., et al. (2020) Neutrophil expansion defines an immunoinhibitory peripheral and intratumoral inflammatory milieu in resected non-small cell lung cancer: A descriptive analysis of a prospectively immunoprofiled cohort. Journal for Immunotherapy of Cancer, 8, e000405 Mitchell, K. G., et al. (2020) Neutrophil expansion defines an immunoinhibitory peripheral and intratumoral inflammatory milieu in resected non-small cell lung cancer: A descriptive analysis of a prospectively immunoprofiled cohort. Journal for Immunotherapy of Cancer, 8, e000405
162.
Zurück zum Zitat Marymont, J. H., Jr., & Gross, S. (1963). Patterns of metastatic cancer in the spleen. American Journal of Clinical Pathology, 40, 58–66.PubMedCrossRef Marymont, J. H., Jr., & Gross, S. (1963). Patterns of metastatic cancer in the spleen. American Journal of Clinical Pathology, 40, 58–66.PubMedCrossRef
163.
Zurück zum Zitat Sauer, J., Sobolewski, K., & Dommisch, K. (2009). Splenic metastases–not a frequent problem, but an underestimate location of metastases: Epidemiology and course. Journal of Cancer Research and Clinical Oncology, 135, 667–671.PubMedCrossRef Sauer, J., Sobolewski, K., & Dommisch, K. (2009). Splenic metastases–not a frequent problem, but an underestimate location of metastases: Epidemiology and course. Journal of Cancer Research and Clinical Oncology, 135, 667–671.PubMedCrossRef
164.
Zurück zum Zitat Watson, G. F., Diller, I. C., & Ludwick, N. V. (1947). Spleen extract and tumor growth. Science, 106, 348.PubMedCrossRef Watson, G. F., Diller, I. C., & Ludwick, N. V. (1947). Spleen extract and tumor growth. Science, 106, 348.PubMedCrossRef
165.
Zurück zum Zitat Cole, K. E., et al. (2020). Comparative phenotypes of peripheral blood and spleen cells from cancer patients. International Immunopharmacology, 85, 106655.PubMedCrossRef Cole, K. E., et al. (2020). Comparative phenotypes of peripheral blood and spleen cells from cancer patients. International Immunopharmacology, 85, 106655.PubMedCrossRef
166.
Zurück zum Zitat Cole, K. E., et al. (2022). Splenic and PB immune recovery in neoadjuvant treated gastrointestinal cancer patients. International Immunopharmacology, 106, 108628.PubMedCrossRef Cole, K. E., et al. (2022). Splenic and PB immune recovery in neoadjuvant treated gastrointestinal cancer patients. International Immunopharmacology, 106, 108628.PubMedCrossRef
167.
Zurück zum Zitat Peereboom, D. M., et al. (2019). Metronomic capecitabine as an immune modulator in glioblastoma patients reduces myeloid-derived suppressor cells. JCI Insight, 4, e130748 Peereboom, D. M., et al. (2019). Metronomic capecitabine as an immune modulator in glioblastoma patients reduces myeloid-derived suppressor cells. JCI Insight, 4, e130748
168.
Zurück zum Zitat Draghiciu, O., Lubbers, J., Nijman, H. W., & Daemen, T. (2015). Myeloid derived suppressor cells-an overview of combat strategies to increase immunotherapy efficacy. Oncoimmunology, 4, e954829.PubMedPubMedCentralCrossRef Draghiciu, O., Lubbers, J., Nijman, H. W., & Daemen, T. (2015). Myeloid derived suppressor cells-an overview of combat strategies to increase immunotherapy efficacy. Oncoimmunology, 4, e954829.PubMedPubMedCentralCrossRef
169.
Zurück zum Zitat Weber, R., et al. (2018). Myeloid-derived suppressor cells hinder the anti-cancer activity of immune checkpoint inhibitors. Frontiers in Immunology, 9, 1310.PubMedPubMedCentralCrossRef Weber, R., et al. (2018). Myeloid-derived suppressor cells hinder the anti-cancer activity of immune checkpoint inhibitors. Frontiers in Immunology, 9, 1310.PubMedPubMedCentralCrossRef
170.
Zurück zum Zitat Sun, L., et al. (2019). Inhibiting myeloid-derived suppressor cell trafficking enhances T cell immunotherapy. JCI Insight, 4, e126853 Sun, L., et al. (2019). Inhibiting myeloid-derived suppressor cell trafficking enhances T cell immunotherapy. JCI Insight, 4, e126853
171.
Zurück zum Zitat Mitchell, T. C., et al. (2018). Epacadostat plus pembrolizumab in patients with advanced solid tumors: Phase I results from a multicenter, open-label phase I/II trial (ECHO-202/KEYNOTE-037). Journal of Clinical Oncology, 36, 3223–3230.PubMedPubMedCentralCrossRef Mitchell, T. C., et al. (2018). Epacadostat plus pembrolizumab in patients with advanced solid tumors: Phase I results from a multicenter, open-label phase I/II trial (ECHO-202/KEYNOTE-037). Journal of Clinical Oncology, 36, 3223–3230.PubMedPubMedCentralCrossRef
172.
Zurück zum Zitat Eriksson, E., Wenthe, J., Irenaeus, S., Loskog, A., & Ullenhag, G. (2016). Gemcitabine reduces MDSCs, tregs and TGFβ-1 while restoring the teff/treg ratio in patients with pancreatic cancer. Journal of Translational Medicine, 14, 282.PubMedPubMedCentralCrossRef Eriksson, E., Wenthe, J., Irenaeus, S., Loskog, A., & Ullenhag, G. (2016). Gemcitabine reduces MDSCs, tregs and TGFβ-1 while restoring the teff/treg ratio in patients with pancreatic cancer. Journal of Translational Medicine, 14, 282.PubMedPubMedCentralCrossRef
173.
Zurück zum Zitat Kotsakis, A., et al. (2012). Myeloid-derived suppressor cell measurements in fresh and cryopreserved blood samples. Journal of Immunological Methods, 381, 14–22.PubMedPubMedCentralCrossRef Kotsakis, A., et al. (2012). Myeloid-derived suppressor cell measurements in fresh and cryopreserved blood samples. Journal of Immunological Methods, 381, 14–22.PubMedPubMedCentralCrossRef
174.
Zurück zum Zitat Trellakis, S., et al. (2013). Granulocytic myeloid-derived suppressor cells are cryosensitive and their frequency does not correlate with serum concentrations of colony-stimulating factors in head and neck cancer. Innate Immunity, 19, 328–336.PubMedCrossRef Trellakis, S., et al. (2013). Granulocytic myeloid-derived suppressor cells are cryosensitive and their frequency does not correlate with serum concentrations of colony-stimulating factors in head and neck cancer. Innate Immunity, 19, 328–336.PubMedCrossRef
175.
Zurück zum Zitat Annels, N. E., et al. (2014). The effects of gemcitabine and capecitabine combination chemotherapy and of low-dose adjuvant GM-CSF on the levels of myeloid-derived suppressor cells in patients with advanced pancreatic cancer. Cancer Immunology, Immunotherapy, 63, 175–183.PubMedCrossRef Annels, N. E., et al. (2014). The effects of gemcitabine and capecitabine combination chemotherapy and of low-dose adjuvant GM-CSF on the levels of myeloid-derived suppressor cells in patients with advanced pancreatic cancer. Cancer Immunology, Immunotherapy, 63, 175–183.PubMedCrossRef
176.
Zurück zum Zitat Limagne, E., et al. (2016). Accumulation of MDSC and Th17 cells in patients with metastatic colorectal cancer predicts the efficacy of a FOLFOX–bevacizumab drug treatment regimen. Cancer Research, 76, 5241–5252.PubMedCrossRef Limagne, E., et al. (2016). Accumulation of MDSC and Th17 cells in patients with metastatic colorectal cancer predicts the efficacy of a FOLFOX–bevacizumab drug treatment regimen. Cancer Research, 76, 5241–5252.PubMedCrossRef
177.
Zurück zum Zitat Kanterman, J., et al. (2014). Adverse immunoregulatory effects of 5FU and CPT11 chemotherapy on myeloid-derived suppressor cells and colorectal cancer outcomes. Cancer Research, 74, 6022–6035.PubMedCrossRef Kanterman, J., et al. (2014). Adverse immunoregulatory effects of 5FU and CPT11 chemotherapy on myeloid-derived suppressor cells and colorectal cancer outcomes. Cancer Research, 74, 6022–6035.PubMedCrossRef
178.
Zurück zum Zitat Crawford, J., Dale, D. C., & Lyman, G. H. (2004). Chemotherapy-induced neutropenia. Cancer, 100, 228–237.PubMedCrossRef Crawford, J., Dale, D. C., & Lyman, G. H. (2004). Chemotherapy-induced neutropenia. Cancer, 100, 228–237.PubMedCrossRef
179.
Zurück zum Zitat Li, X., et al. (2020). Is PEGylated G-CSF superior to G-CSF in patients with breast cancer receiving chemotherapy? A systematic review and meta-analysis. Supportive Care in Cancer, 28, 5085–5097.PubMedPubMedCentralCrossRef Li, X., et al. (2020). Is PEGylated G-CSF superior to G-CSF in patients with breast cancer receiving chemotherapy? A systematic review and meta-analysis. Supportive Care in Cancer, 28, 5085–5097.PubMedPubMedCentralCrossRef
180.
Zurück zum Zitat Wesolowski, R., et al. (2017). Circulating myeloid-derived suppressor cells increase in patients undergoing neo-adjuvant chemotherapy for breast cancer. Cancer Immunology, Immunotherapy, 66, 1437–1447.PubMedCrossRef Wesolowski, R., et al. (2017). Circulating myeloid-derived suppressor cells increase in patients undergoing neo-adjuvant chemotherapy for breast cancer. Cancer Immunology, Immunotherapy, 66, 1437–1447.PubMedCrossRef
181.
Zurück zum Zitat Dammeijer, F., et al. (2021). Immune monitoring in mesothelioma patients identifies novel immune-modulatory functions of gemcitabine associating with clinical response. EBioMedicine, 64, 103160.PubMedPubMedCentralCrossRef Dammeijer, F., et al. (2021). Immune monitoring in mesothelioma patients identifies novel immune-modulatory functions of gemcitabine associating with clinical response. EBioMedicine, 64, 103160.PubMedPubMedCentralCrossRef
182.
Zurück zum Zitat Ochoa, J. B., et al. (2001). Effects of L-arginine on the proliferation of T lymphocyte subpopulations. JPEN. Journal of Parenteral and Enteral Nutrition, 25, 23–29.PubMedCrossRef Ochoa, J. B., et al. (2001). Effects of L-arginine on the proliferation of T lymphocyte subpopulations. JPEN. Journal of Parenteral and Enteral Nutrition, 25, 23–29.PubMedCrossRef
183.
Zurück zum Zitat Rodriguez, P. C., et al. (2005). Arginase I in myeloid suppressor cells is induced by COX-2 in lung carcinoma. Journal of Experimental Medicine, 202, 931–939.PubMedPubMedCentralCrossRef Rodriguez, P. C., et al. (2005). Arginase I in myeloid suppressor cells is induced by COX-2 in lung carcinoma. Journal of Experimental Medicine, 202, 931–939.PubMedPubMedCentralCrossRef
184.
Zurück zum Zitat Sinha, P., Clements, V. K., Fulton, A. M., & Ostrand-Rosenberg, S. (2007). Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells. Cancer Research, 67, 4507–4513.PubMedCrossRef Sinha, P., Clements, V. K., Fulton, A. M., & Ostrand-Rosenberg, S. (2007). Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells. Cancer Research, 67, 4507–4513.PubMedCrossRef
185.
Zurück zum Zitat Chesney, J. A., Mitchell, R. A., & Yaddanapudi, K. (2017). Myeloid-derived suppressor cells-a new therapeutic target to overcome resistance to cancer immunotherapy. Journal of Leukocyte Biology, 102, 727–740.PubMedPubMedCentralCrossRef Chesney, J. A., Mitchell, R. A., & Yaddanapudi, K. (2017). Myeloid-derived suppressor cells-a new therapeutic target to overcome resistance to cancer immunotherapy. Journal of Leukocyte Biology, 102, 727–740.PubMedPubMedCentralCrossRef
186.
Zurück zum Zitat Talmadge, J. E., et al. (2007). Chemoprevention by cyclooxygenase-2 inhibition reduces immature myeloid suppressor cell expansion. International Immunopharmacology, 7, 140–151.PubMedCrossRef Talmadge, J. E., et al. (2007). Chemoprevention by cyclooxygenase-2 inhibition reduces immature myeloid suppressor cell expansion. International Immunopharmacology, 7, 140–151.PubMedCrossRef
187.
Zurück zum Zitat El-Malah, A. A., et al. (2022). Selective COX-2 inhibitors: Road from success to controversy and the quest for repurposing. Pharmaceuticals (Basel), 15, 827.PubMedCrossRef El-Malah, A. A., et al. (2022). Selective COX-2 inhibitors: Road from success to controversy and the quest for repurposing. Pharmaceuticals (Basel), 15, 827.PubMedCrossRef
188.
Zurück zum Zitat Mostafa, T. M., Alm El-Din, M. A., & Rashdan, A. R. (2022). Celecoxib as an adjuvant to chemotherapy for patients with metastatic colorectal cancer: A randomized controlled clinical study. Saudi Medicine Journal, 43, 37–44.CrossRef Mostafa, T. M., Alm El-Din, M. A., & Rashdan, A. R. (2022). Celecoxib as an adjuvant to chemotherapy for patients with metastatic colorectal cancer: A randomized controlled clinical study. Saudi Medicine Journal, 43, 37–44.CrossRef
189.
Zurück zum Zitat Califano, J. A., et al. (2015). Tadalafil augments tumor specific immunity in patients with head and neck squamous cell carcinoma. Clinical Cancer Research, 21, 30–38.PubMedPubMedCentralCrossRef Califano, J. A., et al. (2015). Tadalafil augments tumor specific immunity in patients with head and neck squamous cell carcinoma. Clinical Cancer Research, 21, 30–38.PubMedPubMedCentralCrossRef
190.
Zurück zum Zitat Serafini, P., et al. (2006). Phosphodiesterase-5 inhibition augments endogenous antitumor immunity by reducing myeloid-derived suppressor cell function. Journal of Experimental Medicine, 203, 2691–2702.PubMedPubMedCentralCrossRef Serafini, P., et al. (2006). Phosphodiesterase-5 inhibition augments endogenous antitumor immunity by reducing myeloid-derived suppressor cell function. Journal of Experimental Medicine, 203, 2691–2702.PubMedPubMedCentralCrossRef
191.
Zurück zum Zitat Noonan, K. A., Ghosh, N., Rudraraju, L., Bui, M., & Borrello, I. (2014). Targeting immune suppression with PDE5 inhibition in end-stage multiple myeloma. Cancer Immunology Research, 2, 725–731.PubMedPubMedCentralCrossRef Noonan, K. A., Ghosh, N., Rudraraju, L., Bui, M., & Borrello, I. (2014). Targeting immune suppression with PDE5 inhibition in end-stage multiple myeloma. Cancer Immunology Research, 2, 725–731.PubMedPubMedCentralCrossRef
192.
Zurück zum Zitat Ezernitchi, A. V., et al. (2006). TCR zeta down-regulation under chronic inflammation is mediated by myeloid suppressor cells differentially distributed between various lymphatic organs. The Journal of Immunology, 177, 4763–4772.PubMedCrossRef Ezernitchi, A. V., et al. (2006). TCR zeta down-regulation under chronic inflammation is mediated by myeloid suppressor cells differentially distributed between various lymphatic organs. The Journal of Immunology, 177, 4763–4772.PubMedCrossRef
193.
Zurück zum Zitat Hassel, J. C., et al. (2017). Tadalafil has biologic activity in human melanoma. Results of a pilot trial with tadalafil in patients with metastatic melanoma (TaMe). Oncoimmunology, 6, e1326440.PubMedPubMedCentralCrossRef Hassel, J. C., et al. (2017). Tadalafil has biologic activity in human melanoma. Results of a pilot trial with tadalafil in patients with metastatic melanoma (TaMe). Oncoimmunology, 6, e1326440.PubMedPubMedCentralCrossRef
194.
Zurück zum Zitat Weed, D. T., et al. (2015). Tadalafil reduces myeloid-derived suppressor cells and regulatory T cells and promotes tumor immunity in patients with head and neck squamous cell carcinoma. Clinical Cancer Research, 21, 39–48.PubMedCrossRef Weed, D. T., et al. (2015). Tadalafil reduces myeloid-derived suppressor cells and regulatory T cells and promotes tumor immunity in patients with head and neck squamous cell carcinoma. Clinical Cancer Research, 21, 39–48.PubMedCrossRef
195.
Zurück zum Zitat Danley, K. T., et al. (2022). The association of phosphodiesterase-5 inhibitors with the biochemical recurrence-free and overall survival of patients with prostate cancer following radical prostatectomy. Urol Oncol, 40(57), e51-57. Danley, K. T., et al. (2022). The association of phosphodiesterase-5 inhibitors with the biochemical recurrence-free and overall survival of patients with prostate cancer following radical prostatectomy. Urol Oncol, 40(57), e51-57.
196.
Zurück zum Zitat Poschke, I., De Boniface, J., Mao, Y., & Kiessling, R. (2012). Tumor-induced changes in the phenotype of blood-derived and tumor-associated T cells of early stage breast cancer patients. International Journal of Cancer, 131, 1611–1620.PubMedCrossRef Poschke, I., De Boniface, J., Mao, Y., & Kiessling, R. (2012). Tumor-induced changes in the phenotype of blood-derived and tumor-associated T cells of early stage breast cancer patients. International Journal of Cancer, 131, 1611–1620.PubMedCrossRef
197.
Zurück zum Zitat Avtandilyan, N., Javrushyan, H., Petrosyan, G., & Trchounian, A. (2018). The involvement of arginase and nitric oxide synthase in breast cancer development: Arginase and NO synthase as therapeutic targets in cancer. BioMed Research International, 2018, 8696923.PubMedPubMedCentralCrossRef Avtandilyan, N., Javrushyan, H., Petrosyan, G., & Trchounian, A. (2018). The involvement of arginase and nitric oxide synthase in breast cancer development: Arginase and NO synthase as therapeutic targets in cancer. BioMed Research International, 2018, 8696923.PubMedPubMedCentralCrossRef
198.
Zurück zum Zitat Ma, Z., et al. (2019). Overexpression of arginase-1 is an indicator of poor prognosis in patients with colorectal cancer. Pathology, Research and Practice, 215, 152383.PubMedCrossRef Ma, Z., et al. (2019). Overexpression of arginase-1 is an indicator of poor prognosis in patients with colorectal cancer. Pathology, Research and Practice, 215, 152383.PubMedCrossRef
200.
Zurück zum Zitat Gey, A., et al. (2015). Granulocytic myeloid-derived suppressor cells inversely correlate with plasma arginine and overall survival in critically ill patients. Clinical and Experimental Immunology, 180, 280–288.PubMedPubMedCentralCrossRef Gey, A., et al. (2015). Granulocytic myeloid-derived suppressor cells inversely correlate with plasma arginine and overall survival in critically ill patients. Clinical and Experimental Immunology, 180, 280–288.PubMedPubMedCentralCrossRef
201.
Zurück zum Zitat Lemberg, K. M., Gori, S. S., Tsukamoto, T., Rais, R., & Slusher, B. S. (2022). Clinical development of metabolic inhibitors for oncology. Journal Clinical Investigacion, 132, e148550 Lemberg, K. M., Gori, S. S., Tsukamoto, T., Rais, R., & Slusher, B. S. (2022). Clinical development of metabolic inhibitors for oncology. Journal Clinical Investigacion, 132, e148550
202.
Zurück zum Zitat Steggerda, S. M., et al. (2017). Inhibition of arginase by CB-1158 blocks myeloid cell-mediated immune suppression in the tumor microenvironment. Journal for Immunotherapy of Cancer, 5, 101.PubMedPubMedCentralCrossRef Steggerda, S. M., et al. (2017). Inhibition of arginase by CB-1158 blocks myeloid cell-mediated immune suppression in the tumor microenvironment. Journal for Immunotherapy of Cancer, 5, 101.PubMedPubMedCentralCrossRef
203.
Zurück zum Zitat Naing, A., et al. (2019). Phase I study of the arginase inhibitor INCB001158 (1158) alone and in combination with pembrolizumab (PEM) in patients (Pts) with advanced/metastatic (adv/met) solid tumours. Annals of Oncology, 30, v160.CrossRef Naing, A., et al. (2019). Phase I study of the arginase inhibitor INCB001158 (1158) alone and in combination with pembrolizumab (PEM) in patients (Pts) with advanced/metastatic (adv/met) solid tumours. Annals of Oncology, 30, v160.CrossRef
204.
Zurück zum Zitat Niu, F., et al. (2022). Arginase: An emerging and promising therapeutic target for cancer treatment. Biomedicine & Pharmacotherapy, 149, 112840.CrossRef Niu, F., et al. (2022). Arginase: An emerging and promising therapeutic target for cancer treatment. Biomedicine & Pharmacotherapy, 149, 112840.CrossRef
205.
Zurück zum Zitat Fauskanger, M., Haabeth, O. A. W., Skjeldal, F. M., Bogen, B., & Tveita, A. A. (2018). Tumor killing by CD4(+) T cells is mediated via induction of inducible nitric oxide synthase-dependent macrophage cytotoxicity. Frontiers in Immunology, 9, 1684.PubMedPubMedCentralCrossRef Fauskanger, M., Haabeth, O. A. W., Skjeldal, F. M., Bogen, B., & Tveita, A. A. (2018). Tumor killing by CD4(+) T cells is mediated via induction of inducible nitric oxide synthase-dependent macrophage cytotoxicity. Frontiers in Immunology, 9, 1684.PubMedPubMedCentralCrossRef
206.
Zurück zum Zitat Chung, A. W., et al. (2021). A phase 1/2 clinical trial of the nitric oxide synthase inhibitor L-NMMA and taxane for treating chemoresistant triple-negative breast cancer. Science Translation Medicine, 13, eabj5070.CrossRef Chung, A. W., et al. (2021). A phase 1/2 clinical trial of the nitric oxide synthase inhibitor L-NMMA and taxane for treating chemoresistant triple-negative breast cancer. Science Translation Medicine, 13, eabj5070.CrossRef
207.
Zurück zum Zitat Carini, M., et al. (2004). Chemiluminescence and LC–MS/MS analyses for the study of nitric oxide release and distribution following oral administration of nitroaspirin (NCX 4016) in healthy volunteers. Journal of Pharmaceutical and Biomedical Analysis, 35, 277–287.PubMedCrossRef Carini, M., et al. (2004). Chemiluminescence and LC–MS/MS analyses for the study of nitric oxide release and distribution following oral administration of nitroaspirin (NCX 4016) in healthy volunteers. Journal of Pharmaceutical and Biomedical Analysis, 35, 277–287.PubMedCrossRef
208.
Zurück zum Zitat Chang, K., et al. (2004). Nitric oxide suppresses inducible nitric oxide synthase expression by inhibiting post-translational modification of IkappaB. Experimental & Molecular Medicine, 36, 311–324.CrossRef Chang, K., et al. (2004). Nitric oxide suppresses inducible nitric oxide synthase expression by inhibiting post-translational modification of IkappaB. Experimental & Molecular Medicine, 36, 311–324.CrossRef
209.
Zurück zum Zitat De Santo, C., et al. (2005). Nitroaspirin corrects immune dysfunction in tumor-bearing hosts and promotes tumor eradication by cancer vaccination. Proc Natl Acad Sci U S A, 102, 4185–4190.PubMedPubMedCentralCrossRef De Santo, C., et al. (2005). Nitroaspirin corrects immune dysfunction in tumor-bearing hosts and promotes tumor eradication by cancer vaccination. Proc Natl Acad Sci U S A, 102, 4185–4190.PubMedPubMedCentralCrossRef
210.
Zurück zum Zitat Fiorucci, S., et al. (2004). Co-administration of nitric oxide-aspirin (NCX-4016) and aspirin prevents platelet and monocyte activation and protects against gastric damage induced by aspirin in humans. Journal of the American College of Cardiology, 44, 635–641.PubMedCrossRef Fiorucci, S., et al. (2004). Co-administration of nitric oxide-aspirin (NCX-4016) and aspirin prevents platelet and monocyte activation and protects against gastric damage induced by aspirin in humans. Journal of the American College of Cardiology, 44, 635–641.PubMedCrossRef
211.
Zurück zum Zitat Li, W., et al. (2016). G-CSF is a key modulator of MDSC and could be a potential therapeutic target in colitis-associated colorectal cancers. Protein & Cell, 7, 130–140.CrossRef Li, W., et al. (2016). G-CSF is a key modulator of MDSC and could be a potential therapeutic target in colitis-associated colorectal cancers. Protein & Cell, 7, 130–140.CrossRef
212.
Zurück zum Zitat Cannarile, M. A., et al. (2017). Colony-stimulating factor 1 receptor (CSF1R) inhibitors in cancer therapy. Journal for Immunotherapy of Cancer, 5, 53.PubMedPubMedCentralCrossRef Cannarile, M. A., et al. (2017). Colony-stimulating factor 1 receptor (CSF1R) inhibitors in cancer therapy. Journal for Immunotherapy of Cancer, 5, 53.PubMedPubMedCentralCrossRef
213.
Zurück zum Zitat Edwards, DKt., et al. (2019). CSF1R inhibitors exhibit antitumor activity in acute myeloid leukemia by blocking paracrine signals from support cells. Blood, 133, 588–599.PubMedPubMedCentralCrossRef Edwards, DKt., et al. (2019). CSF1R inhibitors exhibit antitumor activity in acute myeloid leukemia by blocking paracrine signals from support cells. Blood, 133, 588–599.PubMedPubMedCentralCrossRef
214.
Zurück zum Zitat Apodaca, M. C., et al. (2019). Characterization of a whole blood assay for quantifying myeloid-derived suppressor cells. Journal for Immunotherapy of Cancer, 7, 230.PubMedPubMedCentralCrossRef Apodaca, M. C., et al. (2019). Characterization of a whole blood assay for quantifying myeloid-derived suppressor cells. Journal for Immunotherapy of Cancer, 7, 230.PubMedPubMedCentralCrossRef
215.
Zurück zum Zitat Tsukada, N., Burger, J. A., Zvaifler, N. J., & Kipps, T. J. (2002). Distinctive features of “nurselike” cells that differentiate in the context of chronic lymphocytic leukemia. Blood, 99, 1030–1037.PubMedCrossRef Tsukada, N., Burger, J. A., Zvaifler, N. J., & Kipps, T. J. (2002). Distinctive features of “nurselike” cells that differentiate in the context of chronic lymphocytic leukemia. Blood, 99, 1030–1037.PubMedCrossRef
216.
Zurück zum Zitat Edwards, V. D., et al. (2018). Targeting of colony-stimulating factor 1 receptor (CSF1R) in the CLL microenvironment yields antineoplastic activity in primary patient samples. Oncotarget, 9, 24576–24589.CrossRef Edwards, V. D., et al. (2018). Targeting of colony-stimulating factor 1 receptor (CSF1R) in the CLL microenvironment yields antineoplastic activity in primary patient samples. Oncotarget, 9, 24576–24589.CrossRef
217.
Zurück zum Zitat Curfs, J. H., Meis, J. F., & Hoogkamp-Korstanje, J. A. (1997). A primer on cytokines: Sources, receptors, effects, and inducers. Clinical Microbiology Reviews, 10, 742–780.PubMedPubMedCentralCrossRef Curfs, J. H., Meis, J. F., & Hoogkamp-Korstanje, J. A. (1997). A primer on cytokines: Sources, receptors, effects, and inducers. Clinical Microbiology Reviews, 10, 742–780.PubMedPubMedCentralCrossRef
218.
Zurück zum Zitat Wesolowski, R., et al. (2019). Phase Ib study of the combination of pexidartinib (PLX3397), a CSF-1R inhibitor, and paclitaxel in patients with advanced solid tumors. Therapeutic Advances in Medical Oncology, 11, 1758835919854238.PubMedPubMedCentralCrossRef Wesolowski, R., et al. (2019). Phase Ib study of the combination of pexidartinib (PLX3397), a CSF-1R inhibitor, and paclitaxel in patients with advanced solid tumors. Therapeutic Advances in Medical Oncology, 11, 1758835919854238.PubMedPubMedCentralCrossRef
219.
Zurück zum Zitat Olingy, C. E., Dinh, H. Q., & Hedrick, C. C. (2019). Monocyte heterogeneity and functions in cancer. Journal of Leukocyte Biology, 106, 309–322.PubMedCrossRef Olingy, C. E., Dinh, H. Q., & Hedrick, C. C. (2019). Monocyte heterogeneity and functions in cancer. Journal of Leukocyte Biology, 106, 309–322.PubMedCrossRef
220.
Zurück zum Zitat Butowski, N., et al. (2016). Orally administered colony stimulating factor 1 receptor inhibitor PLX3397 in recurrent glioblastoma: An Ivy Foundation Early Phase Clinical Trials Consortium phase II study. Neuro-Oncology, 18, 557–564.PubMedCrossRef Butowski, N., et al. (2016). Orally administered colony stimulating factor 1 receptor inhibitor PLX3397 in recurrent glioblastoma: An Ivy Foundation Early Phase Clinical Trials Consortium phase II study. Neuro-Oncology, 18, 557–564.PubMedCrossRef
221.
Zurück zum Zitat Dewar, A. L., et al. (2005). Macrophage colony-stimulating factor receptor c-fms is a novel target of imatinib. Blood, 105, 3127–3132.PubMedCrossRef Dewar, A. L., et al. (2005). Macrophage colony-stimulating factor receptor c-fms is a novel target of imatinib. Blood, 105, 3127–3132.PubMedCrossRef
222.
Zurück zum Zitat Giallongo, C., et al. (2018). Monocytic myeloid-derived suppressor cells as prognostic factor in chronic myeloid leukaemia patients treated with dasatinib. Journal of Cellular and Molecular Medicine, 22, 1070–1080.PubMed Giallongo, C., et al. (2018). Monocytic myeloid-derived suppressor cells as prognostic factor in chronic myeloid leukaemia patients treated with dasatinib. Journal of Cellular and Molecular Medicine, 22, 1070–1080.PubMed
223.
Zurück zum Zitat Hines, S. L., et al. (2010). Zoledronic acid for treatment of osteopenia and osteoporosis in women with primary breast cancer undergoing adjuvant aromatase inhibitor therapy. Breast, 19, 92–96.PubMedCrossRef Hines, S. L., et al. (2010). Zoledronic acid for treatment of osteopenia and osteoporosis in women with primary breast cancer undergoing adjuvant aromatase inhibitor therapy. Breast, 19, 92–96.PubMedCrossRef
224.
Zurück zum Zitat Coleman, R., et al. (2014). Adjuvant zoledronic acid in patients with early breast cancer: Final efficacy analysis of the AZURE (BIG 01/04) randomised open-label phase 3 trial. The Lancet Oncology, 15, 997–1006.PubMedCrossRef Coleman, R., et al. (2014). Adjuvant zoledronic acid in patients with early breast cancer: Final efficacy analysis of the AZURE (BIG 01/04) randomised open-label phase 3 trial. The Lancet Oncology, 15, 997–1006.PubMedCrossRef
225.
Zurück zum Zitat Melani, C., Sangaletti, S., Barazzetta, F. M., Werb, Z., & Colombo, M. P. (2007). Amino-biphosphonate-mediated MMP-9 inhibition breaks the tumor-bone marrow axis responsible for myeloid-derived suppressor cell expansion and macrophage infiltration in tumor stroma. Cancer Research, 67, 11438–11446.PubMedPubMedCentralCrossRef Melani, C., Sangaletti, S., Barazzetta, F. M., Werb, Z., & Colombo, M. P. (2007). Amino-biphosphonate-mediated MMP-9 inhibition breaks the tumor-bone marrow axis responsible for myeloid-derived suppressor cell expansion and macrophage infiltration in tumor stroma. Cancer Research, 67, 11438–11446.PubMedPubMedCentralCrossRef
226.
Zurück zum Zitat Porembka, M. R., et al. (2012). Pancreatic adenocarcinoma induces bone marrow mobilization of myeloid-derived suppressor cells which promote primary tumor growth. Cancer Immunology, Immunotherapy, 61, 1373–1385.PubMedCrossRef Porembka, M. R., et al. (2012). Pancreatic adenocarcinoma induces bone marrow mobilization of myeloid-derived suppressor cells which promote primary tumor growth. Cancer Immunology, Immunotherapy, 61, 1373–1385.PubMedCrossRef
227.
Zurück zum Zitat Sanford, D. E., et al. (2013). A study of zoledronic acid as neo-adjuvant, perioperative therapy in patients with resectable pancreatic ductal adenocarcinoma. Journal of Cancer Therapy, 4, 797–803.PubMedPubMedCentralCrossRef Sanford, D. E., et al. (2013). A study of zoledronic acid as neo-adjuvant, perioperative therapy in patients with resectable pancreatic ductal adenocarcinoma. Journal of Cancer Therapy, 4, 797–803.PubMedPubMedCentralCrossRef
228.
Zurück zum Zitat Molina-Cerrillo, J., Alonso-Gordoa, T., Gajate, P., & Grande, E. (2017). Bruton’s tyrosine kinase (BTK) as a promising target in solid tumors. Cancer Treatment Reviews, 58, 41–50.PubMedCrossRef Molina-Cerrillo, J., Alonso-Gordoa, T., Gajate, P., & Grande, E. (2017). Bruton’s tyrosine kinase (BTK) as a promising target in solid tumors. Cancer Treatment Reviews, 58, 41–50.PubMedCrossRef
229.
Zurück zum Zitat Stiff, A., et al. (2016). Myeloid-derived suppressor cells express Bruton’s tyrosine kinase and can be depleted in tumor-bearing hosts by ibrutinib treatment. Cancer Research, 76, 2125–2136.PubMedPubMedCentralCrossRef Stiff, A., et al. (2016). Myeloid-derived suppressor cells express Bruton’s tyrosine kinase and can be depleted in tumor-bearing hosts by ibrutinib treatment. Cancer Research, 76, 2125–2136.PubMedPubMedCentralCrossRef
230.
Zurück zum Zitat Ferrer, G., et al. (2018). Ibrutinib treatment reduces myeloid derived suppressor cell numbers and function in chronic lymphocytic leukemia. Blood, 132, 239–239.CrossRef Ferrer, G., et al. (2018). Ibrutinib treatment reduces myeloid derived suppressor cell numbers and function in chronic lymphocytic leukemia. Blood, 132, 239–239.CrossRef
231.
Zurück zum Zitat Tempero, M., et al. (2019). Ibrutinib in combination with nab-paclitaxel and gemcitabine as first-line treatment for patients with metastatic pancreatic adenocarcinoma: Results from the phase 3 RESOLVE study. Annals of Oncology, 30, iv126.CrossRef Tempero, M., et al. (2019). Ibrutinib in combination with nab-paclitaxel and gemcitabine as first-line treatment for patients with metastatic pancreatic adenocarcinoma: Results from the phase 3 RESOLVE study. Annals of Oncology, 30, iv126.CrossRef
232.
Zurück zum Zitat Metzler, J. M., Burla, L., Fink, D., & Imesch, P. (2020). Ibrutinib in gynecological malignancies and breast cancer: A systematic review. International Journal of Molecular Sciences, 21, 4154.PubMedPubMedCentralCrossRef Metzler, J. M., Burla, L., Fink, D., & Imesch, P. (2020). Ibrutinib in gynecological malignancies and breast cancer: A systematic review. International Journal of Molecular Sciences, 21, 4154.PubMedPubMedCentralCrossRef
233.
Zurück zum Zitat Hong, D., et al. (2019). A phase 1b/2 study of the Bruton tyrosine kinase inhibitor ibrutinib and the PD-L1 inhibitor durvalumab in patients with pretreated solid tumors. Oncology, 97, 102–111.PubMedCrossRef Hong, D., et al. (2019). A phase 1b/2 study of the Bruton tyrosine kinase inhibitor ibrutinib and the PD-L1 inhibitor durvalumab in patients with pretreated solid tumors. Oncology, 97, 102–111.PubMedCrossRef
234.
Zurück zum Zitat Al-Toubah, T., et al. (2020). A phase ii study of ibrutinib in advanced neuroendocrine neoplasms. Neuroendocrinology, 110, 377–383.PubMedCrossRef Al-Toubah, T., et al. (2020). A phase ii study of ibrutinib in advanced neuroendocrine neoplasms. Neuroendocrinology, 110, 377–383.PubMedCrossRef
235.
Zurück zum Zitat Benner, B., et al. (2020). A pilot study of Bruton’s tyrosine kinase inhibitor ibrutinib alone and in combination with PD-1 inhibitor nivolumab in patients with metastatic solid tumors. Journal of Clinical Oncology, 38, 3111–3111.CrossRef Benner, B., et al. (2020). A pilot study of Bruton’s tyrosine kinase inhibitor ibrutinib alone and in combination with PD-1 inhibitor nivolumab in patients with metastatic solid tumors. Journal of Clinical Oncology, 38, 3111–3111.CrossRef
236.
237.
Zurück zum Zitat Zhu, S., et al. (2021). Clinical trials of the BTK inhibitors ibrutinib and acalabrutinib in human diseases beyond B cell malignancies. Frontiers in Oncology, 11, 737943.PubMedPubMedCentralCrossRef Zhu, S., et al. (2021). Clinical trials of the BTK inhibitors ibrutinib and acalabrutinib in human diseases beyond B cell malignancies. Frontiers in Oncology, 11, 737943.PubMedPubMedCentralCrossRef
238.
Zurück zum Zitat Yokochi, S., et al. (2001). An anti-inflammatory drug, propagermanium, may target GPI-anchored proteins associated with an MCP-1 receptor, CCR2. Journal of Interferon and Cytokine Research, 21, 389–398.PubMedCrossRef Yokochi, S., et al. (2001). An anti-inflammatory drug, propagermanium, may target GPI-anchored proteins associated with an MCP-1 receptor, CCR2. Journal of Interferon and Cytokine Research, 21, 389–398.PubMedCrossRef
239.
Zurück zum Zitat Masuda, T., et al. (2020). Phase I dose-escalation trial to repurpose propagermanium, an oral CCL2 inhibitor, in patients with breast cancer. Cancer Science, 111, 924–931.PubMedPubMedCentralCrossRef Masuda, T., et al. (2020). Phase I dose-escalation trial to repurpose propagermanium, an oral CCL2 inhibitor, in patients with breast cancer. Cancer Science, 111, 924–931.PubMedPubMedCentralCrossRef
240.
Zurück zum Zitat Tobin, R. P., et al. (2019). IL-6 and IL-8 are linked with myeloid-derived suppressor cell accumulation and correlate with poor clinical outcomes in melanoma patients. Frontiers in Oncology, 9, 1223.PubMedPubMedCentralCrossRef Tobin, R. P., et al. (2019). IL-6 and IL-8 are linked with myeloid-derived suppressor cell accumulation and correlate with poor clinical outcomes in melanoma patients. Frontiers in Oncology, 9, 1223.PubMedPubMedCentralCrossRef
241.
Zurück zum Zitat Bilusic, M., et al. (2019). Phase I trial of HuMax-IL8 (BMS-986253), an anti-IL-8 monoclonal antibody, in patients with metastatic or unresectable solid tumors. Journal for Immunotherapy of Cancer, 7, 240.PubMedPubMedCentralCrossRef Bilusic, M., et al. (2019). Phase I trial of HuMax-IL8 (BMS-986253), an anti-IL-8 monoclonal antibody, in patients with metastatic or unresectable solid tumors. Journal for Immunotherapy of Cancer, 7, 240.PubMedPubMedCentralCrossRef
242.
Zurück zum Zitat Dominguez, C., McCampbell, K. K., David, J. M., & Palena, C. (2017). Neutralization of IL-8 decreases tumor PMN-MDSCs and reduces mesenchymalization of claudin-low triple-negative breast cancer. JCI Insight, 2: e94296 Dominguez, C., McCampbell, K. K., David, J. M., & Palena, C. (2017). Neutralization of IL-8 decreases tumor PMN-MDSCs and reduces mesenchymalization of claudin-low triple-negative breast cancer. JCI Insight, 2: e94296
243.
Zurück zum Zitat Bockorny, B., et al. (2020). BL-8040, a CXCR4 antagonist, in combination with pembrolizumab and chemotherapy for pancreatic cancer: The COMBAT trial. Nature Medicine, 26, 878–885.PubMedCrossRef Bockorny, B., et al. (2020). BL-8040, a CXCR4 antagonist, in combination with pembrolizumab and chemotherapy for pancreatic cancer: The COMBAT trial. Nature Medicine, 26, 878–885.PubMedCrossRef
244.
Zurück zum Zitat Ghobrial, I. M., et al. (2020). A phase ib/ii trial of the first-in-class anti-CXCR4 antibody ulocuplumab in combination with lenalidomide or bortezomib plus dexamethasone in relapsed multiple myeloma. Clinical Cancer Research, 26, 344–353.PubMedCrossRef Ghobrial, I. M., et al. (2020). A phase ib/ii trial of the first-in-class anti-CXCR4 antibody ulocuplumab in combination with lenalidomide or bortezomib plus dexamethasone in relapsed multiple myeloma. Clinical Cancer Research, 26, 344–353.PubMedCrossRef
245.
Zurück zum Zitat Katoh, H., et al. (2013). CXCR2-expressing myeloid-derived suppressor cells are essential to promote colitis-associated tumorigenesis. Cancer Cell, 24, 631–644.PubMedPubMedCentralCrossRef Katoh, H., et al. (2013). CXCR2-expressing myeloid-derived suppressor cells are essential to promote colitis-associated tumorigenesis. Cancer Cell, 24, 631–644.PubMedPubMedCentralCrossRef
246.
Zurück zum Zitat Steele, C. W., et al. (2016). CXCR2 inhibition profoundly suppresses metastases and augments immunotherapy in pancreatic ductal adenocarcinoma. Cancer Cell, 29, 832–845.PubMedPubMedCentralCrossRef Steele, C. W., et al. (2016). CXCR2 inhibition profoundly suppresses metastases and augments immunotherapy in pancreatic ductal adenocarcinoma. Cancer Cell, 29, 832–845.PubMedPubMedCentralCrossRef
247.
Zurück zum Zitat Park, K., Veena, M. S., & Shin, D. S. (2022). Key players of the immunosuppressive tumor microenvironment and emerging therapeutic strategies. Front Cell Dev Biol, 10, 830208.PubMedPubMedCentralCrossRef Park, K., Veena, M. S., & Shin, D. S. (2022). Key players of the immunosuppressive tumor microenvironment and emerging therapeutic strategies. Front Cell Dev Biol, 10, 830208.PubMedPubMedCentralCrossRef
248.
Zurück zum Zitat Greene, S., et al. (2020). Inhibition of MDSC trafficking with SX-682, a CXCR1/2 inhibitor, enhances NK-cell immunotherapy in head and neck cancer models. Clinical Cancer Research, 26, 1420–1431.PubMedCrossRef Greene, S., et al. (2020). Inhibition of MDSC trafficking with SX-682, a CXCR1/2 inhibitor, enhances NK-cell immunotherapy in head and neck cancer models. Clinical Cancer Research, 26, 1420–1431.PubMedCrossRef
249.
Zurück zum Zitat Goldstein, L. J., et al. (2020). A window-of-opportunity trial of the CXCR1/2 inhibitor reparixin in operable HER-2-negative breast cancer. Breast Cancer Research, 22, 4.PubMedPubMedCentralCrossRef Goldstein, L. J., et al. (2020). A window-of-opportunity trial of the CXCR1/2 inhibitor reparixin in operable HER-2-negative breast cancer. Breast Cancer Research, 22, 4.PubMedPubMedCentralCrossRef
250.
Zurück zum Zitat Schott, A. F., et al. (2017). Phase Ib pilot study to evaluate reparixin in combination with weekly paclitaxel in patients with HER-2-negative metastatic breast cancer. Clinical Cancer Research, 23, 5358–5365.PubMedPubMedCentralCrossRef Schott, A. F., et al. (2017). Phase Ib pilot study to evaluate reparixin in combination with weekly paclitaxel in patients with HER-2-negative metastatic breast cancer. Clinical Cancer Research, 23, 5358–5365.PubMedPubMedCentralCrossRef
251.
Zurück zum Zitat Goldstein, L. J., et al. (2021). A randomized, placebo-controlled phase 2 study of paclitaxel in combination with reparixin compared to paclitaxel alone as front-line therapy for metastatic triple-negative breast cancer (fRida). Breast Cancer Research and Treatment, 190, 265–275.PubMedPubMedCentralCrossRef Goldstein, L. J., et al. (2021). A randomized, placebo-controlled phase 2 study of paclitaxel in combination with reparixin compared to paclitaxel alone as front-line therapy for metastatic triple-negative breast cancer (fRida). Breast Cancer Research and Treatment, 190, 265–275.PubMedPubMedCentralCrossRef
252.
Zurück zum Zitat Propper, D. J., & Balkwill, F. R. (2022). Harnessing cytokines and chemokines for cancer therapy. Nature Reviews. Clinical Oncology, 19, 237–253.PubMedCrossRef Propper, D. J., & Balkwill, F. R. (2022). Harnessing cytokines and chemokines for cancer therapy. Nature Reviews. Clinical Oncology, 19, 237–253.PubMedCrossRef
254.
Zurück zum Zitat Sinha, P., et al. (2008). Proinflammatory S100 proteins regulate the accumulation of myeloid-derived suppressor cells. The Journal of Immunology, 181, 4666–4675.PubMedCrossRef Sinha, P., et al. (2008). Proinflammatory S100 proteins regulate the accumulation of myeloid-derived suppressor cells. The Journal of Immunology, 181, 4666–4675.PubMedCrossRef
255.
Zurück zum Zitat Gupta, N., Al Ustwani, O., Shen, L., & Pili, R. (2014). Mechanism of action and clinical activity of tasquinimod in castrate-resistant prostate cancer. Oncology Targets Theraeutics, 7, 223–234. Gupta, N., Al Ustwani, O., Shen, L., & Pili, R. (2014). Mechanism of action and clinical activity of tasquinimod in castrate-resistant prostate cancer. Oncology Targets Theraeutics, 7, 223–234.
256.
Zurück zum Zitat Shen, L., & Pili, R. (2019). Tasquinimod targets suppressive myeloid cells in the tumor microenvironment. Oncoimmunology, 8, e1072672.PubMedCrossRef Shen, L., & Pili, R. (2019). Tasquinimod targets suppressive myeloid cells in the tumor microenvironment. Oncoimmunology, 8, e1072672.PubMedCrossRef
257.
Zurück zum Zitat Armstrong, A. J., et al. (2013). Long-term survival and biomarker correlates of tasquinimod efficacy in a multicenter randomized study of men with minimally symptomatic metastatic castration-resistant prostate cancer. Clinical Cancer Research, 19, 6891–6901.PubMedPubMedCentralCrossRef Armstrong, A. J., et al. (2013). Long-term survival and biomarker correlates of tasquinimod efficacy in a multicenter randomized study of men with minimally symptomatic metastatic castration-resistant prostate cancer. Clinical Cancer Research, 19, 6891–6901.PubMedPubMedCentralCrossRef
258.
Zurück zum Zitat Sternberg, C., et al. (2016). Randomized, double-blind, placebo-controlled phase iii study of tasquinimod in men with metastatic castration-resistant prostate cancer. Journal of Clinical Oncology, 34, 2636–2643.PubMedCrossRef Sternberg, C., et al. (2016). Randomized, double-blind, placebo-controlled phase iii study of tasquinimod in men with metastatic castration-resistant prostate cancer. Journal of Clinical Oncology, 34, 2636–2643.PubMedCrossRef
259.
Zurück zum Zitat Eksioglu, E. A., et al. (2017). Novel therapeutic approach to improve hematopoiesis in low risk MDS by targeting MDSCs with the Fc-engineered CD33 antibody BI 836858. Leukemia, 31, 2172–2180.PubMedPubMedCentralCrossRef Eksioglu, E. A., et al. (2017). Novel therapeutic approach to improve hematopoiesis in low risk MDS by targeting MDSCs with the Fc-engineered CD33 antibody BI 836858. Leukemia, 31, 2172–2180.PubMedPubMedCentralCrossRef
260.
Zurück zum Zitat Laszlo, G. S., Estey, E. H., & Walter, R. B. (2014). The past and future of CD33 as therapeutic target in acute myeloid leukemia. Blood Reviews, 28, 143–153.PubMedCrossRef Laszlo, G. S., Estey, E. H., & Walter, R. B. (2014). The past and future of CD33 as therapeutic target in acute myeloid leukemia. Blood Reviews, 28, 143–153.PubMedCrossRef
261.
Zurück zum Zitat Liu, Y., Bewersdorf, J. P., Stahl, M., & Zeidan, A. M. (2019). Immunotherapy in acute myeloid leukemia and myelodysplastic syndromes: The dawn of a new era? Blood Reviews, 34, 67–83.PubMedCrossRef Liu, Y., Bewersdorf, J. P., Stahl, M., & Zeidan, A. M. (2019). Immunotherapy in acute myeloid leukemia and myelodysplastic syndromes: The dawn of a new era? Blood Reviews, 34, 67–83.PubMedCrossRef
262.
Zurück zum Zitat Cheng, P., et al. (2022). Immunodepletion of MDSC by AMV564, a novel bivalent, bispecific CD33/CD3 T cell engager, ex vivo in MDS and melanoma. Molecular Therapy, 30, 2315–2326.PubMedCrossRef Cheng, P., et al. (2022). Immunodepletion of MDSC by AMV564, a novel bivalent, bispecific CD33/CD3 T cell engager, ex vivo in MDS and melanoma. Molecular Therapy, 30, 2315–2326.PubMedCrossRef
263.
Zurück zum Zitat Warrell, R. P., Jr., et al. (1991). Differentiation therapy of acute promyelocytic leukemia with tretinoin (all-trans-retinoic acid). New England Journal of Medicine, 324, 1385–1393.PubMedCrossRef Warrell, R. P., Jr., et al. (1991). Differentiation therapy of acute promyelocytic leukemia with tretinoin (all-trans-retinoic acid). New England Journal of Medicine, 324, 1385–1393.PubMedCrossRef
264.
Zurück zum Zitat Nefedova, Y., et al. (2007). Mechanism of all-trans retinoic acid effect on tumor-associated myeloid-derived suppressor cells. Cancer Research, 67, 11021–11028.PubMedCrossRef Nefedova, Y., et al. (2007). Mechanism of all-trans retinoic acid effect on tumor-associated myeloid-derived suppressor cells. Cancer Research, 67, 11021–11028.PubMedCrossRef
265.
Zurück zum Zitat Mirza, N., et al. (2006). <em>All-trans</em>-retinoic acid improves differentiation of myeloid cells and immune response in cancer patients. Cancer Research, 66, 9299–9307.PubMedPubMedCentralCrossRef Mirza, N., et al. (2006). <em>All-trans</em>-retinoic acid improves differentiation of myeloid cells and immune response in cancer patients. Cancer Research, 66, 9299–9307.PubMedPubMedCentralCrossRef
266.
Zurück zum Zitat Nefedova, Y., et al. (2007). Mechanism of all-<em>trans</em> retinoic acid effect on tumor-associated myeloid-derived suppressor cells. Cancer Research, 67, 11021–11028.PubMedCrossRef Nefedova, Y., et al. (2007). Mechanism of all-<em>trans</em> retinoic acid effect on tumor-associated myeloid-derived suppressor cells. Cancer Research, 67, 11021–11028.PubMedCrossRef
267.
Zurück zum Zitat Tobin, R. P., et al. (2018). Targeting myeloid-derived suppressor cells using all-trans retinoic acid in melanoma patients treated with Ipilimumab. International Immunopharmacology, 63, 282–291.PubMedPubMedCentralCrossRef Tobin, R. P., et al. (2018). Targeting myeloid-derived suppressor cells using all-trans retinoic acid in melanoma patients treated with Ipilimumab. International Immunopharmacology, 63, 282–291.PubMedPubMedCentralCrossRef
268.
Zurück zum Zitat Liu, W., et al. (2018). The anti-inflammatory effects of vitamin D in tumorigenesis. International Journal Molecular Science, 19, 2736.CrossRef Liu, W., et al. (2018). The anti-inflammatory effects of vitamin D in tumorigenesis. International Journal Molecular Science, 19, 2736.CrossRef
269.
Zurück zum Zitat Walsh, J. E., Clark, A.-M., Day, T. A., Gillespie, M. B., & Young, M. R. I. (2010). Use of α,25-dihydroxyvitamin D3 treatment to stimulate immune infiltration into head and neck squamous cell carcinoma. Human Immunology, 71, 659–665.PubMedPubMedCentralCrossRef Walsh, J. E., Clark, A.-M., Day, T. A., Gillespie, M. B., & Young, M. R. I. (2010). Use of α,25-dihydroxyvitamin D3 treatment to stimulate immune infiltration into head and neck squamous cell carcinoma. Human Immunology, 71, 659–665.PubMedPubMedCentralCrossRef
270.
Zurück zum Zitat Fleet, J. C., Burcham, G. N., Calvert, R., & Ratliff, T. L. (2019). Abstract 2364: 1α, 25 dihydroxyvitamin D (1,25(OH)<sub>2</sub>D) inhibits the T cell suppressive function of myeloid derived suppressor sells (MDSC). Cancer Research, 79, 2364–2364.CrossRef Fleet, J. C., Burcham, G. N., Calvert, R., & Ratliff, T. L. (2019). Abstract 2364: 1α, 25 dihydroxyvitamin D (1,25(OH)<sub>2</sub>D) inhibits the T cell suppressive function of myeloid derived suppressor sells (MDSC). Cancer Research, 79, 2364–2364.CrossRef
271.
Zurück zum Zitat Lathers, D. M. R., Clark, J. I., Achille, N. J., & Young, M. R. I. (2004). Phase 1B study to improve immune responses in head and neck cancer patients using escalating doses of 25-hydroxyvitamin D3. Cancer Immunology, Immunotherapy, 53, 422–430.PubMedCrossRef Lathers, D. M. R., Clark, J. I., Achille, N. J., & Young, M. R. I. (2004). Phase 1B study to improve immune responses in head and neck cancer patients using escalating doses of 25-hydroxyvitamin D3. Cancer Immunology, Immunotherapy, 53, 422–430.PubMedCrossRef
272.
Zurück zum Zitat Henderson Berg, M. H., Del Rincon, S. V. & Miller, W. H. (2022). Potential therapies for immune-related adverse events associated with immune checkpoint inhibition: From monoclonal antibodies to kinase inhibition. Journal Immunotherapy Cancer, 10, e003551 Henderson Berg, M. H., Del Rincon, S. V. & Miller, W. H. (2022). Potential therapies for immune-related adverse events associated with immune checkpoint inhibition: From monoclonal antibodies to kinase inhibition. Journal Immunotherapy Cancer, 10, e003551
273.
Zurück zum Zitat Liu, J. F., et al. (2018). Inhibition of JAK2/STAT3 reduces tumor-induced angiogenesis and myeloid-derived suppressor cells in head and neck cancer. Molecular Carcinogenesis, 57, 429–439.PubMedCrossRef Liu, J. F., et al. (2018). Inhibition of JAK2/STAT3 reduces tumor-induced angiogenesis and myeloid-derived suppressor cells in head and neck cancer. Molecular Carcinogenesis, 57, 429–439.PubMedCrossRef
274.
Zurück zum Zitat Parampalli Yajnanarayana, S., et al. (2015). JAK1/2 inhibition impairs T cell function in vitro and in patients with myeloproliferative neoplasms. British Journal of Haematology, 169, 824–833.PubMedCrossRef Parampalli Yajnanarayana, S., et al. (2015). JAK1/2 inhibition impairs T cell function in vitro and in patients with myeloproliferative neoplasms. British Journal of Haematology, 169, 824–833.PubMedCrossRef
275.
Zurück zum Zitat Giaccone, G., et al. (2018). A placebo-controlled phase ii study of ruxolitinib in combination with pemetrexed and cisplatin for first-line treatment of patients with advanced nonsquamous non–small-cell lung cancer and systemic inflammation. Clinical Lung Cancer, 19, e567–e574.PubMedCrossRef Giaccone, G., et al. (2018). A placebo-controlled phase ii study of ruxolitinib in combination with pemetrexed and cisplatin for first-line treatment of patients with advanced nonsquamous non–small-cell lung cancer and systemic inflammation. Clinical Lung Cancer, 19, e567–e574.PubMedCrossRef
276.
Zurück zum Zitat Hurwitz, H. I., et al. (2015). Randomized, double-blind, phase ii study of ruxolitinib or placebo in combination with capecitabine in patients with metastatic pancreatic cancer for whom therapy with gemcitabine has failed. Journal of Clinical Oncology, 33, 4039–4047.PubMedPubMedCentralCrossRef Hurwitz, H. I., et al. (2015). Randomized, double-blind, phase ii study of ruxolitinib or placebo in combination with capecitabine in patients with metastatic pancreatic cancer for whom therapy with gemcitabine has failed. Journal of Clinical Oncology, 33, 4039–4047.PubMedPubMedCentralCrossRef
277.
Zurück zum Zitat Verstovsek, S., et al. (2012). A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. New England Journal of Medicine, 366, 799–807.PubMedCrossRef Verstovsek, S., et al. (2012). A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. New England Journal of Medicine, 366, 799–807.PubMedCrossRef
278.
Zurück zum Zitat de Haas, N., de Koning, C., Spilgies, L., de Vries, I. J. M., & Hato, S. V. (2016). Improving cancer immunotherapy by targeting the STATe of MDSCs. OncoImmunology, 5, e1196312.PubMedPubMedCentralCrossRef de Haas, N., de Koning, C., Spilgies, L., de Vries, I. J. M., & Hato, S. V. (2016). Improving cancer immunotherapy by targeting the STATe of MDSCs. OncoImmunology, 5, e1196312.PubMedPubMedCentralCrossRef
279.
Zurück zum Zitat Motzer, R. J., Escudier, B., Gannon, A., & Figlin, R. A. (2017). Sunitinib: Ten years of successful clinical use and study in advanced renal cell carcinoma. The Oncologist, 22, 41–52.PubMedCrossRef Motzer, R. J., Escudier, B., Gannon, A., & Figlin, R. A. (2017). Sunitinib: Ten years of successful clinical use and study in advanced renal cell carcinoma. The Oncologist, 22, 41–52.PubMedCrossRef
280.
Zurück zum Zitat Finke, J., et al. (2011). MDSC as a mechanism of tumor escape from sunitinib mediated anti-angiogenic therapy. International Immunopharmacology, 11, 856–861.PubMedCrossRef Finke, J., et al. (2011). MDSC as a mechanism of tumor escape from sunitinib mediated anti-angiogenic therapy. International Immunopharmacology, 11, 856–861.PubMedCrossRef
281.
Zurück zum Zitat Jonasch, E. (2019). NCCN guidelines updates: Management of metastatic kidney cancer. Journal of the National Comprehensive Cancer Network, 17, 587–589.PubMed Jonasch, E. (2019). NCCN guidelines updates: Management of metastatic kidney cancer. Journal of the National Comprehensive Cancer Network, 17, 587–589.PubMed
282.
Zurück zum Zitat Ko, J. S., et al. (2009). Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients. Clinical Cancer Research, 15, 2148–2157.PubMedCrossRef Ko, J. S., et al. (2009). Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients. Clinical Cancer Research, 15, 2148–2157.PubMedCrossRef
283.
Zurück zum Zitat Chen, H. M., et al. (2015). Myeloid-derived suppressor cells as an immune parameter in patients with concurrent sunitinib and stereotactic body radiotherapy. Clinical Cancer Research, 21, 4073–4085.PubMedPubMedCentralCrossRef Chen, H. M., et al. (2015). Myeloid-derived suppressor cells as an immune parameter in patients with concurrent sunitinib and stereotactic body radiotherapy. Clinical Cancer Research, 21, 4073–4085.PubMedPubMedCentralCrossRef
284.
Zurück zum Zitat French, J. D., et al. (2012). Programmed death-1+ T cells and regulatory T cells are enriched in tumor-involved lymph nodes and associated with aggressive features in papillary thyroid cancer. Journal of Clinical Endocrinology and Metabolism, 97, E934-943.PubMedPubMedCentralCrossRef French, J. D., et al. (2012). Programmed death-1+ T cells and regulatory T cells are enriched in tumor-involved lymph nodes and associated with aggressive features in papillary thyroid cancer. Journal of Clinical Endocrinology and Metabolism, 97, E934-943.PubMedPubMedCentralCrossRef
285.
Zurück zum Zitat Severson, J. J., et al. (2015). PD-1+Tim-3+ CD8+ T lymphocytes display varied degrees of functional exhaustion in patients with regionally metastatic differentiated thyroid cancer. Cancer Immunology Research, 3, 620–630.PubMedPubMedCentralCrossRef Severson, J. J., et al. (2015). PD-1+Tim-3+ CD8+ T lymphocytes display varied degrees of functional exhaustion in patients with regionally metastatic differentiated thyroid cancer. Cancer Immunology Research, 3, 620–630.PubMedPubMedCentralCrossRef
286.
Zurück zum Zitat Huse, M. (2009). The T-cell-receptor signaling network. Journal of Cell Science, 122, 1269–1273.PubMedCrossRef Huse, M. (2009). The T-cell-receptor signaling network. Journal of Cell Science, 122, 1269–1273.PubMedCrossRef
287.
288.
289.
Zurück zum Zitat Robert, C., et al. (2011). Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. New England Journal of Medicine, 364, 2517–2526.PubMedCrossRef Robert, C., et al. (2011). Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. New England Journal of Medicine, 364, 2517–2526.PubMedCrossRef
290.
Zurück zum Zitat Martens, A., et al. (2016). Baseline peripheral blood biomarkers associated with clinical outcome of advanced melanoma patients treated with ipilimumab. Clinical Cancer Research, 22, 2908–2918.PubMedPubMedCentralCrossRef Martens, A., et al. (2016). Baseline peripheral blood biomarkers associated with clinical outcome of advanced melanoma patients treated with ipilimumab. Clinical Cancer Research, 22, 2908–2918.PubMedPubMedCentralCrossRef
291.
Zurück zum Zitat Gebhardt, C., et al. (2015). Myeloid cells and related chronic inflammatory factors as novel predictive markers in melanoma treatment with ipilimumab. Clinical Cancer Research, 21, 5453–5459.PubMedCrossRef Gebhardt, C., et al. (2015). Myeloid cells and related chronic inflammatory factors as novel predictive markers in melanoma treatment with ipilimumab. Clinical Cancer Research, 21, 5453–5459.PubMedCrossRef
292.
Zurück zum Zitat de Coaña, Y. P., et al. (2013). Ipilimumab treatment results in an early decrease in the frequency of circulating granulocytic myeloid-derived suppressor cells as well as their arginase1 production. Cancer Immunology Research, 1, 158–162.CrossRef de Coaña, Y. P., et al. (2013). Ipilimumab treatment results in an early decrease in the frequency of circulating granulocytic myeloid-derived suppressor cells as well as their arginase1 production. Cancer Immunology Research, 1, 158–162.CrossRef
293.
Zurück zum Zitat Pico de Coaña, Y., Masucci, G., Hansson, J., & Kiessling, R. (2014). Myeloid-derived suppressor cells and their role in CTLA-4 blockade therapy. Cancer Immunology, Immunotherapy, 63, 977–983.PubMedCrossRef Pico de Coaña, Y., Masucci, G., Hansson, J., & Kiessling, R. (2014). Myeloid-derived suppressor cells and their role in CTLA-4 blockade therapy. Cancer Immunology, Immunotherapy, 63, 977–983.PubMedCrossRef
294.
Zurück zum Zitat Pico de Coana, Y., et al. (2017). Ipilimumab treatment decreases monocytic MDSCs and increases CD8 effector memory T cells in long-term survivors with advanced melanoma. Oncotarget, 8, 21539.CrossRef Pico de Coana, Y., et al. (2017). Ipilimumab treatment decreases monocytic MDSCs and increases CD8 effector memory T cells in long-term survivors with advanced melanoma. Oncotarget, 8, 21539.CrossRef
295.
Zurück zum Zitat Meyer, C., et al. (2014). Frequencies of circulating MDSC correlate with clinical outcome of melanoma patients treated with ipilimumab. Cancer Immunology, Immunotherapy, 63, 247–257.PubMedCrossRef Meyer, C., et al. (2014). Frequencies of circulating MDSC correlate with clinical outcome of melanoma patients treated with ipilimumab. Cancer Immunology, Immunotherapy, 63, 247–257.PubMedCrossRef
296.
Zurück zum Zitat Tzeng, A., et al. (2018). Immunological correlates of response to immune checkpoint inhibitors in metastatic urothelial carcinoma. Targeted Oncology, 13, 599–609.PubMedCrossRef Tzeng, A., et al. (2018). Immunological correlates of response to immune checkpoint inhibitors in metastatic urothelial carcinoma. Targeted Oncology, 13, 599–609.PubMedCrossRef
297.
Zurück zum Zitat Highfill, S. L., et al. (2014). Disruption of CXCR2-mediated MDSC tumor trafficking enhances anti-PD1 efficacy. Sci Transl Med, 6, 237–267.CrossRef Highfill, S. L., et al. (2014). Disruption of CXCR2-mediated MDSC tumor trafficking enhances anti-PD1 efficacy. Sci Transl Med, 6, 237–267.CrossRef
298.
299.
Zurück zum Zitat Amarnath, S., et al. (2011). The PDL1-PD1 axis converts human TH1 cells into regulatory T cells. Sci Transl Med, 3, 111–120.CrossRef Amarnath, S., et al. (2011). The PDL1-PD1 axis converts human TH1 cells into regulatory T cells. Sci Transl Med, 3, 111–120.CrossRef
300.
Zurück zum Zitat Naimi, A., et al. (2022). Tumor immunotherapies by immune checkpoint inhibitors (ICIs); the pros and cons. Cell Communication and Signaling: CCS, 20, 44.PubMedPubMedCentralCrossRef Naimi, A., et al. (2022). Tumor immunotherapies by immune checkpoint inhibitors (ICIs); the pros and cons. Cell Communication and Signaling: CCS, 20, 44.PubMedPubMedCentralCrossRef
301.
Zurück zum Zitat Andrews, L. P., et al. (2022). Molecular pathways and mechanisms of LAG-3 in cancer therapy. Clinical Cancer Research, 28, 5030.PubMedCrossRef Andrews, L. P., et al. (2022). Molecular pathways and mechanisms of LAG-3 in cancer therapy. Clinical Cancer Research, 28, 5030.PubMedCrossRef
302.
Zurück zum Zitat Toor, S. M., & Elkord, E. (2018). Therapeutic prospects of targeting myeloid-derived suppressor cells and immune checkpoints in cancer. Immunology and Cell Biology, 96, 888–897.PubMedCrossRef Toor, S. M., & Elkord, E. (2018). Therapeutic prospects of targeting myeloid-derived suppressor cells and immune checkpoints in cancer. Immunology and Cell Biology, 96, 888–897.PubMedCrossRef
303.
Zurück zum Zitat Fernández, A., et al. (2014). Adjuvants and myeloid-derived suppressor cells: Enemies or allies in therapeutic cancer vaccination. Human Vaccines & Immunotherapeutics, 10, 3251–3260.CrossRef Fernández, A., et al. (2014). Adjuvants and myeloid-derived suppressor cells: Enemies or allies in therapeutic cancer vaccination. Human Vaccines & Immunotherapeutics, 10, 3251–3260.CrossRef
304.
305.
Zurück zum Zitat Mittendorf, E. A., et al. (2019). Efficacy and safety analysis of nelipepimut-S vaccine to prevent breast cancer recurrence: A randomized, multicenter, phase III clinical trial. Clinical Cancer Research, 25, 4248–4254.PubMedCrossRef Mittendorf, E. A., et al. (2019). Efficacy and safety analysis of nelipepimut-S vaccine to prevent breast cancer recurrence: A randomized, multicenter, phase III clinical trial. Clinical Cancer Research, 25, 4248–4254.PubMedCrossRef
306.
Zurück zum Zitat Schneble, E. J., et al. (2014). The HER2 peptide nelipepimut-S (E75) vaccine (NeuVax™) in breast cancer patients at risk for recurrence: Correlation of immunologic data with clinical response. Immunotherapy, 6, 519–531.PubMedCrossRef Schneble, E. J., et al. (2014). The HER2 peptide nelipepimut-S (E75) vaccine (NeuVax™) in breast cancer patients at risk for recurrence: Correlation of immunologic data with clinical response. Immunotherapy, 6, 519–531.PubMedCrossRef
307.
Zurück zum Zitat Serafini, P., et al. (2004). High-dose granulocyte-macrophage colony-stimulating factor-producing vaccines impair the immune response through the recruitment of myeloid suppressor cells. Cancer Research, 64, 6337–6343.PubMedCrossRef Serafini, P., et al. (2004). High-dose granulocyte-macrophage colony-stimulating factor-producing vaccines impair the immune response through the recruitment of myeloid suppressor cells. Cancer Research, 64, 6337–6343.PubMedCrossRef
308.
Zurück zum Zitat Triozzi, P. L., et al. (2012). Differential immunologic and microRNA effects of 2 dosing regimens of recombinant human granulocyte/macrophage colony stimulating factor. Journal of Immunotherapy, 35, 587–594.PubMedCrossRef Triozzi, P. L., et al. (2012). Differential immunologic and microRNA effects of 2 dosing regimens of recombinant human granulocyte/macrophage colony stimulating factor. Journal of Immunotherapy, 35, 587–594.PubMedCrossRef
309.
Zurück zum Zitat Khanna, S., et al. (2018). Tumor-derived GM-CSF promotes granulocyte immunosuppression in mesothelioma patients. Clinical Cancer Research, 24, 2859–2872.PubMedPubMedCentralCrossRef Khanna, S., et al. (2018). Tumor-derived GM-CSF promotes granulocyte immunosuppression in mesothelioma patients. Clinical Cancer Research, 24, 2859–2872.PubMedPubMedCentralCrossRef
310.
Zurück zum Zitat Yanagimoto, H., et al. (2007). Immunological evaluation of personalized peptide vaccination with gemcitabine for pancreatic cancer. Cancer Science, 98, 605–611.PubMedCrossRef Yanagimoto, H., et al. (2007). Immunological evaluation of personalized peptide vaccination with gemcitabine for pancreatic cancer. Cancer Science, 98, 605–611.PubMedCrossRef
311.
Zurück zum Zitat Chiappori, A. A., Soliman, H., Janssen, W. E., Antonia, S. J., & Gabrilovich, D. I. (2010). INGN-225: A dendritic cell-based p53 vaccine (Ad.p53-DC) in small cell lung cancer: Observed association between immune response and enhanced chemotherapy effect. Expert Opinion on Biological Therapy, 10, 983–991.PubMedPubMedCentralCrossRef Chiappori, A. A., Soliman, H., Janssen, W. E., Antonia, S. J., & Gabrilovich, D. I. (2010). INGN-225: A dendritic cell-based p53 vaccine (Ad.p53-DC) in small cell lung cancer: Observed association between immune response and enhanced chemotherapy effect. Expert Opinion on Biological Therapy, 10, 983–991.PubMedPubMedCentralCrossRef
312.
Zurück zum Zitat Antonia, S. J., et al. (2006). Combination of p53 cancer vaccine with chemotherapy in patients with extensive stage small cell lung cancer. Clinical Cancer Research, 12, 878–887.PubMedCrossRef Antonia, S. J., et al. (2006). Combination of p53 cancer vaccine with chemotherapy in patients with extensive stage small cell lung cancer. Clinical Cancer Research, 12, 878–887.PubMedCrossRef
313.
Zurück zum Zitat Hardwick, N. R., et al. (2018). p53-Reactive T cells are associated with clinical benefit in patients with platinum-resistant epithelial ovarian cancer after treatment with a p53 vaccine and gemcitabine chemotherapy. Clinical Cancer Research, 24, 1315–1325.PubMedPubMedCentralCrossRef Hardwick, N. R., et al. (2018). p53-Reactive T cells are associated with clinical benefit in patients with platinum-resistant epithelial ovarian cancer after treatment with a p53 vaccine and gemcitabine chemotherapy. Clinical Cancer Research, 24, 1315–1325.PubMedPubMedCentralCrossRef
314.
Zurück zum Zitat Prendergast, G. C., Malachowski, W. P., DuHadaway, J. B., & Muller, A. J. (2017). Discovery of IDO1 inhibitors: From bench to bedside. Cancer Research, 77, 6795–6811.PubMedPubMedCentralCrossRef Prendergast, G. C., Malachowski, W. P., DuHadaway, J. B., & Muller, A. J. (2017). Discovery of IDO1 inhibitors: From bench to bedside. Cancer Research, 77, 6795–6811.PubMedPubMedCentralCrossRef
315.
Zurück zum Zitat Gamat-Huber, M., et al. (2020). Treatment combinations with DNA vaccines for the treatment of metastatic castration-resistant prostate cancer (mCRPC). Cancers (Basel), 12, 2831.PubMedCrossRef Gamat-Huber, M., et al. (2020). Treatment combinations with DNA vaccines for the treatment of metastatic castration-resistant prostate cancer (mCRPC). Cancers (Basel), 12, 2831.PubMedCrossRef
316.
Zurück zum Zitat Park, J. A., Wang, L., & Cheung, N. V. (2021). Modulating tumor infiltrating myeloid cells to enhance bispecific antibody-driven T cell infiltration and anti-tumor response. Journal of Hematology & Oncology, 14, 142.CrossRef Park, J. A., Wang, L., & Cheung, N. V. (2021). Modulating tumor infiltrating myeloid cells to enhance bispecific antibody-driven T cell infiltration and anti-tumor response. Journal of Hematology & Oncology, 14, 142.CrossRef
317.
Zurück zum Zitat Zitvogel, L., Apetoh, L., Ghiringhelli, F., & Kroemer, G. (2008). Immunological aspects of cancer chemotherapy. Nature Reviews Immunology, 8, 59–73.PubMedCrossRef Zitvogel, L., Apetoh, L., Ghiringhelli, F., & Kroemer, G. (2008). Immunological aspects of cancer chemotherapy. Nature Reviews Immunology, 8, 59–73.PubMedCrossRef
318.
Zurück zum Zitat Matsushita, H., et al. (2014). A pilot study of autologous tumor lysate-loaded dendritic cell vaccination combined with sunitinib for metastatic renal cell carcinoma. Journal for Immunotherapy of Cancer, 2, 30.PubMedPubMedCentralCrossRef Matsushita, H., et al. (2014). A pilot study of autologous tumor lysate-loaded dendritic cell vaccination combined with sunitinib for metastatic renal cell carcinoma. Journal for Immunotherapy of Cancer, 2, 30.PubMedPubMedCentralCrossRef
319.
Zurück zum Zitat Fleming, V., et al. (2018). Targeting myeloid-derived suppressor cells to bypass tumor-induced immunosuppression. Frontiers in Immunology, 9, 398.PubMedPubMedCentralCrossRef Fleming, V., et al. (2018). Targeting myeloid-derived suppressor cells to bypass tumor-induced immunosuppression. Frontiers in Immunology, 9, 398.PubMedPubMedCentralCrossRef
320.
Zurück zum Zitat Hou, A., Hou, K., Huang, Q., Lei, Y., & Chen, W. (2020). Targeting myeloid-derived suppressor cell, a promising strategy to overcome resistance to immune checkpoint inhibitors. Frontiers in Immunology, 11, 783.PubMedPubMedCentralCrossRef Hou, A., Hou, K., Huang, Q., Lei, Y., & Chen, W. (2020). Targeting myeloid-derived suppressor cell, a promising strategy to overcome resistance to immune checkpoint inhibitors. Frontiers in Immunology, 11, 783.PubMedPubMedCentralCrossRef
321.
Zurück zum Zitat Parker, N., Al-Obaidi, A., Truong, Q. V., & Badgett, R. (2019). Pembrolizumab versus the standard of care for cancer therapy: A meta-analysis of 12 KEYNOTE trials comparing overall survival. Journal of Clinical Oncology, 37, e14159–e14159.CrossRef Parker, N., Al-Obaidi, A., Truong, Q. V., & Badgett, R. (2019). Pembrolizumab versus the standard of care for cancer therapy: A meta-analysis of 12 KEYNOTE trials comparing overall survival. Journal of Clinical Oncology, 37, e14159–e14159.CrossRef
322.
Zurück zum Zitat Benner, B., et al. (2020). A pilot study of Bruton’s tyrosine kinase inhibitor ibrutinib alone and in combination with PD-1 inhibitor nivolumab in patients with metastatic solid tumors. Journal of Clinical Oncology, 38, 3111–3111.CrossRef Benner, B., et al. (2020). A pilot study of Bruton’s tyrosine kinase inhibitor ibrutinib alone and in combination with PD-1 inhibitor nivolumab in patients with metastatic solid tumors. Journal of Clinical Oncology, 38, 3111–3111.CrossRef
323.
Zurück zum Zitat Chen, H., et al. (2021). Ruxolitinib reverses checkpoint inhibition by reducing programmed cell death ligand-1 (PD-L1) expression and increases anti-tumour effects of T cells in multiple myeloma. British Journal of Haematology, 192, 568–576.PubMedCrossRef Chen, H., et al. (2021). Ruxolitinib reverses checkpoint inhibition by reducing programmed cell death ligand-1 (PD-L1) expression and increases anti-tumour effects of T cells in multiple myeloma. British Journal of Haematology, 192, 568–576.PubMedCrossRef
324.
Zurück zum Zitat Wang, J. C., & Sun, L. (2022). PD-1/PD-L1, MDSC pathways, and checkpoint inhibitor therapy in Ph(-) myeloproliferative neoplasm: A review. International Journal of Molecular Sciences, 23, 5837.PubMedPubMedCentralCrossRef Wang, J. C., & Sun, L. (2022). PD-1/PD-L1, MDSC pathways, and checkpoint inhibitor therapy in Ph(-) myeloproliferative neoplasm: A review. International Journal of Molecular Sciences, 23, 5837.PubMedPubMedCentralCrossRef
325.
Zurück zum Zitat Huijts, C. M., et al. (2019). The effect of everolimus and low-dose cyclophosphamide on immune cell subsets in patients with metastatic renal cell carcinoma: Results from a phase I clinical trial. Cancer Immunology, Immunotherapy, 68, 503–515.PubMedPubMedCentralCrossRef Huijts, C. M., et al. (2019). The effect of everolimus and low-dose cyclophosphamide on immune cell subsets in patients with metastatic renal cell carcinoma: Results from a phase I clinical trial. Cancer Immunology, Immunotherapy, 68, 503–515.PubMedPubMedCentralCrossRef
326.
Zurück zum Zitat Girardi, D. M., et al. (2022). Cabozantinib plus nivolumab phase i expansion study in patients with metastatic urothelial carcinoma refractory to immune checkpoint inhibitor therapy. Clinical Cancer Research, 28, 1353–1362.PubMedPubMedCentralCrossRef Girardi, D. M., et al. (2022). Cabozantinib plus nivolumab phase i expansion study in patients with metastatic urothelial carcinoma refractory to immune checkpoint inhibitor therapy. Clinical Cancer Research, 28, 1353–1362.PubMedPubMedCentralCrossRef
327.
Zurück zum Zitat Owen, D. H., et al. (2021). Deep and durable response to nivolumab and temozolomide in small-cell lung cancer associated with an early decrease in myeloid-derived suppressor cells. Clinical Lung Cancer, 22, e487–e497.PubMedCrossRef Owen, D. H., et al. (2021). Deep and durable response to nivolumab and temozolomide in small-cell lung cancer associated with an early decrease in myeloid-derived suppressor cells. Clinical Lung Cancer, 22, e487–e497.PubMedCrossRef
329.
Zurück zum Zitat Serafini, P., et al. (2006). Phosphodiesterase-5 inhibition augments endogenous antitumor immunity by reducing myeloid-derived suppressor cell function. Journal of Experimental Medicine, 203, 2691–2702.PubMedPubMedCentralCrossRef Serafini, P., et al. (2006). Phosphodiesterase-5 inhibition augments endogenous antitumor immunity by reducing myeloid-derived suppressor cell function. Journal of Experimental Medicine, 203, 2691–2702.PubMedPubMedCentralCrossRef
330.
Zurück zum Zitat Wesolowski, R., et al. (2019). Phase Ib study of the combination of pexidartinib (PLX3397), a CSF-1R inhibitor, and paclitaxel in patients with advanced solid tumors. Ther Adv Med Oncol, 11, 1758835919854238.PubMedPubMedCentralCrossRef Wesolowski, R., et al. (2019). Phase Ib study of the combination of pexidartinib (PLX3397), a CSF-1R inhibitor, and paclitaxel in patients with advanced solid tumors. Ther Adv Med Oncol, 11, 1758835919854238.PubMedPubMedCentralCrossRef
331.
Zurück zum Zitat Mehta, A. R., & Armstrong, A. J. (2016). Tasquinimod in the treatment of castrate-resistant prostate cancer - current status and future prospects. Therapeutic Advances in Urology, 8, 9–18.PubMedPubMedCentralCrossRef Mehta, A. R., & Armstrong, A. J. (2016). Tasquinimod in the treatment of castrate-resistant prostate cancer - current status and future prospects. Therapeutic Advances in Urology, 8, 9–18.PubMedPubMedCentralCrossRef
332.
Zurück zum Zitat Bullock, K., & Richmond, A. (2021). Suppressing MDSC recruitment to the tumor microenvironment by antagonizing CXCR2 to enhance the efficacy of immunotherapy. Cancers (Basel), 13, 6293.PubMedCrossRef Bullock, K., & Richmond, A. (2021). Suppressing MDSC recruitment to the tumor microenvironment by antagonizing CXCR2 to enhance the efficacy of immunotherapy. Cancers (Basel), 13, 6293.PubMedCrossRef
333.
Zurück zum Zitat Overman, M., et al. (2020). Randomized phase II study of the Bruton tyrosine kinase inhibitor acalabrutinib, alone or with pembrolizumab in patients with advanced pancreatic cancer. Journal Immunotherapy Cancer, 8, e000587 Overman, M., et al. (2020). Randomized phase II study of the Bruton tyrosine kinase inhibitor acalabrutinib, alone or with pembrolizumab in patients with advanced pancreatic cancer. Journal Immunotherapy Cancer, 8, e000587
334.
Zurück zum Zitat Jontvedt Jorgensen, M., et al. (2021). Monocytic myeloid-derived suppressor cells reflect tuberculosis severity and are influenced by cyclooxygenase-2 inhibitors. Journal Leukocyte Biology, 110, 177–186.CrossRef Jontvedt Jorgensen, M., et al. (2021). Monocytic myeloid-derived suppressor cells reflect tuberculosis severity and are influenced by cyclooxygenase-2 inhibitors. Journal Leukocyte Biology, 110, 177–186.CrossRef
335.
Zurück zum Zitat Schneble, E. J., et al. (2014). The HER2 peptide nelipepimut-S (E75) vaccine (NeuVax) in breast cancer patients at risk for recurrence: Correlation of immunologic data with clinical response. Immunotherapy, 6, 519–531.PubMedCrossRef Schneble, E. J., et al. (2014). The HER2 peptide nelipepimut-S (E75) vaccine (NeuVax) in breast cancer patients at risk for recurrence: Correlation of immunologic data with clinical response. Immunotherapy, 6, 519–531.PubMedCrossRef
336.
Zurück zum Zitat Chiappori, A. A., Soliman, H., Janssen, W. E., Antonia, S. J., & Gabrilovich, D. I. (2010). INGN-225: A dendritic cell-based p53 vaccine (Ad.p53-DC) in small cell lung cancer: Observed association between immune response and enhanced chemotherapy effect. Expert Opinion Biology Therapeutics, 10, 983–991.CrossRef Chiappori, A. A., Soliman, H., Janssen, W. E., Antonia, S. J., & Gabrilovich, D. I. (2010). INGN-225: A dendritic cell-based p53 vaccine (Ad.p53-DC) in small cell lung cancer: Observed association between immune response and enhanced chemotherapy effect. Expert Opinion Biology Therapeutics, 10, 983–991.CrossRef
337.
Zurück zum Zitat Antonia, S. J., et al. (2006). Combination of p53 cancer vaccine with chemotherapy in patients with extensive stage small cell lung cancer. Clinical Cancer Research, 12, 878–887.PubMedCrossRef Antonia, S. J., et al. (2006). Combination of p53 cancer vaccine with chemotherapy in patients with extensive stage small cell lung cancer. Clinical Cancer Research, 12, 878–887.PubMedCrossRef
338.
Zurück zum Zitat Hardwick, N. R., et al. (2018). p53-Reactive t cells are associated with clinical benefit in patients with platinum-resistant epithelial ovarian cancer after treatment with a p53 vaccine and gemcitabine chemotherapy. Clinical Cancer Research, 24, 1315–1325.PubMedPubMedCentralCrossRef Hardwick, N. R., et al. (2018). p53-Reactive t cells are associated with clinical benefit in patients with platinum-resistant epithelial ovarian cancer after treatment with a p53 vaccine and gemcitabine chemotherapy. Clinical Cancer Research, 24, 1315–1325.PubMedPubMedCentralCrossRef
339.
Zurück zum Zitat Koinis, F., et al. (2016). Effect of first-line treatment on myeloid-derived suppressor cells’ subpopulations in the peripheral blood of patients with non-small cell lung cancer. Journal of Thoracic Oncology, 11, 1263–1272.PubMedCrossRef Koinis, F., et al. (2016). Effect of first-line treatment on myeloid-derived suppressor cells’ subpopulations in the peripheral blood of patients with non-small cell lung cancer. Journal of Thoracic Oncology, 11, 1263–1272.PubMedCrossRef
340.
Zurück zum Zitat Feng, P. H., et al. (2018). Bevacizumab reduces S100A9-positive MDSCs linked to intracranial control in patients with EGFR-mutant lung adenocarcinoma. Journal of Thoracic Oncology, 13, 958–967.PubMedCrossRef Feng, P. H., et al. (2018). Bevacizumab reduces S100A9-positive MDSCs linked to intracranial control in patients with EGFR-mutant lung adenocarcinoma. Journal of Thoracic Oncology, 13, 958–967.PubMedCrossRef
341.
Zurück zum Zitat Clay, T. M., et al. (1999). Efficient transfer of a tumor antigen-reactive TCR to human peripheral blood lymphocytes confers anti-tumor reactivity. The Journal of Immunology, 163, 507–513.PubMedCrossRef Clay, T. M., et al. (1999). Efficient transfer of a tumor antigen-reactive TCR to human peripheral blood lymphocytes confers anti-tumor reactivity. The Journal of Immunology, 163, 507–513.PubMedCrossRef
Metadaten
Titel
Role of myeloid-derived suppressor cells in tumor recurrence
verfasst von
Kathryn Cole
Zaid Al-Kadhimi
James E. Talmadge
Publikationsdatum
14.01.2023
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 1/2023
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-023-10079-1

Weitere Artikel der Ausgabe 1/2023

Cancer and Metastasis Reviews 1/2023 Zur Ausgabe

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Erhöhtes Risiko fürs Herz unter Checkpointhemmer-Therapie

28.05.2024 Nebenwirkungen der Krebstherapie Nachrichten

Kardiotoxische Nebenwirkungen einer Therapie mit Immuncheckpointhemmern mögen selten sein – wenn sie aber auftreten, wird es für Patienten oft lebensgefährlich. Voruntersuchung und Monitoring sind daher obligat.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.