Skip to main content
Erschienen in: Cancer and Metastasis Reviews 1/2024

28.11.2023 | REVIEW

Targeting vimentin: a multifaceted approach to combatting cancer metastasis and drug resistance

verfasst von: Aliye Tabatabaee, Behjat Nafari, Armin Farhang, Amirali Hariri, Arezoo Khosravi, Ali Zarrabi, Mina Mirian

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 1/2024

Einloggen, um Zugang zu erhalten

Abstract

This comprehensive review explores vimentin as a pivotal therapeutic target in cancer treatment, with a primary focus on mitigating metastasis and overcoming drug resistance. Vimentin, a key player in cancer progression, is intricately involved in processes such as epithelial-to-mesenchymal transition (EMT) and resistance mechanisms to standard cancer therapies. The review delves into diverse vimentin inhibition strategies. Precision tools, including antibodies and nanobodies, selectively neutralize vimentin's pro-tumorigenic effects. DNA and RNA aptamers disrupt vimentin-associated signaling pathways through their adaptable binding properties. Innovative approaches, such as vimentin-targeted vaccines and microRNAs (miRNAs), harness the immune system and post-transcriptional regulation to combat vimentin-expressing cancer cells. By dissecting vimentin inhibition strategies across these categories, this review provides a comprehensive overview of anti-vimentin therapeutics in cancer treatment. It underscores the growing recognition of vimentin as a pivotal therapeutic target in cancer and presents a diverse array of inhibitors, including antibodies, nanobodies, DNA and RNA aptamers, vaccines, and miRNAs. These multifaceted approaches hold substantial promise for tackling metastasis and overcoming drug resistance, collectively presenting new avenues for enhanced cancer therapy.
Literatur
20.
Zurück zum Zitat Usman, S., Waseem, N. H., Nguyen, T. K. N., Mohsin, S., Jamal, A., Teh, M.-T., et al. (2021). Vimentin is at the heart of epithelial mesenchymal transition (EMT) mediated metastasis. Cancers, 13(19), 4985.PubMedPubMedCentral Usman, S., Waseem, N. H., Nguyen, T. K. N., Mohsin, S., Jamal, A., Teh, M.-T., et al. (2021). Vimentin is at the heart of epithelial mesenchymal transition (EMT) mediated metastasis. Cancers, 13(19), 4985.PubMedPubMedCentral
28.
Zurück zum Zitat Li, X. L., Liu, L., Li, D. D., He, Y. P., Guo, L. H., Sun, L. P., et al. (2017). Integrin β4 promotes cell invasion and epithelial-mesenchymal transition through the modulation of Slug expression in hepatocellular carcinoma. Science and Reports, 7, 40464. https://doi.org/10.1038/srep40464CrossRef Li, X. L., Liu, L., Li, D. D., He, Y. P., Guo, L. H., Sun, L. P., et al. (2017). Integrin β4 promotes cell invasion and epithelial-mesenchymal transition through the modulation of Slug expression in hepatocellular carcinoma. Science and Reports, 7, 40464. https://​doi.​org/​10.​1038/​srep40464CrossRef
33.
36.
38.
Zurück zum Zitat Jakobsen, K. R., Demuth, C., Sorensen, B. S., & Nielsen, A. L. (2016). The role of epithelial to mesenchymal transition in resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small cell lung cancer. Translational Lung Cancer Research, 5(2), 172–182.PubMedPubMedCentral Jakobsen, K. R., Demuth, C., Sorensen, B. S., & Nielsen, A. L. (2016). The role of epithelial to mesenchymal transition in resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small cell lung cancer. Translational Lung Cancer Research, 5(2), 172–182.PubMedPubMedCentral
39.
Zurück zum Zitat Clement, M. S., Gammelgaard, K. R., Nielsen, A. L., & Sorensen, B. S. (2020). Epithelial-to-mesenchymal transition is a resistance mechanism to sequential MET-TKI treatment of MET -amplified EGFR-TKI resistant non-small cell lung cancer cells. Translational Lung Cancer Research, 9(5), 1904–1914.PubMedPubMedCentral Clement, M. S., Gammelgaard, K. R., Nielsen, A. L., & Sorensen, B. S. (2020). Epithelial-to-mesenchymal transition is a resistance mechanism to sequential MET-TKI treatment of MET -amplified EGFR-TKI resistant non-small cell lung cancer cells. Translational Lung Cancer Research, 9(5), 1904–1914.PubMedPubMedCentral
40.
45.
Zurück zum Zitat Musaelyan, A., Lapin, S., Nazarov, V., Tkachenko, O., Gilburd, B., Mazing, A., et al. (2018). Vimentin as antigenic target in autoimmunity: A comprehensive review. Autoimmunity Reviews, 17(9), 926–934.PubMed Musaelyan, A., Lapin, S., Nazarov, V., Tkachenko, O., Gilburd, B., Mazing, A., et al. (2018). Vimentin as antigenic target in autoimmunity: A comprehensive review. Autoimmunity Reviews, 17(9), 926–934.PubMed
46.
Zurück zum Zitat Parry, D. A., Strelkov, S. V., Burkhard, P., Aebi, U., & Herrmann, H. (2007). Towards a molecular description of intermediate filament structure and assembly. Experimental Cell Research, 313(10), 2204–2216.PubMed Parry, D. A., Strelkov, S. V., Burkhard, P., Aebi, U., & Herrmann, H. (2007). Towards a molecular description of intermediate filament structure and assembly. Experimental Cell Research, 313(10), 2204–2216.PubMed
47.
Zurück zum Zitat Tang, D. D. (2008). Intermediate filaments in smooth muscle. American Journal of Physiology-Cell Physiology, 294(4), C869–C878.PubMed Tang, D. D. (2008). Intermediate filaments in smooth muscle. American Journal of Physiology-Cell Physiology, 294(4), C869–C878.PubMed
48.
Zurück zum Zitat Kraxner, J., Lorenz, C., Menzel, J., Parfentev, I., Silbern, I., Denz, M., et al. (2021). Post-translational modifications soften vimentin intermediate filaments. Nanoscale, 13(1), 380–387.PubMed Kraxner, J., Lorenz, C., Menzel, J., Parfentev, I., Silbern, I., Denz, M., et al. (2021). Post-translational modifications soften vimentin intermediate filaments. Nanoscale, 13(1), 380–387.PubMed
49.
Zurück zum Zitat Mónico, A., Guzmán-Caldentey, J., Pajares, M. A., Martín-Santamaría, S., & Pérez-Sala, D. (2021). Elucidating vimentin interaction with zinc ions and its interplay with oxidative modifications through crosslinking assays and molecular dynamics simulations. bioRxiv, 2021.2002. 2012.430929. Mónico, A., Guzmán-Caldentey, J., Pajares, M. A., Martín-Santamaría, S., & Pérez-Sala, D. (2021). Elucidating vimentin interaction with zinc ions and its interplay with oxidative modifications through crosslinking assays and molecular dynamics simulations. bioRxiv, 2021.2002. 2012.430929.
50.
Zurück zum Zitat Danielsson, F., Peterson, M. K., Caldeira Araújo, H., Lautenschläger, F., & Gad, A. K. B. (2018). Vimentin diversity in health and disease. Cells, 7(10), 147.PubMedPubMedCentral Danielsson, F., Peterson, M. K., Caldeira Araújo, H., Lautenschläger, F., & Gad, A. K. B. (2018). Vimentin diversity in health and disease. Cells, 7(10), 147.PubMedPubMedCentral
51.
Zurück zum Zitat Ostrowska-Podhorodecka, Z., & McCulloch, C. A. (2021). Vimentin regulates the assembly and function of matrix adhesions. Wound Repair and Regeneration, 29(4), 602–612.PubMed Ostrowska-Podhorodecka, Z., & McCulloch, C. A. (2021). Vimentin regulates the assembly and function of matrix adhesions. Wound Repair and Regeneration, 29(4), 602–612.PubMed
52.
Zurück zum Zitat Tarbet, H. J., Dolat, L., Smith, T. J., Condon, B. M., O’Brien, E. T., III., Valdivia, R. H., et al. (2018). Site-specific glycosylation regulates the form and function of the intermediate filament cytoskeleton. elife, 7, e31807.PubMedPubMedCentral Tarbet, H. J., Dolat, L., Smith, T. J., Condon, B. M., O’Brien, E. T., III., Valdivia, R. H., et al. (2018). Site-specific glycosylation regulates the form and function of the intermediate filament cytoskeleton. elife, 7, e31807.PubMedPubMedCentral
53.
Zurück zum Zitat Robert, A., Hookway, C., & Gelfand, V. I. (2016). Intermediate filament dynamics: What we can see now and why it matters. BioEssays, 38(3), 232–243.PubMedPubMedCentral Robert, A., Hookway, C., & Gelfand, V. I. (2016). Intermediate filament dynamics: What we can see now and why it matters. BioEssays, 38(3), 232–243.PubMedPubMedCentral
54.
Zurück zum Zitat Eriksson, J. E., He, T., Trejo-Skalli, A. V., Härmälä-Braskén, A.-S., Hellman, J., Chou, Y.-H., et al. (2004). Specific in vivo phosphorylation sites determine the assembly dynamics of vimentin intermediate filaments. Journal of Cell Science, 117(6), 919–932.PubMed Eriksson, J. E., He, T., Trejo-Skalli, A. V., Härmälä-Braskén, A.-S., Hellman, J., Chou, Y.-H., et al. (2004). Specific in vivo phosphorylation sites determine the assembly dynamics of vimentin intermediate filaments. Journal of Cell Science, 117(6), 919–932.PubMed
55.
Zurück zum Zitat Brennich, M. E., Vainio, U., Wedig, T., Bauch, S., Herrmann, H., & Köster, S. (2019). Mutation-induced alterations of intra-filament subunit organization in vimentin filaments revealed by SAXS. Soft Matter, 15(9), 1999–2008.PubMed Brennich, M. E., Vainio, U., Wedig, T., Bauch, S., Herrmann, H., & Köster, S. (2019). Mutation-induced alterations of intra-filament subunit organization in vimentin filaments revealed by SAXS. Soft Matter, 15(9), 1999–2008.PubMed
56.
Zurück zum Zitat Velez-delValle, C., Marsch-Moreno, M., Castro-Muñozledo, F., Galván-Mendoza, I. J., & Kuri-Harcuch, W. (2016). Epithelial cell migration requires the interaction between the vimentin and keratin intermediate filaments. Scientific Reports, 6(1), 1–10. Velez-delValle, C., Marsch-Moreno, M., Castro-Muñozledo, F., Galván-Mendoza, I. J., & Kuri-Harcuch, W. (2016). Epithelial cell migration requires the interaction between the vimentin and keratin intermediate filaments. Scientific Reports, 6(1), 1–10.
57.
Zurück zum Zitat Schietke, R., Bröhl, D., Wedig, T., Mücke, N., Herrmann, H., & Magin, T. M. (2006). Mutations in vimentin disrupt the cytoskeleton in fibroblasts and delay execution of apoptosis. European Journal of Cell Biology, 85(1), 1–10.PubMed Schietke, R., Bröhl, D., Wedig, T., Mücke, N., Herrmann, H., & Magin, T. M. (2006). Mutations in vimentin disrupt the cytoskeleton in fibroblasts and delay execution of apoptosis. European Journal of Cell Biology, 85(1), 1–10.PubMed
58.
Zurück zum Zitat Bornheim, R., Müller, M., Reuter, U., Herrmann, H., Büssow, H., & Magin, T. M. (2008). A dominant vimentin mutant upregulates Hsp70 and the activity of the ubiquitin-proteasome system, and causes posterior cataracts in transgenic mice. Journal of Cell Science, 121(22), 3737–3746.PubMed Bornheim, R., Müller, M., Reuter, U., Herrmann, H., Büssow, H., & Magin, T. M. (2008). A dominant vimentin mutant upregulates Hsp70 and the activity of the ubiquitin-proteasome system, and causes posterior cataracts in transgenic mice. Journal of Cell Science, 121(22), 3737–3746.PubMed
59.
Zurück zum Zitat Müller, M., Bhattacharya, S. S., Moore, T., Prescott, Q., Wedig, T., Herrmann, H., et al. (2009). Dominant cataract formation in association with a vimentin assembly disrupting mutation. Human Molecular Genetics, 18(6), 1052–1057.PubMed Müller, M., Bhattacharya, S. S., Moore, T., Prescott, Q., Wedig, T., Herrmann, H., et al. (2009). Dominant cataract formation in association with a vimentin assembly disrupting mutation. Human Molecular Genetics, 18(6), 1052–1057.PubMed
60.
Zurück zum Zitat Bang, H., Egerer, K., Gauliard, A., Lüthke, K., Rudolph, P. E., Fredenhagen, G., et al. (2007). Mutation and citrullination modifies vimentin to a novel autoantigen for rheumatoid arthritis. Arthritis & Rheumatism, 56(8), 2503–2511. Bang, H., Egerer, K., Gauliard, A., Lüthke, K., Rudolph, P. E., Fredenhagen, G., et al. (2007). Mutation and citrullination modifies vimentin to a novel autoantigen for rheumatoid arthritis. Arthritis & Rheumatism, 56(8), 2503–2511.
61.
Zurück zum Zitat Cogné, B., Bouameur, J.-E., Hayot, G., Latypova, X., Pattabiraman, S., Caillaud, A., et al. (2020). A dominant vimentin variant causes a rare syndrome with premature aging. European Journal of Human Genetics, 28(9), 1218–1230.PubMedPubMedCentral Cogné, B., Bouameur, J.-E., Hayot, G., Latypova, X., Pattabiraman, S., Caillaud, A., et al. (2020). A dominant vimentin variant causes a rare syndrome with premature aging. European Journal of Human Genetics, 28(9), 1218–1230.PubMedPubMedCentral
62.
Zurück zum Zitat Sharma, P., Alsharif, S., Fallatah, A., & Chung, B. M. (2019). Intermediate filaments as effectors of cancer development and metastasis: A focus on keratins, vimentin, and nestin. Cells, 8(5), 497.PubMedPubMedCentral Sharma, P., Alsharif, S., Fallatah, A., & Chung, B. M. (2019). Intermediate filaments as effectors of cancer development and metastasis: A focus on keratins, vimentin, and nestin. Cells, 8(5), 497.PubMedPubMedCentral
63.
Zurück zum Zitat Noh, H., Yan, J., Hong, S., Kong, L.-Y., Gabrusiewicz, K., Xia, X., et al. (2016). Discovery of cell surface vimentin targeting mAb for direct disruption of GBM tumor initiating cells. Oncotarget, 7(44), 72021.PubMedPubMedCentral Noh, H., Yan, J., Hong, S., Kong, L.-Y., Gabrusiewicz, K., Xia, X., et al. (2016). Discovery of cell surface vimentin targeting mAb for direct disruption of GBM tumor initiating cells. Oncotarget, 7(44), 72021.PubMedPubMedCentral
64.
Zurück zum Zitat Steinmetz, N. F., Maurer, J., Sheng, H., Bensussan, A., Maricic, I., Kumar, V., et al. (2011). Two domains of vimentin are expressed on the surface of lymph node, bone and brain metastatic prostate cancer lines along with the putative stem cell marker proteins CD44 and CD133. Cancers, 3(3), 2870–2885.PubMedPubMedCentral Steinmetz, N. F., Maurer, J., Sheng, H., Bensussan, A., Maricic, I., Kumar, V., et al. (2011). Two domains of vimentin are expressed on the surface of lymph node, bone and brain metastatic prostate cancer lines along with the putative stem cell marker proteins CD44 and CD133. Cancers, 3(3), 2870–2885.PubMedPubMedCentral
65.
Zurück zum Zitat Ramos, I., Stamatakis, K., Oeste, C. L., & Pérez-Sala, D. (2020). Vimentin as a multifaceted player and potential therapeutic target in viral infections. International Journal of Molecular Sciences, 21(13), 4675.PubMedPubMedCentral Ramos, I., Stamatakis, K., Oeste, C. L., & Pérez-Sala, D. (2020). Vimentin as a multifaceted player and potential therapeutic target in viral infections. International Journal of Molecular Sciences, 21(13), 4675.PubMedPubMedCentral
66.
Zurück zum Zitat Suprewicz, Ł, Swoger, M., Gupta, S., Piktel, E., Byfield, F. J., Iwamoto, D. V., et al. (2022). Extracellular vimentin as a target against SARS-CoV-2 host cell invasion. Small (Weinheim an der Bergstrasse, Germany), 18(6), 2105640. Suprewicz, Ł, Swoger, M., Gupta, S., Piktel, E., Byfield, F. J., Iwamoto, D. V., et al. (2022). Extracellular vimentin as a target against SARS-CoV-2 host cell invasion. Small (Weinheim an der Bergstrasse, Germany), 18(6), 2105640.
67.
Zurück zum Zitat Yu, Y.T.-C., Chien, S.-C., Chen, I.-Y., Lai, C.-T., Tsay, Y.-G., Chang, S. C., et al. (2016). Surface vimentin is critical for the cell entry of SARS-CoV. Journal of Biomedical Science, 23(1), 1–10. Yu, Y.T.-C., Chien, S.-C., Chen, I.-Y., Lai, C.-T., Tsay, Y.-G., Chang, S. C., et al. (2016). Surface vimentin is critical for the cell entry of SARS-CoV. Journal of Biomedical Science, 23(1), 1–10.
68.
Zurück zum Zitat Amraei, R., Xia, C., Olejnik, J., White, M. R., Napoleon, M. A., Lotfollahzadeh, S., et al. (2022). Extracellular vimentin is an attachment factor that facilitates SARS-CoV-2 entry into human endothelial cells. Proceedings of the National Academy of Sciences, 119(6), e2113874119. Amraei, R., Xia, C., Olejnik, J., White, M. R., Napoleon, M. A., Lotfollahzadeh, S., et al. (2022). Extracellular vimentin is an attachment factor that facilitates SARS-CoV-2 entry into human endothelial cells. Proceedings of the National Academy of Sciences, 119(6), e2113874119.
69.
Zurück zum Zitat Babic, I., Nurmemmedov, E., Yenugonda, V. M., Juarez, T., Nomura, N., Pingle, S. C., et al. (2018). Pritumumab, the first therapeutic antibody for glioma patients. Human Antibodies, 26(2), 95–101.PubMed Babic, I., Nurmemmedov, E., Yenugonda, V. M., Juarez, T., Nomura, N., Pingle, S. C., et al. (2018). Pritumumab, the first therapeutic antibody for glioma patients. Human Antibodies, 26(2), 95–101.PubMed
70.
Zurück zum Zitat Noh, H., Zhao, Q., Yan, J., Kong, L.-Y., Gabrusiewicz, K., Hong, S., et al. (2018). Cell surface vimentin-targeted monoclonal antibody 86C increases sensitivity to temozolomide in glioma stem cells. Cancer Letters, 433, 176–185.PubMedPubMedCentral Noh, H., Zhao, Q., Yan, J., Kong, L.-Y., Gabrusiewicz, K., Hong, S., et al. (2018). Cell surface vimentin-targeted monoclonal antibody 86C increases sensitivity to temozolomide in glioma stem cells. Cancer Letters, 433, 176–185.PubMedPubMedCentral
71.
Zurück zum Zitat Wang, C., Cigliano, A., Jiang, L., Li, X., Fan, B., Pilo, M. G., et al. (2015). 4EBP1/eIF4E and p70S6K/RPS6 axes play critical and distinct roles in hepatocarcinogenesis driven by AKT and N-Ras proto-oncogenes in mice. Hepatology, 61(1), 200–213.PubMed Wang, C., Cigliano, A., Jiang, L., Li, X., Fan, B., Pilo, M. G., et al. (2015). 4EBP1/eIF4E and p70S6K/RPS6 axes play critical and distinct roles in hepatocarcinogenesis driven by AKT and N-Ras proto-oncogenes in mice. Hepatology, 61(1), 200–213.PubMed
72.
Zurück zum Zitat van Beijnum, J. R., Huijbers, E. J., van Loon, K., Blanas, A., Akbari, P., Roos, A., et al. (2022). Extracellular vimentin mimics VEGF and is a target for anti-angiogenic immunotherapy. Nature Communications, 13(1), 2842.PubMedPubMedCentral van Beijnum, J. R., Huijbers, E. J., van Loon, K., Blanas, A., Akbari, P., Roos, A., et al. (2022). Extracellular vimentin mimics VEGF and is a target for anti-angiogenic immunotherapy. Nature Communications, 13(1), 2842.PubMedPubMedCentral
73.
Zurück zum Zitat Yang, E. Y., & Shah, K. (2020). Nanobodies: Next generation of cancer diagnostics and therapeutics. Frontiers in Oncology, 10, 1182.PubMedPubMedCentral Yang, E. Y., & Shah, K. (2020). Nanobodies: Next generation of cancer diagnostics and therapeutics. Frontiers in Oncology, 10, 1182.PubMedPubMedCentral
74.
Zurück zum Zitat Zottel, A., Novak, M., Šamec, N., Majc, B., Colja, S., Katrašnik, M., et al. (2023). Anti-vimentin nanobody decreases glioblastoma cell invasion in vitro and in vivo. Cancers, 15(3), 573.PubMedPubMedCentral Zottel, A., Novak, M., Šamec, N., Majc, B., Colja, S., Katrašnik, M., et al. (2023). Anti-vimentin nanobody decreases glioblastoma cell invasion in vitro and in vivo. Cancers, 15(3), 573.PubMedPubMedCentral
75.
Zurück zum Zitat Zottel, A., Jovčevska, I., Šamec, N., Mlakar, J., Šribar, J., Križaj, I., et al. (2020). Anti-vimentin, anti-TUFM, anti-NAP1L1 and anti-DPYSL2 nanobodies display cytotoxic effect and reduce glioblastoma cell migration. Therapeutic Advances in Medical Oncology, 12, 1758835920915302.PubMedPubMedCentral Zottel, A., Jovčevska, I., Šamec, N., Mlakar, J., Šribar, J., Križaj, I., et al. (2020). Anti-vimentin, anti-TUFM, anti-NAP1L1 and anti-DPYSL2 nanobodies display cytotoxic effect and reduce glioblastoma cell migration. Therapeutic Advances in Medical Oncology, 12, 1758835920915302.PubMedPubMedCentral
80.
Zurück zum Zitat Brentville, V. A., Metheringham, R. L., Daniels, I., Atabani, S., Symonds, P., Cook, K. W., et al. (2020). Combination vaccine based on citrullinated vimentin and enolase peptides induces potent CD4-mediated anti-tumor responses. Journal for ImmunoTherapy of Cancer, 8(1), https://doi.org/10.1136/jitc-2020-000560. Brentville, V. A., Metheringham, R. L., Daniels, I., Atabani, S., Symonds, P., Cook, K. W., et al. (2020). Combination vaccine based on citrullinated vimentin and enolase peptides induces potent CD4-mediated anti-tumor responses. Journal for ImmunoTherapy of Cancer, 8(1), https://​doi.​org/​10.​1136/​jitc-2020-000560.
81.
Zurück zum Zitat Wang, V., & Wu, W. (2009). MicroRNA-based therapeutics for cancer. BioDrugs, 23(1), 15–23.PubMed Wang, V., & Wu, W. (2009). MicroRNA-based therapeutics for cancer. BioDrugs, 23(1), 15–23.PubMed
83.
Zurück zum Zitat Naidu, S., Magee, P., & Garofalo, M. (2015). MiRNA-based therapeutic intervention of cancer. Journal of Hematology & Oncology, 8, 1–8. Naidu, S., Magee, P., & Garofalo, M. (2015). MiRNA-based therapeutic intervention of cancer. Journal of Hematology & Oncology, 8, 1–8.
84.
Zurück zum Zitat Kim, T. W., Lee, Y. S., Yun, N. H., Shin, C. H., Hong, H. K., Kim, H. H., et al. (2020). MicroRNA-17-5p regulates EMT by targeting vimentin in colorectal cancer. British Journal of Cancer, 123(7), 1123–1130.PubMedPubMedCentral Kim, T. W., Lee, Y. S., Yun, N. H., Shin, C. H., Hong, H. K., Kim, H. H., et al. (2020). MicroRNA-17-5p regulates EMT by targeting vimentin in colorectal cancer. British Journal of Cancer, 123(7), 1123–1130.PubMedPubMedCentral
85.
Zurück zum Zitat Jimenez, L., Lim, J., Burd, B., Harris, T. M., Ow, T. J., Kawachi, N., et al. (2017). miR-375 regulates invasion-related proteins vimentin and L-plastin. The American Journal of Pathology, 187(7), 1523–1536.PubMedPubMedCentral Jimenez, L., Lim, J., Burd, B., Harris, T. M., Ow, T. J., Kawachi, N., et al. (2017). miR-375 regulates invasion-related proteins vimentin and L-plastin. The American Journal of Pathology, 187(7), 1523–1536.PubMedPubMedCentral
86.
Zurück zum Zitat Cheng, C.-W., Wang, H.-W., Chang, C.-W., Chu, H.-W., Chen, C.-Y., Yu, J.-C., et al. (2012). MicroRNA-30a inhibits cell migration and invasion by downregulating vimentin expression and is a potential prognostic marker in breast cancer. Breast Cancer Research and Treatment, 134, 1081–1093.PubMed Cheng, C.-W., Wang, H.-W., Chang, C.-W., Chu, H.-W., Chen, C.-Y., Yu, J.-C., et al. (2012). MicroRNA-30a inhibits cell migration and invasion by downregulating vimentin expression and is a potential prognostic marker in breast cancer. Breast Cancer Research and Treatment, 134, 1081–1093.PubMed
87.
Zurück zum Zitat Bockhorn, J., Yee, K., Chang, Y.-F., Prat, A., Huo, D., Nwachukwu, C., et al. (2013). MicroRNA-30c targets cytoskeleton genes involved in breast cancer cell invasion. Breast Cancer Research and Treatment, 137, 373–382.PubMed Bockhorn, J., Yee, K., Chang, Y.-F., Prat, A., Huo, D., Nwachukwu, C., et al. (2013). MicroRNA-30c targets cytoskeleton genes involved in breast cancer cell invasion. Breast Cancer Research and Treatment, 137, 373–382.PubMed
88.
Zurück zum Zitat Arora, H., Qureshi, R., & Park, W.-Y. (2013). miR-506 regulates epithelial mesenchymal transition in breast cancer cell lines. PLoS ONE, 8(5), e64273.PubMedPubMedCentral Arora, H., Qureshi, R., & Park, W.-Y. (2013). miR-506 regulates epithelial mesenchymal transition in breast cancer cell lines. PLoS ONE, 8(5), e64273.PubMedPubMedCentral
89.
Zurück zum Zitat Sun, Y., Hu, L., Zheng, H., Bagnoli, M., Guo, Y., Rupaimoole, R., et al. (2015). MiR-506 inhibits multiple targets in the epithelial-to-mesenchymal transition network and is associated with good prognosis in epithelial ovarian cancer. The Journal of Pathology, 235(1), 25–36.PubMed Sun, Y., Hu, L., Zheng, H., Bagnoli, M., Guo, Y., Rupaimoole, R., et al. (2015). MiR-506 inhibits multiple targets in the epithelial-to-mesenchymal transition network and is associated with good prognosis in epithelial ovarian cancer. The Journal of Pathology, 235(1), 25–36.PubMed
90.
Zurück zum Zitat Zhu, S., He, C., Deng, S., Li, X., Cui, S., Zeng, Z., et al. (2016). MiR-548an, transcriptionally downregulated by HIF1α/HDAC1, suppresses tumorigenesis of pancreatic cancer by targeting vimentin expression. Molecular Cancer Therapeutics, 15(9), 2209–2219.PubMed Zhu, S., He, C., Deng, S., Li, X., Cui, S., Zeng, Z., et al. (2016). MiR-548an, transcriptionally downregulated by HIF1α/HDAC1, suppresses tumorigenesis of pancreatic cancer by targeting vimentin expression. Molecular Cancer Therapeutics, 15(9), 2209–2219.PubMed
91.
Zurück zum Zitat Yamasaki, T., Seki, N., Yamada, Y., Yoshino, H., Hidaka, H., Chiyomaru, T., et al. (2012). Tumor suppressive microRNA-138 contributes to cell migration and invasion through its targeting of vimentin in renal cell carcinoma. International Journal of Oncology, 41(3), 805–817.PubMedPubMedCentral Yamasaki, T., Seki, N., Yamada, Y., Yoshino, H., Hidaka, H., Chiyomaru, T., et al. (2012). Tumor suppressive microRNA-138 contributes to cell migration and invasion through its targeting of vimentin in renal cell carcinoma. International Journal of Oncology, 41(3), 805–817.PubMedPubMedCentral
92.
Zurück zum Zitat Yu, C., Wang, M., Chen, M., Huang, Y., & Jiang, J. (2015). Upregulation of microRNA-138-5p inhibits pancreatic cancer cell migration and increases chemotherapy sensitivity. Molecular Medicine Reports, 12(4), 5135–5140.PubMed Yu, C., Wang, M., Chen, M., Huang, Y., & Jiang, J. (2015). Upregulation of microRNA-138-5p inhibits pancreatic cancer cell migration and increases chemotherapy sensitivity. Molecular Medicine Reports, 12(4), 5135–5140.PubMed
93.
Zurück zum Zitat Liu, X., Wang, C., Chen, Z., Jin, Y., Wang, Y., Kolokythas, A., et al. (2011). MicroRNA-138 suppresses epithelial–mesenchymal transition in squamous cell carcinoma cell lines. Biochemical Journal, 440(1), 23–31.PubMed Liu, X., Wang, C., Chen, Z., Jin, Y., Wang, Y., Kolokythas, A., et al. (2011). MicroRNA-138 suppresses epithelial–mesenchymal transition in squamous cell carcinoma cell lines. Biochemical Journal, 440(1), 23–31.PubMed
94.
Zurück zum Zitat Lee, J. W., Guan, W., Han, S., Hong, D. K., Kim, L. S., & Kim, H. (2018). Micro RNA-708-3p mediates metastasis and chemoresistance through inhibition of epithelial-to-mesenchymal transition in breast cancer. Cancer Science, 109(5), 1404–1413.PubMedPubMedCentral Lee, J. W., Guan, W., Han, S., Hong, D. K., Kim, L. S., & Kim, H. (2018). Micro RNA-708-3p mediates metastasis and chemoresistance through inhibition of epithelial-to-mesenchymal transition in breast cancer. Cancer Science, 109(5), 1404–1413.PubMedPubMedCentral
95.
Zurück zum Zitat Xu, Y., Yao, T., Huang, K., Liu, G., Huang, Y., Gao, J., et al. (2020). Circular RNA circTUBGCP3 Is up-regulated and promotes cell proliferation, migration and survivability via sponge mir-30b in osteosarcoma. OncoTargets and Therapy, 13, 3729.PubMedPubMedCentral Xu, Y., Yao, T., Huang, K., Liu, G., Huang, Y., Gao, J., et al. (2020). Circular RNA circTUBGCP3 Is up-regulated and promotes cell proliferation, migration and survivability via sponge mir-30b in osteosarcoma. OncoTargets and Therapy, 13, 3729.PubMedPubMedCentral
96.
Zurück zum Zitat Joglekar, M. V., Patil, D., Joglekar, V. M., Rao, G. V., Reddy, N. D., Mitnala, S., et al. (2009). The miR-30 family microRNAs confer epithelial phenotype to human pancreatic cells. Islets, 1(2), 137–147.PubMed Joglekar, M. V., Patil, D., Joglekar, V. M., Rao, G. V., Reddy, N. D., Mitnala, S., et al. (2009). The miR-30 family microRNAs confer epithelial phenotype to human pancreatic cells. Islets, 1(2), 137–147.PubMed
98.
Zurück zum Zitat Braun, J., Hoang-Vu, C., Dralle, H., & Hüttelmaier, S. (2010). Downregulation of microRNAs directs the EMT and invasive potential of anaplastic thyroid carcinomas. Oncogene, 29(29), 4237–4244.PubMed Braun, J., Hoang-Vu, C., Dralle, H., & Hüttelmaier, S. (2010). Downregulation of microRNAs directs the EMT and invasive potential of anaplastic thyroid carcinomas. Oncogene, 29(29), 4237–4244.PubMed
99.
Zurück zum Zitat Zhong, Z., Xia, Y., Wang, P., Liu, B., & Chen, Y. (2014). Low expression of microRNA-30c promotes invasion by inducing epithelial mesenchymal transition in non-small cell lung cancer. Molecular Medicine Reports, 10(5), 2575–2579.PubMed Zhong, Z., Xia, Y., Wang, P., Liu, B., & Chen, Y. (2014). Low expression of microRNA-30c promotes invasion by inducing epithelial mesenchymal transition in non-small cell lung cancer. Molecular Medicine Reports, 10(5), 2575–2579.PubMed
100.
Zurück zum Zitat Liu, Z., Chen, L., Zhang, X., Xu, X., Xing, H., Zhang, Y., et al. (2014). RUNX 3 regulates vimentin expression via miR-30a during epithelial–mesenchymal transition in gastric cancer cells. Journal of Cellular and Molecular Medicine, 18(4), 610–623.PubMedPubMedCentral Liu, Z., Chen, L., Zhang, X., Xu, X., Xing, H., Zhang, Y., et al. (2014). RUNX 3 regulates vimentin expression via miR-30a during epithelial–mesenchymal transition in gastric cancer cells. Journal of Cellular and Molecular Medicine, 18(4), 610–623.PubMedPubMedCentral
103.
Zurück zum Zitat Qian, B.-J., You, L., Shang, F.-F., Liu, J., Dai, P., Lin, N., et al. (2015). Vimentin regulates neuroplasticity in transected spinal cord rats associated with micRNA138. Molecular Neurobiology, 51, 437–447.PubMed Qian, B.-J., You, L., Shang, F.-F., Liu, J., Dai, P., Lin, N., et al. (2015). Vimentin regulates neuroplasticity in transected spinal cord rats associated with micRNA138. Molecular Neurobiology, 51, 437–447.PubMed
104.
Zurück zum Zitat Bollong, M. J., Pietilä, M., Pearson, A. D., Sarkar, T. R., Ahmad, I., Soundararajan, R., et al. (2017). A vimentin binding small molecule leads to mitotic disruption in mesenchymal cancers. Proceedings of the National Academy of Sciences, 114(46), E9903–E9912. Bollong, M. J., Pietilä, M., Pearson, A. D., Sarkar, T. R., Ahmad, I., Soundararajan, R., et al. (2017). A vimentin binding small molecule leads to mitotic disruption in mesenchymal cancers. Proceedings of the National Academy of Sciences, 114(46), E9903–E9912.
105.
Zurück zum Zitat Wu, J., Xie, Q., Liu, Y., Gao, Y., Qu, Z., Mo, L., et al. (2021). A small vimentin-binding molecule blocks cancer exosome release and reduces cancer cell mobility. Frontiers in Pharmacology, 12, 627394.PubMedPubMedCentral Wu, J., Xie, Q., Liu, Y., Gao, Y., Qu, Z., Mo, L., et al. (2021). A small vimentin-binding molecule blocks cancer exosome release and reduces cancer cell mobility. Frontiers in Pharmacology, 12, 627394.PubMedPubMedCentral
106.
Zurück zum Zitat Li, Z., Wu, J., Zhou, J., Yuan, B., Chen, J., Wu, W., et al. (2021). A vimentin-targeting oral compound with host-directed antiviral and anti-inflammatory actions addresses multiple features of COVID-19 and related diseases. MBio, 12(5), e02542-e2521.PubMedPubMedCentral Li, Z., Wu, J., Zhou, J., Yuan, B., Chen, J., Wu, W., et al. (2021). A vimentin-targeting oral compound with host-directed antiviral and anti-inflammatory actions addresses multiple features of COVID-19 and related diseases. MBio, 12(5), e02542-e2521.PubMedPubMedCentral
107.
Zurück zum Zitat Bargagna-Mohan, P., Hamza, A., Kim, Y.-E., Ho, Y. K. A., Mor-Vaknin, N., Wendschlag, N., et al. (2007). The tumor inhibitor and antiangiogenic agent withaferin A targets the intermediate filament protein vimentin. Chemistry & Biology, 14(6), 623–634. Bargagna-Mohan, P., Hamza, A., Kim, Y.-E., Ho, Y. K. A., Mor-Vaknin, N., Wendschlag, N., et al. (2007). The tumor inhibitor and antiangiogenic agent withaferin A targets the intermediate filament protein vimentin. Chemistry & Biology, 14(6), 623–634.
108.
Zurück zum Zitat Thaiparambil, J. T., Bender, L., Ganesh, T., Kline, E., Patel, P., Liu, Y., et al. (2011). Withaferin A inhibits breast cancer invasion and metastasis at sub-cytotoxic doses by inducing vimentin disassembly and serine 56 phosphorylation. International Journal of Cancer, 129(11), 2744–2755.PubMed Thaiparambil, J. T., Bender, L., Ganesh, T., Kline, E., Patel, P., Liu, Y., et al. (2011). Withaferin A inhibits breast cancer invasion and metastasis at sub-cytotoxic doses by inducing vimentin disassembly and serine 56 phosphorylation. International Journal of Cancer, 129(11), 2744–2755.PubMed
109.
Zurück zum Zitat Kaschula, C. H., Tuveri, R., Ngarande, E., Dzobo, K., Barnett, C., Kusza, D. A., et al. (2019). The garlic compound ajoene covalently binds vimentin, disrupts the vimentin network and exerts anti-metastatic activity in cancer cells. BMC Cancer, 19, 1–16. Kaschula, C. H., Tuveri, R., Ngarande, E., Dzobo, K., Barnett, C., Kusza, D. A., et al. (2019). The garlic compound ajoene covalently binds vimentin, disrupts the vimentin network and exerts anti-metastatic activity in cancer cells. BMC Cancer, 19, 1–16.
115.
Zurück zum Zitat De La Fuente, A., Zilio, S., Caroli, J., Van Simaeys, D., Mazza, E. M. C., Ince, T. A., et al. (2020). Aptamers against mouse and human tumor-infiltrating myeloid cells as reagents for targeted chemotherapy. Science Translational Medicine, 12(548), https://doi.org/10.1126/scitranslmed.aav9760. De La Fuente, A., Zilio, S., Caroli, J., Van Simaeys, D., Mazza, E. M. C., Ince, T. A., et al. (2020). Aptamers against mouse and human tumor-infiltrating myeloid cells as reagents for targeted chemotherapy. Science Translational Medicine, 12(548), https://​doi.​org/​10.​1126/​scitranslmed.​aav9760.
116.
Zurück zum Zitat Costello, A. M., Elizondo-Riojas, M.-A., Li, X., Volk, D. E., Pillai, A. K., & Wang, H. (2021). Selection and characterization of vimentin-binding aptamer motifs for ovarian cancer. Molecules, 26(21), 6525.PubMedPubMedCentral Costello, A. M., Elizondo-Riojas, M.-A., Li, X., Volk, D. E., Pillai, A. K., & Wang, H. (2021). Selection and characterization of vimentin-binding aptamer motifs for ovarian cancer. Molecules, 26(21), 6525.PubMedPubMedCentral
118.
Zurück zum Zitat Wang, H., Li, X., Volk, D. E., Lokesh, G.L.-R., Elizondo-Riojas, M.-A., Li, L., et al. (2016). Morph-X-select: Morphology-based tissue aptamer selection for ovarian cancer biomarker discovery. BioTechniques, 61(5), 249–259.PubMedPubMedCentral Wang, H., Li, X., Volk, D. E., Lokesh, G.L.-R., Elizondo-Riojas, M.-A., Li, L., et al. (2016). Morph-X-select: Morphology-based tissue aptamer selection for ovarian cancer biomarker discovery. BioTechniques, 61(5), 249–259.PubMedPubMedCentral
119.
Zurück zum Zitat Zheng, Y., Zhang, J., Huang, M., Wang, T., Qu, X., Wu, L., et al. (2020). Selection of aptamers against vimentin for isolation and release of circulating tumor cells undergoing epithelial mesenchymal transition. Analytical Chemistry, 92(7), 5178–5184.PubMed Zheng, Y., Zhang, J., Huang, M., Wang, T., Qu, X., Wu, L., et al. (2020). Selection of aptamers against vimentin for isolation and release of circulating tumor cells undergoing epithelial mesenchymal transition. Analytical Chemistry, 92(7), 5178–5184.PubMed
120.
Zurück zum Zitat Zamay, T. N., Kolovskaya, O. S., Glazyrin, Y. E., Zamay, G. S., Kuznetsova, S. A., Spivak, E. A., et al. (2014). DNA-aptamer targeting vimentin for tumor therapy in vivo. Nucleic Acid Therapeutics, 24(2), 160–170.PubMedPubMedCentral Zamay, T. N., Kolovskaya, O. S., Glazyrin, Y. E., Zamay, G. S., Kuznetsova, S. A., Spivak, E. A., et al. (2014). DNA-aptamer targeting vimentin for tumor therapy in vivo. Nucleic Acid Therapeutics, 24(2), 160–170.PubMedPubMedCentral
121.
Zurück zum Zitat Jalalian, S. H., Ramezani, M., Abnous, K., & Taghdisi, S. M. (2018). Targeted co-delivery of epirubicin and NAS-24 aptamer to cancer cells using selenium nanoparticles for enhancing tumor response in vitro and in vivo. Cancer Letters, 416, 87–93.PubMed Jalalian, S. H., Ramezani, M., Abnous, K., & Taghdisi, S. M. (2018). Targeted co-delivery of epirubicin and NAS-24 aptamer to cancer cells using selenium nanoparticles for enhancing tumor response in vitro and in vivo. Cancer Letters, 416, 87–93.PubMed
122.
Zurück zum Zitat Bahreyni, A., Yazdian-Robati, R., Hashemitabar, S., Ramezani, M., Ramezani, P., Abnous, K., et al. (2017). A new chemotherapy agent-free theranostic system composed of graphene oxide nano-complex and aptamers for treatment of cancer cells. International Journal of Pharmaceutics, 526(1–2), 391–399.PubMed Bahreyni, A., Yazdian-Robati, R., Hashemitabar, S., Ramezani, M., Ramezani, P., Abnous, K., et al. (2017). A new chemotherapy agent-free theranostic system composed of graphene oxide nano-complex and aptamers for treatment of cancer cells. International Journal of Pharmaceutics, 526(1–2), 391–399.PubMed
Metadaten
Titel
Targeting vimentin: a multifaceted approach to combatting cancer metastasis and drug resistance
verfasst von
Aliye Tabatabaee
Behjat Nafari
Armin Farhang
Amirali Hariri
Arezoo Khosravi
Ali Zarrabi
Mina Mirian
Publikationsdatum
28.11.2023
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 1/2024
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-023-10154-7

Weitere Artikel der Ausgabe 1/2024

Cancer and Metastasis Reviews 1/2024 Zur Ausgabe

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Erhöhtes Risiko fürs Herz unter Checkpointhemmer-Therapie

28.05.2024 Nebenwirkungen der Krebstherapie Nachrichten

Kardiotoxische Nebenwirkungen einer Therapie mit Immuncheckpointhemmern mögen selten sein – wenn sie aber auftreten, wird es für Patienten oft lebensgefährlich. Voruntersuchung und Monitoring sind daher obligat.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.