Skip to main content
Erschienen in: Endocrine 2/2024

29.01.2024 | Original Article

The effect of gonadotropin-inhibitory hormone on steroidogenesis and spermatogenesis by acting through the hypothalamic–pituitary–testis axis in mice

verfasst von: Tianshu Dai, Li Yang, Shihao Wei, Yuankui Chu, Xingang Dan

Erschienen in: Endocrine | Ausgabe 2/2024

Einloggen, um Zugang zu erhalten

Abstract

Gonadotropin inhibitory hormone (GnIH) is essential for regulating the reproduction of mammals and inhibiting testicular activities in mice. This study aimed to explore the mechanism of GnIH on spermatogenesis and steroidogenesis by acting through the hypothalamus-pituitary-testis axis of mice. Mice were subcutaneously injected with different doses of GnIH (1 μg/150 μL, 3 μg/150 μL, 6 μg/150 μL, 150 μL saline, twice daily) for 11 days. Subsequently, luteinizing hormone (LH), testosterone (T), and inhibin B (INH B) levels of peripheral blood were determined, and the expression of GnRH synthesis-related genes (GnRH-1, Kiss-1, NPY) and gonadotropin synthesis-related genes (FSH β, LH β, GnRH receptor) in the hypothalamus and pituitary gland were respectively detected. Additionally, the expression of steroidogenesis-related genes/proteins (P450scc, StAR and 3β-HSD) and spermatogenesis-related proteins/genes including LH receptor (LHR), androgen receptor (AR), heat shock factor-2 (HSF-2) and INH B were analyzed using western blot and q-PCR. Results showed that GnIH treatment significantly reduced the concentration of LH in the peripheral blood. Further analysis revealed that GnIH treatment markedly reduced the expression of GnRHImRNA and Kiss-1 mRNA in the hypothalamus, and mRNA levels of FSH β, LH β, and GnRHR genes in the pituitary. We also observed that GnIH treatment significantly decreased T levels and expression of the P450scc, StAR, and 3β-HSD proteins in the testis. Furthermore, GnIH treatment down-regulated LHR, AR proteins, and HSF-2 gene in the testis. Importantly, the INH B concentration of and INH βb mRNA levels significantly declined following GnIH treatment. Additionally, GnIH treatment may induce germ cell apoptosis in the testis of mice. In conclusion, GnIH may suppress spermatogenesis and steroidogenesis by acting through the hypothalamus-pituitary-testis axis in mice.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat R.W. Holdcraft, R.E. Braun, Hormonal regulation of spermatogenesis. Int. J. Androl. 27, 335–342 (2004)PubMedCrossRef R.W. Holdcraft, R.E. Braun, Hormonal regulation of spermatogenesis. Int. J. Androl. 27, 335–342 (2004)PubMedCrossRef
2.
Zurück zum Zitat K. Tsutsui, E. Saigoh, K. Ukena, H. Teranishi, Y. Fujisawa et al. A novel avian hypothalamic peptide inhibiting gonadotropin release. Biochem. Biophys. Res. Commun. 275, 661–667 (2000)PubMedCrossRef K. Tsutsui, E. Saigoh, K. Ukena, H. Teranishi, Y. Fujisawa et al. A novel avian hypothalamic peptide inhibiting gonadotropin release. Biochem. Biophys. Res. Commun. 275, 661–667 (2000)PubMedCrossRef
3.
Zurück zum Zitat K. Tsutsui, T. Osugi, Y.L. Son, T. Ubuka, Review: Structure, function and evolution of GnIH. Gen. Comp. Endocrinol. 264, 48–57 (2018)PubMedCrossRef K. Tsutsui, T. Osugi, Y.L. Son, T. Ubuka, Review: Structure, function and evolution of GnIH. Gen. Comp. Endocrinol. 264, 48–57 (2018)PubMedCrossRef
4.
Zurück zum Zitat K. Tsutsui, T. Ubuka, Discovery of gonadotropin-inhibitory hormone (GnIH), progress in GnIH research on reproductive physiology and behavior and perspective of GnIH research on neuroendocrine regulation of reproduction. Mol. Cell Endocrinol. 514, 110914 (2020)PubMedCrossRef K. Tsutsui, T. Ubuka, Discovery of gonadotropin-inhibitory hormone (GnIH), progress in GnIH research on reproductive physiology and behavior and perspective of GnIH research on neuroendocrine regulation of reproduction. Mol. Cell Endocrinol. 514, 110914 (2020)PubMedCrossRef
5.
Zurück zum Zitat K. Tsutsui, T. Ubuka, Gonadotropin-inhibitory hormone (GnIH): a new key neurohormone controlling reproductive physiology and behavior. Front. Neuroendocrinol. 61, 100900 (2021)PubMedCrossRef K. Tsutsui, T. Ubuka, Gonadotropin-inhibitory hormone (GnIH): a new key neurohormone controlling reproductive physiology and behavior. Front. Neuroendocrinol. 61, 100900 (2021)PubMedCrossRef
6.
Zurück zum Zitat I.J. Clarke, Y. Qi, I.P. Sari, J.T. Smith, Evidence that RF-amide related peptides are inhibitors of reproduction in mammals. Front. Neuroendocrinol. 30, 371–378 (2009)PubMedCrossRef I.J. Clarke, Y. Qi, I.P. Sari, J.T. Smith, Evidence that RF-amide related peptides are inhibitors of reproduction in mammals. Front. Neuroendocrinol. 30, 371–378 (2009)PubMedCrossRef
7.
Zurück zum Zitat I. Parhar, S. Ogawa, T. Kitahashi, RFamide peptides as mediators in environmental control of GnRH neurons. Prog. Neurobiol. 98, 176–196 (2012)PubMedCrossRef I. Parhar, S. Ogawa, T. Kitahashi, RFamide peptides as mediators in environmental control of GnRH neurons. Prog. Neurobiol. 98, 176–196 (2012)PubMedCrossRef
8.
Zurück zum Zitat G.E. Bentley, N. Perfito, K. Ukena, K. Tsutsui, J.C. Wingfield, Gonadotropin-inhibitory peptide in song sparrows (Melospiza melodia) in different reproductive conditions, and in house sparrows (Passer domesticus) relative to chicken-gonadotropin-releasing hormone. J. Neuroendocrinol. 15, 794–802 (2003)PubMedCrossRef G.E. Bentley, N. Perfito, K. Ukena, K. Tsutsui, J.C. Wingfield, Gonadotropin-inhibitory peptide in song sparrows (Melospiza melodia) in different reproductive conditions, and in house sparrows (Passer domesticus) relative to chicken-gonadotropin-releasing hormone. J. Neuroendocrinol. 15, 794–802 (2003)PubMedCrossRef
9.
Zurück zum Zitat M.A. Johnson, K. Tsutsui, G.S. Fraley, Rat RFamide-related peptide-3 stimulates GH secretion, inhibits LH secretion, and has variable effects on sex behavior in the adult male rat. Horm. Behav. 51, 171–180 (2007)PubMedCrossRef M.A. Johnson, K. Tsutsui, G.S. Fraley, Rat RFamide-related peptide-3 stimulates GH secretion, inhibits LH secretion, and has variable effects on sex behavior in the adult male rat. Horm. Behav. 51, 171–180 (2007)PubMedCrossRef
10.
Zurück zum Zitat M.Z. Rizwan, M.C. Poling, M. Corr, P.A. Cornes, R.A. Augustine, J.H. Quennell et al. RFamide-related peptide-3 receptor gene expression in GnRH and kisspeptin neurons and GnRH-dependent mechanism of action. Endocrinology 153, 3770–3779 (2012)PubMedCrossRef M.Z. Rizwan, M.C. Poling, M. Corr, P.A. Cornes, R.A. Augustine, J.H. Quennell et al. RFamide-related peptide-3 receptor gene expression in GnRH and kisspeptin neurons and GnRH-dependent mechanism of action. Endocrinology 153, 3770–3779 (2012)PubMedCrossRef
11.
Zurück zum Zitat S. Hinuma, Y. Shintani, S. Fukusumi, N. Iijima, Y. Matsumoto et al. New neuropeptides containing carboxy-terminal RFamide and their receptor in mammals. Nat. Cell Biol. 2, 703–708 (2000)PubMedCrossRef S. Hinuma, Y. Shintani, S. Fukusumi, N. Iijima, Y. Matsumoto et al. New neuropeptides containing carboxy-terminal RFamide and their receptor in mammals. Nat. Cell Biol. 2, 703–708 (2000)PubMedCrossRef
12.
Zurück zum Zitat E.M. Gibson, S.A. Humber, S. Jain, W.P. Williams, S. Zhao, G.E. Bentley et al. Alterations in RFamide-related peptide expression are coordinated with the preovulatory luteinizing hormone surge. Endocrinology 149, 4958–4969 (2008)PubMedPubMedCentralCrossRef E.M. Gibson, S.A. Humber, S. Jain, W.P. Williams, S. Zhao, G.E. Bentley et al. Alterations in RFamide-related peptide expression are coordinated with the preovulatory luteinizing hormone surge. Endocrinology 149, 4958–4969 (2008)PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Y.L. Son, T. Ubuka, R.P. Millar, H. Kanasaki, K. Tsutsui, Gonadotropin-inhibitory hormone inhibits GnRH-induced gonadotropin subunit gene transcriptions by inhibiting AC/cAMP/PKA-dependent ERK pathway in LβT2 cells. Endocrinology 153, 2332–2343 (2012)PubMedCrossRef Y.L. Son, T. Ubuka, R.P. Millar, H. Kanasaki, K. Tsutsui, Gonadotropin-inhibitory hormone inhibits GnRH-induced gonadotropin subunit gene transcriptions by inhibiting AC/cAMP/PKA-dependent ERK pathway in LβT2 cells. Endocrinology 153, 2332–2343 (2012)PubMedCrossRef
14.
Zurück zum Zitat T. Ubuka, K. Morgan, A.J. Pawson, T. Osugi, V.S. Chowdhury et al. Identification of human GnIH homologs, RFRP-1 and RFRP-3, and the cognate receptor, GPR147 in the human hypothalamic pituitary Axis. PLoS ONE 4, e8400 (2009)PubMedPubMedCentralCrossRef T. Ubuka, K. Morgan, A.J. Pawson, T. Osugi, V.S. Chowdhury et al. Identification of human GnIH homologs, RFRP-1 and RFRP-3, and the cognate receptor, GPR147 in the human hypothalamic pituitary Axis. PLoS ONE 4, e8400 (2009)PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat N.A. Ciccone, I.C. Dunn, T. Boswell, K. Tsutsui, T. Ubuka et al. Gonadotrophin inhibitory hormone depresses gonadotrophin α and follicle-stimulating hormone β subunit expression in the pituitary of the domestic chicken. J. Neuroendocrinol. 16, 999–1006 (2004)PubMedCrossRef N.A. Ciccone, I.C. Dunn, T. Boswell, K. Tsutsui, T. Ubuka et al. Gonadotrophin inhibitory hormone depresses gonadotrophin α and follicle-stimulating hormone β subunit expression in the pituitary of the domestic chicken. J. Neuroendocrinol. 16, 999–1006 (2004)PubMedCrossRef
16.
Zurück zum Zitat T. Ubuka, K. Ukena, P.J. Sharp, G.E. Bentley, K. Tsutsui, Gonadotropin-inhibitory hormone inhibits gonadal development and maintenance by decreasing gonadotropin synthesis and release in male quail. Endocrinology 147, 1187–1194 (2006)PubMedCrossRef T. Ubuka, K. Ukena, P.J. Sharp, G.E. Bentley, K. Tsutsui, Gonadotropin-inhibitory hormone inhibits gonadal development and maintenance by decreasing gonadotropin synthesis and release in male quail. Endocrinology 147, 1187–1194 (2006)PubMedCrossRef
17.
Zurück zum Zitat H. Kadokawa, M. Shibata, Y. Tanaka, T. Kojima, M. Matsumoto et al. Bovine C-terminal octapeptide of RFamide-related peptide-3 suppresses luteinizing hormone (LH) secretion from the pituitary as well as pulsatile LH secretion in bovines. Domest. Anim. Endocrinol. 36, 219–224 (2009)PubMedCrossRef H. Kadokawa, M. Shibata, Y. Tanaka, T. Kojima, M. Matsumoto et al. Bovine C-terminal octapeptide of RFamide-related peptide-3 suppresses luteinizing hormone (LH) secretion from the pituitary as well as pulsatile LH secretion in bovines. Domest. Anim. Endocrinol. 36, 219–224 (2009)PubMedCrossRef
18.
Zurück zum Zitat X. Li, J. Su, R. Fang, L. Zheng, R. Lei et al. The effects of RFRP-3, the mammalian ortholog of GnIH, on the female pig reproductive axis in vitro. Mol. Cell Endocrinol. 372, 65–72 (2013)PubMedCrossRef X. Li, J. Su, R. Fang, L. Zheng, R. Lei et al. The effects of RFRP-3, the mammalian ortholog of GnIH, on the female pig reproductive axis in vitro. Mol. Cell Endocrinol. 372, 65–72 (2013)PubMedCrossRef
19.
Zurück zum Zitat R. Pineda, D. Garcia-Galiano, M.A. Sanchez-Garrido, M. Romero, F. Ruiz-Pino et al. Characterization of the inhibitory roles of RFRP3, the mammalian ortholog of GnIH, in the control of gonadotropin secretion in the rat: in vivo and in vitro studies. Am. J. Physiol. Endocrinol. Metab. 299, E39–E46 (2010)PubMedCrossRef R. Pineda, D. Garcia-Galiano, M.A. Sanchez-Garrido, M. Romero, F. Ruiz-Pino et al. Characterization of the inhibitory roles of RFRP3, the mammalian ortholog of GnIH, in the control of gonadotropin secretion in the rat: in vivo and in vitro studies. Am. J. Physiol. Endocrinol. Metab. 299, E39–E46 (2010)PubMedCrossRef
20.
Zurück zum Zitat I.P. Sari, A. Rao, J.T. Smith, A.J. Tilbrook, I.J. Clarke, Effect of RF-Amide-related peptide-3 on luteinizing hormone and follicle-stimulating hormone synthesis and secretion in ovine pituitary gonadotropes. Endocrinology 150, 5549–5556 (2009)PubMedCrossRef I.P. Sari, A. Rao, J.T. Smith, A.J. Tilbrook, I.J. Clarke, Effect of RF-Amide-related peptide-3 on luteinizing hormone and follicle-stimulating hormone synthesis and secretion in ovine pituitary gonadotropes. Endocrinology 150, 5549–5556 (2009)PubMedCrossRef
21.
Zurück zum Zitat I.J. Clarke, I.P. Sari, Y. Qi, J.T. Smith, H.C. Parkington et al. Potent action of RFamide-related peptide-3 on pituitary gonadotropes indicative of a hypophysiotropic role in the negative regulation of gonadotropin secretion. Endocrinology 149, 5811–5821 (2008)PubMedCrossRef I.J. Clarke, I.P. Sari, Y. Qi, J.T. Smith, H.C. Parkington et al. Potent action of RFamide-related peptide-3 on pituitary gonadotropes indicative of a hypophysiotropic role in the negative regulation of gonadotropin secretion. Endocrinology 149, 5811–5821 (2008)PubMedCrossRef
22.
Zurück zum Zitat S. Anjum, A. Krishna, K. Tsutsui, Inhibitory roles of the mammalian GnIH ortholog RFRP3 in testicular activities in adult mice. J. Endocrinol. 223, 79–91 (2014)PubMedCrossRef S. Anjum, A. Krishna, K. Tsutsui, Inhibitory roles of the mammalian GnIH ortholog RFRP3 in testicular activities in adult mice. J. Endocrinol. 223, 79–91 (2014)PubMedCrossRef
23.
Zurück zum Zitat K. Ubuka, L.Y. Son, Y. Tobari, M. Narihiro, G.E. Bentley, L.G. Kriegsfeld et al. Central and direct regulation of testicular activity by gonadotropin-inhibitory hormone and its receptor. Front. Endocrinol. 5, 8 (2014)CrossRef K. Ubuka, L.Y. Son, Y. Tobari, M. Narihiro, G.E. Bentley, L.G. Kriegsfeld et al. Central and direct regulation of testicular activity by gonadotropin-inhibitory hormone and its receptor. Front. Endocrinol. 5, 8 (2014)CrossRef
24.
Zurück zum Zitat L. Han, C.J. Wu, H.S. Riazz, L.Y. Bai, J.G. Chen et al. Characterization of the mechanism of inhibin a-subunit gene in mouse anterior pituitary cells by RNA interference. Plos One 8, e74596 (2013)PubMedPubMedCentralCrossRef L. Han, C.J. Wu, H.S. Riazz, L.Y. Bai, J.G. Chen et al. Characterization of the mechanism of inhibin a-subunit gene in mouse anterior pituitary cells by RNA interference. Plos One 8, e74596 (2013)PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat R.J. Shao, F.P. Zhang, F. Tian, P.A. Friberg, X.Y. Wang et al. Increase of SUMO-1 expression in response to hypoxia: direct interaction with HIF-1alpha in adult mouse brain and heart in vivo. FEBS Lett. 569, 293–300 (2004)PubMedCrossRef R.J. Shao, F.P. Zhang, F. Tian, P.A. Friberg, X.Y. Wang et al. Increase of SUMO-1 expression in response to hypoxia: direct interaction with HIF-1alpha in adult mouse brain and heart in vivo. FEBS Lett. 569, 293–300 (2004)PubMedCrossRef
26.
Zurück zum Zitat T. Ubuka, S. Kim, Y.C. Huang, J. Reid, J. Jiang et al. Gonadotropin-inhibitory hormone neurons interact directly with gonadotropin-releasing hormone-I and -II neurons in European starling brain. Endocrinology 149, 268–278 (2008)PubMedCrossRef T. Ubuka, S. Kim, Y.C. Huang, J. Reid, J. Jiang et al. Gonadotropin-inhibitory hormone neurons interact directly with gonadotropin-releasing hormone-I and -II neurons in European starling brain. Endocrinology 149, 268–278 (2008)PubMedCrossRef
27.
Zurück zum Zitat X.H. Han, Y.Y. He, G.L. Zeng, Y.H. Wang, W. Sun et al. Intracerebroventricular injection of RFRP-3 delays puberty onset and stimulates growth hormone secretion in female rats. Reprod. Biol. Endocrinol. 15, 35 (2017)PubMedPubMedCentralCrossRef X.H. Han, Y.Y. He, G.L. Zeng, Y.H. Wang, W. Sun et al. Intracerebroventricular injection of RFRP-3 delays puberty onset and stimulates growth hormone secretion in female rats. Reprod. Biol. Endocrinol. 15, 35 (2017)PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat M. Murakami, T. Matsuzaki, T. Iwasa, T. Yasui, M. Irahara et al. Hypophysiotropic role of RFamide-related peptide-3 in the inhibition of LH secretion in female rats. J. Endocrinol. 199, 105–112 (2008)PubMedCrossRef M. Murakami, T. Matsuzaki, T. Iwasa, T. Yasui, M. Irahara et al. Hypophysiotropic role of RFamide-related peptide-3 in the inhibition of LH secretion in female rats. J. Endocrinol. 199, 105–112 (2008)PubMedCrossRef
29.
Zurück zum Zitat M. Sivalingam, S. Ogawa, V.L. Trudeau, I.S. Parhar, Conserved functions of hypothalamic kisspeptin in vertebrates. Gen. Comp. Endocrinol. 317, 113973 (2022)PubMedCrossRef M. Sivalingam, S. Ogawa, V.L. Trudeau, I.S. Parhar, Conserved functions of hypothalamic kisspeptin in vertebrates. Gen. Comp. Endocrinol. 317, 113973 (2022)PubMedCrossRef
30.
Zurück zum Zitat V. Sobrino, M.S. Avendaño, C. Perdices-López, M. Jimenez-Puyer, Tena-Sempere, M, Kisspeptins and the neuroendocrine control of reproduction: recent progress and new frontiers in kisspeptin research. Front. Neuroendocrinol. 65, 100977 (2022)PubMedCrossRef V. Sobrino, M.S. Avendaño, C. Perdices-López, M. Jimenez-Puyer, Tena-Sempere, M, Kisspeptins and the neuroendocrine control of reproduction: recent progress and new frontiers in kisspeptin research. Front. Neuroendocrinol. 65, 100977 (2022)PubMedCrossRef
32.
Zurück zum Zitat I.J. Clarke, J.T. Smith, B.A. Henry, B.J. Oldfield, A. Stefanidis et al. Gonadotropin-inhibitory hormone is a hypothalamic peptide that provides a molecular switch between reproduction and feeding. Neuroendocrinology 95, 305–316 (2012)PubMedCrossRef I.J. Clarke, J.T. Smith, B.A. Henry, B.J. Oldfield, A. Stefanidis et al. Gonadotropin-inhibitory hormone is a hypothalamic peptide that provides a molecular switch between reproduction and feeding. Neuroendocrinology 95, 305–316 (2012)PubMedCrossRef
33.
Zurück zum Zitat M.K. Herde, K. Geist, R.E. Campbell, A.E. Herbison, Gonadotropin-releasing hormone neurons extend complex highly branched dendritic trees outside the blood-brain barrier. Endocrinology 152, 3832–3841 (2011)PubMedCrossRef M.K. Herde, K. Geist, R.E. Campbell, A.E. Herbison, Gonadotropin-releasing hormone neurons extend complex highly branched dendritic trees outside the blood-brain barrier. Endocrinology 152, 3832–3841 (2011)PubMedCrossRef
34.
Zurück zum Zitat W.A. Banks, M. Goulet, J.R. Rusche, M.L. Niehoff, R. Boismenu, Differential transport of a secretin analog across the blood-brain and blood-cerebrospinal fluid barriers of the mouse. J. Pharm. Exp. Ther. 302, 1062–1069 (2002)CrossRef W.A. Banks, M. Goulet, J.R. Rusche, M.L. Niehoff, R. Boismenu, Differential transport of a secretin analog across the blood-brain and blood-cerebrospinal fluid barriers of the mouse. J. Pharm. Exp. Ther. 302, 1062–1069 (2002)CrossRef
35.
Zurück zum Zitat D. Dogrukol-Ak, F. Tore, N. Tuncel, Passage of VIP/PACAP/secretin family across the blood-brain barrier: therapeutic effects. Curr. Pharm. Des. 10, 1325–1340 (2004)PubMedCrossRef D. Dogrukol-Ak, F. Tore, N. Tuncel, Passage of VIP/PACAP/secretin family across the blood-brain barrier: therapeutic effects. Curr. Pharm. Des. 10, 1325–1340 (2004)PubMedCrossRef
36.
Zurück zum Zitat A. Caraty, D. Lomet, M.E. Sébert, D. Guillaume, M. Beltramo, N.P. Evans, Gonadotrophin-releasing hormone release into the hypophyseal portal blood of the ewe mirrors both pulsatile and continuous intravenous infusion of kisspeptin: an insight into kisspeptin’s mechanism of action. J. Neuroendocrinol. 25, 537–546 (2013)PubMedCrossRef A. Caraty, D. Lomet, M.E. Sébert, D. Guillaume, M. Beltramo, N.P. Evans, Gonadotrophin-releasing hormone release into the hypophyseal portal blood of the ewe mirrors both pulsatile and continuous intravenous infusion of kisspeptin: an insight into kisspeptin’s mechanism of action. J. Neuroendocrinol. 25, 537–546 (2013)PubMedCrossRef
37.
Zurück zum Zitat J.T. George, M. Hendrikse, J.D. Veldhuis, I.J. Clarke, R.A. Anderson et al. Effect of gonadotropin inhibitory hormone (GnIH) on luteinizing hormone secretion in humans. Clin. Endocrinol. 86, 731–738 (2017)CrossRef J.T. George, M. Hendrikse, J.D. Veldhuis, I.J. Clarke, R.A. Anderson et al. Effect of gonadotropin inhibitory hormone (GnIH) on luteinizing hormone secretion in humans. Clin. Endocrinol. 86, 731–738 (2017)CrossRef
38.
Zurück zum Zitat P. Singh, A. Krishna, R. Sridaran, K. Tsutsui, Immunohistochemical localization of GnRH and RFamide-related peptide-3 in the ovaries of mice during the estrous cycle. J. Mol. Histol. 42, 371–381 (2011)PubMedPubMedCentralCrossRef P. Singh, A. Krishna, R. Sridaran, K. Tsutsui, Immunohistochemical localization of GnRH and RFamide-related peptide-3 in the ovaries of mice during the estrous cycle. J. Mol. Histol. 42, 371–381 (2011)PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat L. Zheng, J. Su, R. Fang, M. Jin, Z. Lei et al. Developmental changes in the role of gonadotropin-inhibitory hormone (GnIH) and its receptors in the reproductive axis of male Xiaomeishan pigs. Anim. Reprod. Sci. 154, 113–120 (2015)PubMedCrossRef L. Zheng, J. Su, R. Fang, M. Jin, Z. Lei et al. Developmental changes in the role of gonadotropin-inhibitory hormone (GnIH) and its receptors in the reproductive axis of male Xiaomeishan pigs. Anim. Reprod. Sci. 154, 113–120 (2015)PubMedCrossRef
40.
Zurück zum Zitat J. Su, Y. Song, Y. Yang, Z. Li, F. Zhao et al. Study on the changes of LHR, FSHR, and AR with the development of testis cells in Hu sheep. Anim. Reprod. Sci. 256, 107306 (2023)PubMedCrossRef J. Su, Y. Song, Y. Yang, Z. Li, F. Zhao et al. Study on the changes of LHR, FSHR, and AR with the development of testis cells in Hu sheep. Anim. Reprod. Sci. 256, 107306 (2023)PubMedCrossRef
41.
Zurück zum Zitat K.M. Graf, J.A. Dias, M.D. Griswold, Decreased spermatogenesis as the result of an induced autoimmune reaction directed against the gonadotropin receptors in male rats. J. Androl. 18(2), 174–185 (1997)PubMedCrossRef K.M. Graf, J.A. Dias, M.D. Griswold, Decreased spermatogenesis as the result of an induced autoimmune reaction directed against the gonadotropin receptors in male rats. J. Androl. 18(2), 174–185 (1997)PubMedCrossRef
42.
Zurück zum Zitat G.H. Wang, J. Zhang, D. Moskophidis, N.F. Mivechi, Targeted disruption of the heat shock transcription factor (hsf)-2 gene results in increased embryonic lethality, neuronal defects, and reduced spermatogenesis. Genesis 36(1), 48–61 (2003)PubMedCrossRef G.H. Wang, J. Zhang, D. Moskophidis, N.F. Mivechi, Targeted disruption of the heat shock transcription factor (hsf)-2 gene results in increased embryonic lethality, neuronal defects, and reduced spermatogenesis. Genesis 36(1), 48–61 (2003)PubMedCrossRef
43.
Zurück zum Zitat J. Liu, M.B. Rone, V. Papadopoulos, Protein-protein interactions mediate mitochondrial cholesterol transport and steroid biosynthesis. J. Biol. Chem. 281, 38879–38893 (2006)PubMedCrossRef J. Liu, M.B. Rone, V. Papadopoulos, Protein-protein interactions mediate mitochondrial cholesterol transport and steroid biosynthesis. J. Biol. Chem. 281, 38879–38893 (2006)PubMedCrossRef
44.
Zurück zum Zitat D.M. Stocco, X. Wang, Y. Jo, P.R. Manna, Multiple signaling pathways regulating steroidogenesis and steroidogenic acute regulatory protein expression: more complicated than we thought. Mol. Endocrinol. 19, 2647–2659 (2005)PubMedCrossRef D.M. Stocco, X. Wang, Y. Jo, P.R. Manna, Multiple signaling pathways regulating steroidogenesis and steroidogenic acute regulatory protein expression: more complicated than we thought. Mol. Endocrinol. 19, 2647–2659 (2005)PubMedCrossRef
45.
Zurück zum Zitat F.P. Zhang, T. Pakarainen, M. Poutanen, J. Toppari, I. Huhtaniemi, The low gonadotropin-independent constitutive production of testicular testosterone is sufficient to maintain spermatogenesis. Proc. Natl Acad. Sci. 100, 13692–13697 (2003)PubMedPubMedCentralCrossRef F.P. Zhang, T. Pakarainen, M. Poutanen, J. Toppari, I. Huhtaniemi, The low gonadotropin-independent constitutive production of testicular testosterone is sufficient to maintain spermatogenesis. Proc. Natl Acad. Sci. 100, 13692–13697 (2003)PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat L.X. Shan, C.W. Bardin, M.P. Hardy, Immunohistochemical analysis of androgen effects on androgen receptor expression in developing Leydig and Sertoli cells. Endocrinology 138, 1259–1266 (1997)PubMedCrossRef L.X. Shan, C.W. Bardin, M.P. Hardy, Immunohistochemical analysis of androgen effects on androgen receptor expression in developing Leydig and Sertoli cells. Endocrinology 138, 1259–1266 (1997)PubMedCrossRef
47.
Zurück zum Zitat X. Zhou, A. Kudo, H. Kawakami, H. Hirano, Immunohistochemical localization of androgen receptor in mouse testicular germ cells during fetal and postnatal development. Anat. Rec. 245, 509–518 (1996)PubMedCrossRef X. Zhou, A. Kudo, H. Kawakami, H. Hirano, Immunohistochemical localization of androgen receptor in mouse testicular germ cells during fetal and postnatal development. Anat. Rec. 245, 509–518 (1996)PubMedCrossRef
48.
Zurück zum Zitat R.S. Wang, S. Yeh, C.R. Tzeng, C. Chang, Androgen receptor roles in spermatogenesis and fertility: lessons from testicular cell-specific androgen receptor knockout mice. Endocr. Rev. 30, 119–132 (2009)PubMedPubMedCentralCrossRef R.S. Wang, S. Yeh, C.R. Tzeng, C. Chang, Androgen receptor roles in spermatogenesis and fertility: lessons from testicular cell-specific androgen receptor knockout mice. Endocr. Rev. 30, 119–132 (2009)PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Q. Xu, H.Y. Lin, S.D. Yeh, I.C. Yu, R.S. Wang et al. Infertility with defective spermatogenesis and steroidogenesis in male mice lacking androgen receptor in Leydig cells. Endocrine 32, 96–106 (2007)PubMedCrossRef Q. Xu, H.Y. Lin, S.D. Yeh, I.C. Yu, R.S. Wang et al. Infertility with defective spermatogenesis and steroidogenesis in male mice lacking androgen receptor in Leydig cells. Endocrine 32, 96–106 (2007)PubMedCrossRef
50.
Zurück zum Zitat F.H. Pierik, J.T. Vreeburg, T. Stijnen, F.H.D. Jong, R.F. Weber, Serum Inhibin B as a marker of spermatogenesis. J. Clin. Endocrinol. Metab. 83, 3110–3114 (1998)PubMedCrossRef F.H. Pierik, J.T. Vreeburg, T. Stijnen, F.H.D. Jong, R.F. Weber, Serum Inhibin B as a marker of spermatogenesis. J. Clin. Endocrinol. Metab. 83, 3110–3114 (1998)PubMedCrossRef
51.
Zurück zum Zitat N. Jørgensen, F. Liu, A.M. Andersson, M. Vierula, D.S. Irvine et al. Serum inhibin-b in fertile men is strongly correlated with low but not high sperm counts: a coordinated study of 1,797 European and US men. Fertil. Steril. 94, 2128–2134 (2010)PubMedPubMedCentralCrossRef N. Jørgensen, F. Liu, A.M. Andersson, M. Vierula, D.S. Irvine et al. Serum inhibin-b in fertile men is strongly correlated with low but not high sperm counts: a coordinated study of 1,797 European and US men. Fertil. Steril. 94, 2128–2134 (2010)PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat G. Wang, Z. Ying, X. Jin, N. Tu, Y. Zhang et al. Essential requirement for both hsf1 and hsf2 transcriptional activity in spermatogenesis and male fertility. Genesis 38, 66–80 (2004)PubMedCrossRef G. Wang, Z. Ying, X. Jin, N. Tu, Y. Zhang et al. Essential requirement for both hsf1 and hsf2 transcriptional activity in spermatogenesis and male fertility. Genesis 38, 66–80 (2004)PubMedCrossRef
53.
Zurück zum Zitat P. Singh, A. Krishna, K. Tsutsui, Effects of gonadotropin-inhibitory hormone on folliculogenesis and steroidogenesis of cyclic mice. Fertil. Steril. 95(4), 1397–1404 (2011)PubMedCrossRef P. Singh, A. Krishna, K. Tsutsui, Effects of gonadotropin-inhibitory hormone on folliculogenesis and steroidogenesis of cyclic mice. Fertil. Steril. 95(4), 1397–1404 (2011)PubMedCrossRef
54.
Zurück zum Zitat M.I. Mendoza-Cabrera, R.E. Navarro-Hernández, A. Santerre, P.C. Ortiz-Lazareno, A.L. Pereira-Suárez et al. Effect of pregnancy hormone mixtures on cytokine production and surface marker expression in naïve and LPS-activated THP-1 differentiated monocytes/macrophages. Innate Immun. 26(2), 84–96 (2020)PubMedCrossRef M.I. Mendoza-Cabrera, R.E. Navarro-Hernández, A. Santerre, P.C. Ortiz-Lazareno, A.L. Pereira-Suárez et al. Effect of pregnancy hormone mixtures on cytokine production and surface marker expression in naïve and LPS-activated THP-1 differentiated monocytes/macrophages. Innate Immun. 26(2), 84–96 (2020)PubMedCrossRef
55.
Zurück zum Zitat Y.T. Gui, J. Yu, Z.M. Cai, Hormone regulation of the expression of vascular endothelial growth factor and its receptors in mouse uterus. J. Peking. Univ. (Health Sci.) 37(5), 501–503 (2005) Y.T. Gui, J. Yu, Z.M. Cai, Hormone regulation of the expression of vascular endothelial growth factor and its receptors in mouse uterus. J. Peking. Univ. (Health Sci.) 37(5), 501–503 (2005)
Metadaten
Titel
The effect of gonadotropin-inhibitory hormone on steroidogenesis and spermatogenesis by acting through the hypothalamic–pituitary–testis axis in mice
verfasst von
Tianshu Dai
Li Yang
Shihao Wei
Yuankui Chu
Xingang Dan
Publikationsdatum
29.01.2024
Verlag
Springer US
Erschienen in
Endocrine / Ausgabe 2/2024
Print ISSN: 1355-008X
Elektronische ISSN: 1559-0100
DOI
https://doi.org/10.1007/s12020-024-03690-x

Weitere Artikel der Ausgabe 2/2024

Endocrine 2/2024 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

Nach Herzinfarkt mit Typ-1-Diabetes schlechtere Karten als mit Typ 2?

29.05.2024 Herzinfarkt Nachrichten

Bei Menschen mit Typ-2-Diabetes sind die Chancen, einen Myokardinfarkt zu überleben, in den letzten 15 Jahren deutlich gestiegen – nicht jedoch bei Betroffenen mit Typ 1.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.