Skip to main content
Erschienen in: Inflammation 5/2023

13.06.2023 | RESEARCH

The Effect of JAK Inhibitor Tofacitinib on Chondrocyte Autophagy

verfasst von: Ping Zhang, Juan Xiao, Chenggen Luo, Xiaorui Liu, Chunyan Li, Jing Zhao, Xu Liu, Xiaoli Pan, Mei Tian

Erschienen in: Inflammation | Ausgabe 5/2023

Einloggen, um Zugang zu erhalten

Abstract

Osteoarthritis (OA) is a multifactorial disease of the whole joint that has a complex pathogenesis. There is currently no cure for OA. Tofacitinib is a broad JAK inhibitor that can have an anti-inflammatory effect. The objective of this study was to investigate the effect of tofacitinib on the cartilage extracellular matrix in OA and determine whether tofacitinib exerts a protective effect by inhibiting the JAK1/STAT3 signaling pathway and upregulating autophagy in chondrocytes. We investigated the expression profile of OA in vitro by exposing SW1353 cells to interleukin-1β (IL-1β), and induced OA in vivo using the modified Hulth method in rats. We found that IL-1β promoted the expression of OA-related matrix metalloproteinases (MMP3 and MMP13), reduced the expression of collagen II, reduced the expression of beclin1 and LC3-II/I, and promoted the accumulation of p62 in SW1353 cells. Tofacitinib attenuated IL-1β-stimulated changes in MMPs and collagen II and restored autophagy. In IL-1β-stimulated SW1353 cells, the JAK1/STAT3 signaling pathway was activated. Tofacitinib inhibited the IL-1β-stimulated expression of p-JAK1 and p-STAT3 and prevented translocation of p-STAT3 to the nucleus. In the rat model of OA, tofacitinib reduced articular cartilage degeneration by delaying cartilage extracellular matrix degradation and increasing chondrocyte autophagy. Our study demonstrates that chondrocyte autophagy was impaired in experimental models of OA. Tofacitinib reduced the inflammatory response and restored the damaged autophagic flux in OA.
Literatur
1.
Zurück zum Zitat Xiaoshi, J., L. Maoquan, W. Jiwei, N. Jinqiu, and Z. Ke. 2021. SETD7 mediates the vascular invasion in articular cartilage and chondrocytes apoptosis in osteoarthriis. The FASEB Journal 35 (3): e21283.PubMed Xiaoshi, J., L. Maoquan, W. Jiwei, N. Jinqiu, and Z. Ke. 2021. SETD7 mediates the vascular invasion in articular cartilage and chondrocytes apoptosis in osteoarthriis. The FASEB Journal 35 (3): e21283.PubMed
2.
Zurück zum Zitat Charlier, E., C. Deroyer, F. Ciregia, O. Malaise, S. Neuville, Z. Plener, M. Malaise, and D. de Seny. 2019. Chondrocyte dedifferentiation and osteoarthritis (OA). Biochemical Pharmacology 165: 49–65.PubMed Charlier, E., C. Deroyer, F. Ciregia, O. Malaise, S. Neuville, Z. Plener, M. Malaise, and D. de Seny. 2019. Chondrocyte dedifferentiation and osteoarthritis (OA). Biochemical Pharmacology 165: 49–65.PubMed
3.
Zurück zum Zitat van den Bosch, M. 2021. Osteoarthritis year in review 2020: Biology. Osteoarthritis Cartilage 29 (2): 143–150.PubMed van den Bosch, M. 2021. Osteoarthritis year in review 2020: Biology. Osteoarthritis Cartilage 29 (2): 143–150.PubMed
4.
Zurück zum Zitat Shi, Y., X. Hu, J. Cheng, X. Zhang, F. Zhao, W. Shi, B. Ren, H. Yu, P. Yang, Z. Li, Q. Liu, Z. Liu, X. Duan, X. Fu, J. Zhang, J. Wang, and Y. Ao. 2019. A small molecule promotes cartilage extracellular matrix generation and inhibits osteoarthritis development. Nature Communications 10 (1): 1914.PubMedPubMedCentral Shi, Y., X. Hu, J. Cheng, X. Zhang, F. Zhao, W. Shi, B. Ren, H. Yu, P. Yang, Z. Li, Q. Liu, Z. Liu, X. Duan, X. Fu, J. Zhang, J. Wang, and Y. Ao. 2019. A small molecule promotes cartilage extracellular matrix generation and inhibits osteoarthritis development. Nature Communications 10 (1): 1914.PubMedPubMedCentral
5.
Zurück zum Zitat Nakamura, S., and T. Yoshimori. 2017. New insights into autophagosome-lysosome fusion. Journal of Cell Science 130 (7): 1209–1216.PubMed Nakamura, S., and T. Yoshimori. 2017. New insights into autophagosome-lysosome fusion. Journal of Cell Science 130 (7): 1209–1216.PubMed
6.
7.
Zurück zum Zitat Liu, Y., S. Xu, H. Zhang, K. Qian, J. Huang, X. Gu, Y. Li, Y. Fan, and J. Hu. 2021. Stimulation of α7-nAChRs coordinates autophagy and apoptosis signaling in experimental knee osteoarthritis. Cell Death & Disease 12 (5): 448. Liu, Y., S. Xu, H. Zhang, K. Qian, J. Huang, X. Gu, Y. Li, Y. Fan, and J. Hu. 2021. Stimulation of α7-nAChRs coordinates autophagy and apoptosis signaling in experimental knee osteoarthritis. Cell Death & Disease 12 (5): 448.
8.
Zurück zum Zitat Wang, F.S., C.W. Kuo, J.Y. Ko, Y.S. Chen, S.Y. Wang, H.J. Ke, P.C. Kuo, C.H. Lee, J.C. Wu, W.B. Lu, M.H. Tai, H. Jahr, and W.S. Lian. 2020. Irisin mitigates oxidative stress, chondrocyte dysfunction and osteoarthritis development through regulating mitochondrial integrity and autophagy. Antioxidants (Basel) 9 (9): 810.PubMed Wang, F.S., C.W. Kuo, J.Y. Ko, Y.S. Chen, S.Y. Wang, H.J. Ke, P.C. Kuo, C.H. Lee, J.C. Wu, W.B. Lu, M.H. Tai, H. Jahr, and W.S. Lian. 2020. Irisin mitigates oxidative stress, chondrocyte dysfunction and osteoarthritis development through regulating mitochondrial integrity and autophagy. Antioxidants (Basel) 9 (9): 810.PubMed
9.
Zurück zum Zitat Wang, C., J. Shen, J. Ying, D. Xiao, and R.J. O’Keefe. 2020. FoxO1 is a crucial mediator of TGF-β/TAK1 signaling and protects against osteoarthritis by maintaining articular cartilage homeostasis. Proceedings of the National Academy of Sciences of the United States of America 117 (48): 30488–30497.PubMedPubMedCentral Wang, C., J. Shen, J. Ying, D. Xiao, and R.J. O’Keefe. 2020. FoxO1 is a crucial mediator of TGF-β/TAK1 signaling and protects against osteoarthritis by maintaining articular cartilage homeostasis. Proceedings of the National Academy of Sciences of the United States of America 117 (48): 30488–30497.PubMedPubMedCentral
10.
Zurück zum Zitat Xu, K., Y. He, S. Moqbel, X. Zhou, L. Wu, and J. Bao. 2021. SIRT3 ameliorates osteoarthritis via regulating chondrocyte autophagy and apoptosis through the PI3K/Akt/mTOR pathway. International Journal of Biological Macromolecules 175: 351–360.PubMed Xu, K., Y. He, S. Moqbel, X. Zhou, L. Wu, and J. Bao. 2021. SIRT3 ameliorates osteoarthritis via regulating chondrocyte autophagy and apoptosis through the PI3K/Akt/mTOR pathway. International Journal of Biological Macromolecules 175: 351–360.PubMed
11.
Zurück zum Zitat Cheng, N.T., A. Guo, and H. Meng. 2016. The protective role of autophagy in experimental osteoarthritis, and the therapeutic effects of Torin 1 on osteoarthritis by activating autophagy. BMC Musculoskeletal Disorders 17: 150.PubMedPubMedCentral Cheng, N.T., A. Guo, and H. Meng. 2016. The protective role of autophagy in experimental osteoarthritis, and the therapeutic effects of Torin 1 on osteoarthritis by activating autophagy. BMC Musculoskeletal Disorders 17: 150.PubMedPubMedCentral
12.
Zurück zum Zitat Hu, X., J. Li, M. Fu, X. Zhao, and W. Wang. 2021. The JAK/STAT signaling pathway: From bench to clinic. Signal Transduction and Targeted Therapy 6 (1): 402.PubMedPubMedCentral Hu, X., J. Li, M. Fu, X. Zhao, and W. Wang. 2021. The JAK/STAT signaling pathway: From bench to clinic. Signal Transduction and Targeted Therapy 6 (1): 402.PubMedPubMedCentral
13.
Zurück zum Zitat Zhao, C., Q. Liu, and K. Wang. 2017. Artesunate attenuates ACLT-induced osteoarthritis by suppressing osteoclastogenesis and aberrant angiogenesis. Biomedicine & Pharmacotherapy 96: 410–416. Zhao, C., Q. Liu, and K. Wang. 2017. Artesunate attenuates ACLT-induced osteoarthritis by suppressing osteoclastogenesis and aberrant angiogenesis. Biomedicine & Pharmacotherapy 96: 410–416.
14.
Zurück zum Zitat Yang, D.W., X. Zhang, G.B. Qian, M.J. Jiang, P. Wang, and K.Z. Wang. 2019. Downregulation of long noncoding RNA LOC101928134 inhibits the synovial hyperplasia and cartilage destruction of osteoarthritis rats through the activation of the Janus kinase/signal transducers and activators of transcription signaling pathway by upregulating IFNA1. Journal of Cellular Physiology 234 (7): 10523–10534.PubMed Yang, D.W., X. Zhang, G.B. Qian, M.J. Jiang, P. Wang, and K.Z. Wang. 2019. Downregulation of long noncoding RNA LOC101928134 inhibits the synovial hyperplasia and cartilage destruction of osteoarthritis rats through the activation of the Janus kinase/signal transducers and activators of transcription signaling pathway by upregulating IFNA1. Journal of Cellular Physiology 234 (7): 10523–10534.PubMed
15.
Zurück zum Zitat Hu, X., X. Ji, M. Yang, S. Fan, J. Wang, M. Lu, W. Shi, L. Mei, C. Xu, X. Fan, M. Hussain, J. Du, J. Wu, and X. Wu. 2018. Cdc42 is essential for both articular cartilage degeneration and subchondral bone deterioration in experimental osteoarthritis. Journal of Bone and Mineral Research 33 (5): 945–958.PubMed Hu, X., X. Ji, M. Yang, S. Fan, J. Wang, M. Lu, W. Shi, L. Mei, C. Xu, X. Fan, M. Hussain, J. Du, J. Wu, and X. Wu. 2018. Cdc42 is essential for both articular cartilage degeneration and subchondral bone deterioration in experimental osteoarthritis. Journal of Bone and Mineral Research 33 (5): 945–958.PubMed
16.
Zurück zum Zitat Gilardini Montani, M.S., R. Santarelli, M. Granato, R. Gonnella, M.R. Torrisi, A. Faggioni, and M. Cirone. 2019. EBV reduces autophagy, intracellular ROS and mitochondria to impair monocyte survival and differentiation. Autophagy 15 (4): 652–667.PubMed Gilardini Montani, M.S., R. Santarelli, M. Granato, R. Gonnella, M.R. Torrisi, A. Faggioni, and M. Cirone. 2019. EBV reduces autophagy, intracellular ROS and mitochondria to impair monocyte survival and differentiation. Autophagy 15 (4): 652–667.PubMed
17.
Zurück zum Zitat Liu, K., T. Ren, Y. Huang, K. Sun, X. Bao, S. Wang, B. Zheng, and W. Guo. 2017. Apatinib promotes autophagy and apoptosis through VEGFR2/STAT3/BCL-2 signaling in osteosarcoma. Cell Death & Disease 8 (8): e3015. Liu, K., T. Ren, Y. Huang, K. Sun, X. Bao, S. Wang, B. Zheng, and W. Guo. 2017. Apatinib promotes autophagy and apoptosis through VEGFR2/STAT3/BCL-2 signaling in osteosarcoma. Cell Death & Disease 8 (8): e3015.
18.
Zurück zum Zitat Choy, E.H. 2019. Clinical significance of Janus Kinase inhibitor selectivity. Rheumatology (Oxford) 58 (6): 953–962.PubMed Choy, E.H. 2019. Clinical significance of Janus Kinase inhibitor selectivity. Rheumatology (Oxford) 58 (6): 953–962.PubMed
19.
Zurück zum Zitat Gertel, S., H. Mahagna, G. Karmon, A. Watad, and H. Amital. 2017. Tofacitinib attenuates arthritis manifestations and reduces the pathogenic CD4 T cells in adjuvant arthritis rats. Clinical Immunology 184: 77–81.PubMed Gertel, S., H. Mahagna, G. Karmon, A. Watad, and H. Amital. 2017. Tofacitinib attenuates arthritis manifestations and reduces the pathogenic CD4 T cells in adjuvant arthritis rats. Clinical Immunology 184: 77–81.PubMed
20.
Zurück zum Zitat Nash, P., A. Kerschbaumer, T. Dörner, M. Dougados, R.M. Fleischmann, K. Geissler, I. McInnes, J.E. Pope, D. van der Heijde, M. Stoffer-Marx, T. Takeuchi, M. Trauner, K.L. Winthrop, M. de Wit, D. Aletaha, X. Baraliakos, W.H. Boehncke, P. Emery, J.D. Isaacs, J. Kremer, E.B. Lee, W.P. Maksymowych, M. Voshaar, L.S. Tam, Y. Tanaka, F. van den Bosch, R. Westhovens, R. Xavier, and J.S. Smolen. 2021. Points to consider for the treatment of immune-mediated inflammatory diseases with Janus kinase inhibitors: A consensus statement. Annals of the Rheumatic Diseases 80 (1): 71–87.PubMed Nash, P., A. Kerschbaumer, T. Dörner, M. Dougados, R.M. Fleischmann, K. Geissler, I. McInnes, J.E. Pope, D. van der Heijde, M. Stoffer-Marx, T. Takeuchi, M. Trauner, K.L. Winthrop, M. de Wit, D. Aletaha, X. Baraliakos, W.H. Boehncke, P. Emery, J.D. Isaacs, J. Kremer, E.B. Lee, W.P. Maksymowych, M. Voshaar, L.S. Tam, Y. Tanaka, F. van den Bosch, R. Westhovens, R. Xavier, and J.S. Smolen. 2021. Points to consider for the treatment of immune-mediated inflammatory diseases with Janus kinase inhibitors: A consensus statement. Annals of the Rheumatic Diseases 80 (1): 71–87.PubMed
21.
Zurück zum Zitat Wei, Q., N. Kong, X. Liu, R. Tian, M. Jiao, Y. Li, H. Guan, K. Wang, and P. Yang. 2021. Pirfenidone attenuates synovial fibrosis and postpones the progression of osteoarthritis by anti-fibrotic and anti-inflammatory properties in vivo and in vitro. Journal of Translational Medicine 19 (1): 157.PubMedPubMedCentral Wei, Q., N. Kong, X. Liu, R. Tian, M. Jiao, Y. Li, H. Guan, K. Wang, and P. Yang. 2021. Pirfenidone attenuates synovial fibrosis and postpones the progression of osteoarthritis by anti-fibrotic and anti-inflammatory properties in vivo and in vitro. Journal of Translational Medicine 19 (1): 157.PubMedPubMedCentral
22.
Zurück zum Zitat Molnar, V., V. Matišić, I. Kodvanj, R. Bjelica, Ž Jeleč, D. Hudetz, E. Rod, F. Čukelj, T. Vrdoljak, D. Vidović, M. Starešinić, S. Sabalić, B. Dobričić, T. Petrović, D. Antičević, I. Borić, R. Košir, U.P. Zmrzljak, and D. Primorac. 2021. Cytokines and chemokines involved in osteoarthritis pathogenesis. International Journal of Molecular Sciences 22 (17): 9208.PubMedPubMedCentral Molnar, V., V. Matišić, I. Kodvanj, R. Bjelica, Ž Jeleč, D. Hudetz, E. Rod, F. Čukelj, T. Vrdoljak, D. Vidović, M. Starešinić, S. Sabalić, B. Dobričić, T. Petrović, D. Antičević, I. Borić, R. Košir, U.P. Zmrzljak, and D. Primorac. 2021. Cytokines and chemokines involved in osteoarthritis pathogenesis. International Journal of Molecular Sciences 22 (17): 9208.PubMedPubMedCentral
23.
Zurück zum Zitat Lu, H.T., M.S. Hsieh, C.W. Cheng, L.F. Yao, T.Y. Hsu, J. Lan, K.Y. Kim, S.J. Oh, Y.H. Chang, C.H. Lee, Y.F. Lin, and C.H. Chen. 2015. Alterative effects of an oral alginate extract on experimental rabbit osteoarthritis. Journal of Biomedical Science 22 (1): 64.PubMedPubMedCentral Lu, H.T., M.S. Hsieh, C.W. Cheng, L.F. Yao, T.Y. Hsu, J. Lan, K.Y. Kim, S.J. Oh, Y.H. Chang, C.H. Lee, Y.F. Lin, and C.H. Chen. 2015. Alterative effects of an oral alginate extract on experimental rabbit osteoarthritis. Journal of Biomedical Science 22 (1): 64.PubMedPubMedCentral
24.
Zurück zum Zitat Gebauer, M., J. Saas, F. Sohler, J. Haag, S. Söder, M. Pieper, E. Bartnik, J. Beninga, R. Zimmer, and T. Aigner. 2005. Comparison of the chondrosarcoma cell line SW1353 with primary human adult articular chondrocytes with regard to their gene expression profile and reactivity to IL-1beta. Osteoarthritis Cartilage 13 (8): 697–708.PubMed Gebauer, M., J. Saas, F. Sohler, J. Haag, S. Söder, M. Pieper, E. Bartnik, J. Beninga, R. Zimmer, and T. Aigner. 2005. Comparison of the chondrosarcoma cell line SW1353 with primary human adult articular chondrocytes with regard to their gene expression profile and reactivity to IL-1beta. Osteoarthritis Cartilage 13 (8): 697–708.PubMed
25.
Zurück zum Zitat You, H., R. Zhang, L. Wang, Q. Pan, Z. Mao, and X. Huang. 2021. Chondro-protective effects of shikimic acid on osteoarthritis via restoring impaired autophagy and suppressing the MAPK/NF-κB signaling pathway. Frontiers in Pharmacology 12: 634822.PubMedPubMedCentral You, H., R. Zhang, L. Wang, Q. Pan, Z. Mao, and X. Huang. 2021. Chondro-protective effects of shikimic acid on osteoarthritis via restoring impaired autophagy and suppressing the MAPK/NF-κB signaling pathway. Frontiers in Pharmacology 12: 634822.PubMedPubMedCentral
26.
Zurück zum Zitat Huang, Y., G. Wan, and J. Tao. 2017. C1q/TNF-related protein-3 exerts the chondroprotective effects in IL-1β-treated SW1353 cells by regulating the FGFR1 signaling. Biomedicine & Pharmacotherapy 85: 41–46. Huang, Y., G. Wan, and J. Tao. 2017. C1q/TNF-related protein-3 exerts the chondroprotective effects in IL-1β-treated SW1353 cells by regulating the FGFR1 signaling. Biomedicine & Pharmacotherapy 85: 41–46.
27.
Zurück zum Zitat Meng, Z., B. Shen, Y. Gu, Z. Wu, J. Yao, Y. Bian, D. Zeng, K. Chen, S. Cheng, J. Fu, L. Peng, and Y. Zhao. 2018. Diazoxide ameliorates severity of experimental osteoarthritis by activating autophagy via modulation of the osteoarthritis-related biomarkers. Journal of Cellular Biochemistry 119 (11): 8922–8936.PubMed Meng, Z., B. Shen, Y. Gu, Z. Wu, J. Yao, Y. Bian, D. Zeng, K. Chen, S. Cheng, J. Fu, L. Peng, and Y. Zhao. 2018. Diazoxide ameliorates severity of experimental osteoarthritis by activating autophagy via modulation of the osteoarthritis-related biomarkers. Journal of Cellular Biochemistry 119 (11): 8922–8936.PubMed
28.
Zurück zum Zitat Rahmati, M., G. Nalesso, A. Mobasheri, and M. Mozafari. 2017. Aging and osteoarthritis: Central role of the extracellular matrix. Ageing Research Reviews 40: 20–30.PubMed Rahmati, M., G. Nalesso, A. Mobasheri, and M. Mozafari. 2017. Aging and osteoarthritis: Central role of the extracellular matrix. Ageing Research Reviews 40: 20–30.PubMed
29.
Zurück zum Zitat Saberi Hosnijeh, F., S.M. Bierma-Zeinstra, and A.C. Bay-Jensen. 2019. Osteoarthritis year in review 2018: Biomarkers (biochemical markers). Osteoarthritis Cartilage 27 (3): 412–423.PubMed Saberi Hosnijeh, F., S.M. Bierma-Zeinstra, and A.C. Bay-Jensen. 2019. Osteoarthritis year in review 2018: Biomarkers (biochemical markers). Osteoarthritis Cartilage 27 (3): 412–423.PubMed
30.
Zurück zum Zitat Tanaka, Y., Y. Luo, J.J. O’Shea, and S. Nakayamada. 2022. Janus kinase-targeting therapies in rheumatology: A mechanisms-based approach. Nature Reviews Rheumatology 18 (3): 133–145.PubMedPubMedCentral Tanaka, Y., Y. Luo, J.J. O’Shea, and S. Nakayamada. 2022. Janus kinase-targeting therapies in rheumatology: A mechanisms-based approach. Nature Reviews Rheumatology 18 (3): 133–145.PubMedPubMedCentral
31.
Zurück zum Zitat Baldini, C., F.R. Moriconi, S. Galimberti, P. Libby, and R. De Caterina. 2021. The JAK-STAT pathway: An emerging target for cardiovascular disease in rheumatoid arthritis and myeloproliferative neoplasms. European Heart Journal 42 (42): 4389–4400.PubMedPubMedCentral Baldini, C., F.R. Moriconi, S. Galimberti, P. Libby, and R. De Caterina. 2021. The JAK-STAT pathway: An emerging target for cardiovascular disease in rheumatoid arthritis and myeloproliferative neoplasms. European Heart Journal 42 (42): 4389–4400.PubMedPubMedCentral
32.
Zurück zum Zitat Furman, D., J. Campisi, E. Verdin, P. Carrera-Bastos, S. Targ, C. Franceschi, L. Ferrucci, D.W. Gilroy, A. Fasano, G.W. Miller, A.H. Miller, A. Mantovani, C.M. Weyand, N. Barzilai, J.J. Goronzy, T.A. Rando, R.B. Effros, A. Lucia, N. Kleinstreuer, and G.M. Slavich. 2019. Chronic inflammation in the etiology of disease across the life span. Nature Medicine 25 (12): 1822–1832.PubMedPubMedCentral Furman, D., J. Campisi, E. Verdin, P. Carrera-Bastos, S. Targ, C. Franceschi, L. Ferrucci, D.W. Gilroy, A. Fasano, G.W. Miller, A.H. Miller, A. Mantovani, C.M. Weyand, N. Barzilai, J.J. Goronzy, T.A. Rando, R.B. Effros, A. Lucia, N. Kleinstreuer, and G.M. Slavich. 2019. Chronic inflammation in the etiology of disease across the life span. Nature Medicine 25 (12): 1822–1832.PubMedPubMedCentral
33.
Zurück zum Zitat Xu, J., J. Zhang, Q.F. Mao, J. Wu, and Y. Wang. 2022. The interaction between autophagy and JAK/STAT3 signaling pathway in tumors. Frontiers in Genetics 13: 880359.PubMedPubMedCentral Xu, J., J. Zhang, Q.F. Mao, J. Wu, and Y. Wang. 2022. The interaction between autophagy and JAK/STAT3 signaling pathway in tumors. Frontiers in Genetics 13: 880359.PubMedPubMedCentral
34.
Zurück zum Zitat Solimani, F., K. Meier, and K. Ghoreschi. 2019. Emerging topical and systemic JAK inhibitors in dermatology. Frontiers in Immunology 10: 2847.PubMedPubMedCentral Solimani, F., K. Meier, and K. Ghoreschi. 2019. Emerging topical and systemic JAK inhibitors in dermatology. Frontiers in Immunology 10: 2847.PubMedPubMedCentral
35.
Zurück zum Zitat Billing, U., T. Jetka, L. Nortmann, N. Wundrack, M. Komorowski, S. Waldherr, F. Schaper, and A. Dittrich. 2019. Robustness and information transfer within IL-6-induced JAK/STAT signalling. Commun Biol 2: 27.PubMedPubMedCentral Billing, U., T. Jetka, L. Nortmann, N. Wundrack, M. Komorowski, S. Waldherr, F. Schaper, and A. Dittrich. 2019. Robustness and information transfer within IL-6-induced JAK/STAT signalling. Commun Biol 2: 27.PubMedPubMedCentral
36.
Zurück zum Zitat O’Shea, J.J., D.M. Schwartz, A.V. Villarino, M. Gadina, I.B. McInnes, and A. Laurence. 2015. The JAK-STAT pathway: Impact on human disease and therapeutic intervention. Annual Review of Medicine 66: 311–328.PubMedPubMedCentral O’Shea, J.J., D.M. Schwartz, A.V. Villarino, M. Gadina, I.B. McInnes, and A. Laurence. 2015. The JAK-STAT pathway: Impact on human disease and therapeutic intervention. Annual Review of Medicine 66: 311–328.PubMedPubMedCentral
37.
Zurück zum Zitat Zhong, G., H. Long, F. Chen, and Y. Yu. 2021. Oxoglaucine mediates Ca(2+) influx and activates autophagy to alleviate osteoarthritis through the TRPV5/calmodulin/CAMK-II pathway. British Journal of Pharmacology 178 (15): 2931–2947.PubMed Zhong, G., H. Long, F. Chen, and Y. Yu. 2021. Oxoglaucine mediates Ca(2+) influx and activates autophagy to alleviate osteoarthritis through the TRPV5/calmodulin/CAMK-II pathway. British Journal of Pharmacology 178 (15): 2931–2947.PubMed
38.
Zurück zum Zitat Galluzzi, L., and D.R. Green. 2019. Autophagy-independent functions of the autophagy machinery. Cell 177 (7): 1682–1699.PubMedPubMedCentral Galluzzi, L., and D.R. Green. 2019. Autophagy-independent functions of the autophagy machinery. Cell 177 (7): 1682–1699.PubMedPubMedCentral
39.
Zurück zum Zitat Levine, B., and G. Kroemer. 2019. Biological functions of autophagy genes: A disease perspective. Cell 176 (1–2): 11–42.PubMedPubMedCentral Levine, B., and G. Kroemer. 2019. Biological functions of autophagy genes: A disease perspective. Cell 176 (1–2): 11–42.PubMedPubMedCentral
40.
Zurück zum Zitat You, L., Z. Wang, H. Li, J. Shou, Z. Jing, J. Xie, X. Sui, H. Pan, and W. Han. 2015. The role of STAT3 in autophagy. Autophagy 11 (5): 729–739.PubMedPubMedCentral You, L., Z. Wang, H. Li, J. Shou, Z. Jing, J. Xie, X. Sui, H. Pan, and W. Han. 2015. The role of STAT3 in autophagy. Autophagy 11 (5): 729–739.PubMedPubMedCentral
41.
Zurück zum Zitat Barrera, M.J., S. Aguilera, I. Castro, S. Matus, P. Carvajal, C. Molina, S. González, D. Jara, M. Hermoso, and M.J. González. 2021. Tofacitinib counteracts IL-6 overexpression induced by deficient autophagy: Implications in Sjögren’s syndrome. Rheumatology (Oxford) 60 (4): 1951–1962.PubMed Barrera, M.J., S. Aguilera, I. Castro, S. Matus, P. Carvajal, C. Molina, S. González, D. Jara, M. Hermoso, and M.J. González. 2021. Tofacitinib counteracts IL-6 overexpression induced by deficient autophagy: Implications in Sjögren’s syndrome. Rheumatology (Oxford) 60 (4): 1951–1962.PubMed
Metadaten
Titel
The Effect of JAK Inhibitor Tofacitinib on Chondrocyte Autophagy
verfasst von
Ping Zhang
Juan Xiao
Chenggen Luo
Xiaorui Liu
Chunyan Li
Jing Zhao
Xu Liu
Xiaoli Pan
Mei Tian
Publikationsdatum
13.06.2023
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 5/2023
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-023-01840-3

Weitere Artikel der Ausgabe 5/2023

Inflammation 5/2023 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

Nach Herzinfarkt mit Typ-1-Diabetes schlechtere Karten als mit Typ 2?

29.05.2024 Herzinfarkt Nachrichten

Bei Menschen mit Typ-2-Diabetes sind die Chancen, einen Myokardinfarkt zu überleben, in den letzten 15 Jahren deutlich gestiegen – nicht jedoch bei Betroffenen mit Typ 1.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.