Skip to main content
Erschienen in: Cancer and Metastasis Reviews 3/2022

24.08.2022

The effect of obesity on adipose-derived stromal cells and adipose tissue and their impact on cancer

verfasst von: Bruce A. Bunnell, Elizabeth C. Martin, Margarite D. Matossian, Courtney K. Brock, Khoa Nguyen, Bridgette Collins-Burow, Matthew E. Burow

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 3/2022

Einloggen, um Zugang zu erhalten

Abstract

The significant increase in the incidence of obesity represents the next global health crisis. As a result, scientific research has focused on gaining deeper insights into obesity and adipose tissue biology. As a result of the excessive accumulation of adipose tissue, obesity results from hyperplasia and hypertrophy within the adipose tissue. The functional alterations in the adipose tissue are a confounding contributing factor to many diseases, including cancer. The increased incidence and aggressiveness of several cancers, including colorectal, postmenopausal breast, endometrial, prostate, esophageal, hematological, malignant melanoma, and renal carcinomas, result from obesity as a contributing factor. The increased morbidity and mortality of obesity-associated cancers are attributable to increased hormones, adipokines, and cytokines produced by the adipose tissue. The increased adipose tissue levels observed in obese patients result in more adipose stromal/stem cells (ASCs) distributed throughout the body. ASCs have been shown to impact cancer progression in vitro and in preclinical animal models. ASCs influence tumor biology via multiple mechanisms, including the increased recruitment of ASCs to the tumor site and increased production of cytokines and growth factors by ASCs and other cells within the tumor stroma. Emerging evidence indicates that obesity induces alterations in the biological properties of ASCs, subsequently leading to enhanced tumorigenesis and metastasis of cancer cells. As the focus of this review is the interaction and impact of ASCs on cancer, the presentation is limited to preclinical data generated on cancers in which there is a demonstrated role for ASCs, such as postmenopausal breast, colorectal, prostate, ovarian, multiple myeloma, osteosarcoma, cervical, bladder, and gastrointestinal cancers. Our group has investigated the interactions between obesity and breast cancer and the mechanisms that regulate ASCs and adipocytes in these different contexts through interactions between cancer cells, immune cells, and other cell types present in the tumor microenvironment (TME) are discussed. The reciprocal and circular feedback loop between obesity and ASCs and the mechanisms by which ASCs from obese patients alter the biology of cancer cells and enhance tumorigenesis will be discussed. At present, the evidence for ASCs directly influencing human tumor growth is somewhat limited, though recent clinical studies suggest there may be some link.
Literatur
5.
Zurück zum Zitat Caër, C., Rouault, C., Le Roy, T., Poitou, C., Aron-Wisnewsky, J., Torcivia, A., et al. (2017). Immune cell-derived cytokines contribute to obesity-related inflammation, fibrogenesis and metabolic deregulation in human adipose tissue. Science and Reports, 7(1), 3000. https://doi.org/10.1038/s41598-017-02660-wCrossRef Caër, C., Rouault, C., Le Roy, T., Poitou, C., Aron-Wisnewsky, J., Torcivia, A., et al. (2017). Immune cell-derived cytokines contribute to obesity-related inflammation, fibrogenesis and metabolic deregulation in human adipose tissue. Science and Reports, 7(1), 3000. https://​doi.​org/​10.​1038/​s41598-017-02660-wCrossRef
9.
Zurück zum Zitat Puigserver, P., Herron, D., Gianotti, M., Palou, A., Cannon, B., & Nedergaard, J. (1992). Induction and degradation of the uncoupling protein thermogenin in brown adipocytes in vitro and in vivo. Evidence for a rapidly degradable pool. Biochem Journal, 284(Pt 2), 393–398.CrossRef Puigserver, P., Herron, D., Gianotti, M., Palou, A., Cannon, B., & Nedergaard, J. (1992). Induction and degradation of the uncoupling protein thermogenin in brown adipocytes in vitro and in vivo. Evidence for a rapidly degradable pool. Biochem Journal, 284(Pt 2), 393–398.CrossRef
11.
21.
Zurück zum Zitat Regulski, M. J. (2017). Mesenchymal stem cells: “Guardians of Inflammation.” Wounds, 29(1), 20–27.PubMed Regulski, M. J. (2017). Mesenchymal stem cells: “Guardians of Inflammation.” Wounds, 29(1), 20–27.PubMed
26.
Zurück zum Zitat Bourin, P., Bunnell, B. A., Casteilla, L., Dominici, M., Katz, A. J., March, K. L., et al. (2013). Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: A joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy, 15(6), 641–648. https://doi.org/10.1016/j.jcyt.2013.02.006CrossRefPubMedPubMedCentral Bourin, P., Bunnell, B. A., Casteilla, L., Dominici, M., Katz, A. J., March, K. L., et al. (2013). Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: A joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy, 15(6), 641–648. https://​doi.​org/​10.​1016/​j.​jcyt.​2013.​02.​006CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Gonzalez-Rey, E., Gonzalez, M. A., Varela, N., O’Valle, F., Hernandez-Cortes, P., Rico, L., et al. (2010). Human adipose-derived mesenchymal stem cells reduce inflammatory and T cell responses and induce regulatory T cells in vitro in rheumatoid arthritis. Annals of the Rheumatic Diseases, 69(1), 241–248. https://doi.org/10.1136/ard.2008.101881CrossRefPubMed Gonzalez-Rey, E., Gonzalez, M. A., Varela, N., O’Valle, F., Hernandez-Cortes, P., Rico, L., et al. (2010). Human adipose-derived mesenchymal stem cells reduce inflammatory and T cell responses and induce regulatory T cells in vitro in rheumatoid arthritis. Annals of the Rheumatic Diseases, 69(1), 241–248. https://​doi.​org/​10.​1136/​ard.​2008.​101881CrossRefPubMed
28.
Zurück zum Zitat Semon, J. A., Maness, C., Zhang, X., Sharkey, S. A., Beuttler, M. M., Shah, F. S., et al. (2014). Comparison of human adult stem cells from adipose tissue and bone marrow in the treatment of experimental autoimmune encephalomyelitis. Stem Cell Research & Therapy, 5(1), 2. https://doi.org/10.1186/scrt391CrossRef Semon, J. A., Maness, C., Zhang, X., Sharkey, S. A., Beuttler, M. M., Shah, F. S., et al. (2014). Comparison of human adult stem cells from adipose tissue and bone marrow in the treatment of experimental autoimmune encephalomyelitis. Stem Cell Research & Therapy, 5(1), 2. https://​doi.​org/​10.​1186/​scrt391CrossRef
29.
Zurück zum Zitat Zhang, S., Danchuk, S. D., Bonvillain, R. W., Xu, B., Scruggs, B. A., Strong, A. L., et al. (2014). Interleukin 6 mediates the therapeutic effects of adipose-derived stromal/stem cells in lipopolysaccharide-induced acute lung injury. Stem Cells, 32(6), 1616–1628. https://doi.org/10.1002/stem.1632CrossRefPubMed Zhang, S., Danchuk, S. D., Bonvillain, R. W., Xu, B., Scruggs, B. A., Strong, A. L., et al. (2014). Interleukin 6 mediates the therapeutic effects of adipose-derived stromal/stem cells in lipopolysaccharide-induced acute lung injury. Stem Cells, 32(6), 1616–1628. https://​doi.​org/​10.​1002/​stem.​1632CrossRefPubMed
34.
Zurück zum Zitat Batten, P., Sarathchandra, P., Antoniw, J. W., Tay, S. S., Lowdell, M. W., Taylor, P. M., et al. (2006). Human mesenchymal stem cells induce T cell anergy and downregulate T cell allo-responses via the TH2 pathway: Relevance to tissue engineering human heart valves. Tissue Engineering, 12(8), 2263–2273. https://doi.org/10.1089/ten.2006.12.2263CrossRefPubMed Batten, P., Sarathchandra, P., Antoniw, J. W., Tay, S. S., Lowdell, M. W., Taylor, P. M., et al. (2006). Human mesenchymal stem cells induce T cell anergy and downregulate T cell allo-responses via the TH2 pathway: Relevance to tissue engineering human heart valves. Tissue Engineering, 12(8), 2263–2273. https://​doi.​org/​10.​1089/​ten.​2006.​12.​2263CrossRefPubMed
36.
39.
40.
Zurück zum Zitat Spaggiari, G. M., Capobianco, A., Becchetti, S., Mingari, M. C., & Moretta, L. (2006). Mesenchymal stem cell-natural killer cell interactions: Evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood, 107(4), 1484–1490. https://doi.org/10.1182/blood-2005-07-2775CrossRefPubMed Spaggiari, G. M., Capobianco, A., Becchetti, S., Mingari, M. C., & Moretta, L. (2006). Mesenchymal stem cell-natural killer cell interactions: Evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood, 107(4), 1484–1490. https://​doi.​org/​10.​1182/​blood-2005-07-2775CrossRefPubMed
41.
42.
Zurück zum Zitat Geng, Y., Zhang, L., Fu, B., Zhang, J., Hong, Q., Hu, J., et al. (2014). Mesenchymal stem cells ameliorate rhabdomyolysis-induced acute kidney injury via the activation of M2 macrophages. Stem Cell Research & Therapy, 5(3), 80. https://doi.org/10.1186/scrt469CrossRef Geng, Y., Zhang, L., Fu, B., Zhang, J., Hong, Q., Hu, J., et al. (2014). Mesenchymal stem cells ameliorate rhabdomyolysis-induced acute kidney injury via the activation of M2 macrophages. Stem Cell Research & Therapy, 5(3), 80. https://​doi.​org/​10.​1186/​scrt469CrossRef
43.
Zurück zum Zitat Song, W. J., Li, Q., Ryu, M. O., Ahn, J. O., Ha Bhang, D., Chan Jung, Y., et al. (2017). TSG-6 secreted by human adipose tissue-derived mesenchymal stem cells ameliorates DSS-induced colitis by inducing M2 macrophage polarization in Mice. Science and Reports, 7(1), 5187. https://doi.org/10.1038/s41598-017-04766-7CrossRef Song, W. J., Li, Q., Ryu, M. O., Ahn, J. O., Ha Bhang, D., Chan Jung, Y., et al. (2017). TSG-6 secreted by human adipose tissue-derived mesenchymal stem cells ameliorates DSS-induced colitis by inducing M2 macrophage polarization in Mice. Science and Reports, 7(1), 5187. https://​doi.​org/​10.​1038/​s41598-017-04766-7CrossRef
44.
Zurück zum Zitat Traktuev, D. O., Merfeld-Clauss, S., Li, J., Kolonin, M., Arap, W., Pasqualini, R., et al. (2008). A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circulation Research, 102(1), 77–85. https://doi.org/10.1161/circresaha.107.159475CrossRefPubMed Traktuev, D. O., Merfeld-Clauss, S., Li, J., Kolonin, M., Arap, W., Pasqualini, R., et al. (2008). A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circulation Research, 102(1), 77–85. https://​doi.​org/​10.​1161/​circresaha.​107.​159475CrossRefPubMed
47.
Zurück zum Zitat Sousa, B. R., Parreira, R. C., Fonseca, E. A., Amaya, M. J., Tonelli, F. M., Lacerda, S. M., et al. (2014). Human adult stem cells from diverse origins: An overview from multiparametric immunophenotyping to clinical applications. Cytometry Part A, 85(1), 43–77. https://doi.org/10.1002/cyto.a.22402CrossRef Sousa, B. R., Parreira, R. C., Fonseca, E. A., Amaya, M. J., Tonelli, F. M., Lacerda, S. M., et al. (2014). Human adult stem cells from diverse origins: An overview from multiparametric immunophenotyping to clinical applications. Cytometry Part A, 85(1), 43–77. https://​doi.​org/​10.​1002/​cyto.​a.​22402CrossRef
84.
Zurück zum Zitat Strong, A. L., Semon, J. A., Strong, T. A., Santoke, T. T., Zhang, S., McFerrin, H. E., et al. (2012). Obesity-associated dysregulation of calpastatin and MMP-15 in adipose-derived stromal cells results in their enhanced invasion. Stem Cells, 30(12), 2774–2783. https://doi.org/10.1002/stem.1229CrossRefPubMed Strong, A. L., Semon, J. A., Strong, T. A., Santoke, T. T., Zhang, S., McFerrin, H. E., et al. (2012). Obesity-associated dysregulation of calpastatin and MMP-15 in adipose-derived stromal cells results in their enhanced invasion. Stem Cells, 30(12), 2774–2783. https://​doi.​org/​10.​1002/​stem.​1229CrossRefPubMed
109.
Zurück zum Zitat Ho, C. M., Chang, T. H., Yen, T. L., Hong, K. J., & Huang, S. H. (2021). Collagen type VI regulates the CDK4/6-p-Rb signaling pathway and promotes ovarian cancer invasiveness, stemness, and metastasis. American Journal of Cancer Research, 11(3), 668–690.PubMedPubMedCentral Ho, C. M., Chang, T. H., Yen, T. L., Hong, K. J., & Huang, S. H. (2021). Collagen type VI regulates the CDK4/6-p-Rb signaling pathway and promotes ovarian cancer invasiveness, stemness, and metastasis. American Journal of Cancer Research, 11(3), 668–690.PubMedPubMedCentral
113.
Zurück zum Zitat Williams, L. M., McCann, F. E., Cabrita, M. A., Layton, T., Cribbs, A., Knezevic, B., et al. (2020). Identifying collagen VI as a target of fibrotic diseases regulated by CREBBP/EP300. Proceedings of the National Academy of Sciences 117(34):20753-20763 https://doi.org/10.1073/pnas.2004281117 Williams, L. M., McCann, F. E., Cabrita, M. A., Layton, T., Cribbs, A., Knezevic, B., et al. (2020). Identifying collagen VI as a target of fibrotic diseases regulated by CREBBP/EP300. Proceedings of the National Academy of Sciences 117(34):20753-20763 https://​doi.​org/​10.​1073/​pnas.​2004281117
114.
115.
Zurück zum Zitat Reggio, S., Rouault, C., Poitou, C., Bichet, J. C., Prifti, E., Bouillot, J. L., et al. (2016). Increased basement membrane components in adipose tissue during obesity: Links with TGFβ and Metabolic Phenotypes. Journal of Clinical Endocrinology and Metabolism, 101(6), 2578–2587. https://doi.org/10.1210/jc.2015-4304CrossRefPubMed Reggio, S., Rouault, C., Poitou, C., Bichet, J. C., Prifti, E., Bouillot, J. L., et al. (2016). Increased basement membrane components in adipose tissue during obesity: Links with TGFβ and Metabolic Phenotypes. Journal of Clinical Endocrinology and Metabolism, 101(6), 2578–2587. https://​doi.​org/​10.​1210/​jc.​2015-4304CrossRefPubMed
119.
Zurück zum Zitat Catalán, V., Gómez-Ambrosi, J., Rodríguez, A., Ramírez, B., Rotellar, F., Valentí, V., et al. (2012). Increased tenascin C and Toll-like receptor 4 levels in visceral adipose tissue as a link between inflammation and extracellular matrix remodeling in obesity. Journal of Clinical Endocrinology and Metabolism, 97(10), E1880-1889. https://doi.org/10.1210/jc.2012-1670CrossRefPubMedPubMedCentral Catalán, V., Gómez-Ambrosi, J., Rodríguez, A., Ramírez, B., Rotellar, F., Valentí, V., et al. (2012). Increased tenascin C and Toll-like receptor 4 levels in visceral adipose tissue as a link between inflammation and extracellular matrix remodeling in obesity. Journal of Clinical Endocrinology and Metabolism, 97(10), E1880-1889. https://​doi.​org/​10.​1210/​jc.​2012-1670CrossRefPubMedPubMedCentral
122.
123.
131.
Zurück zum Zitat Jotzu, C., Alt, E., Welte, G., Li, J., Hennessy, B. T., Devarajan, E., et al. (2010). Adipose tissue-derived stem cells differentiate into carcinoma-associated fibroblast-like cells under the influence of tumor-derived factors. Analytical Cellular Pathology (Amsterdam), 33(2), 61–79. https://doi.org/10.3233/acp-clo-2010-0535CrossRef Jotzu, C., Alt, E., Welte, G., Li, J., Hennessy, B. T., Devarajan, E., et al. (2010). Adipose tissue-derived stem cells differentiate into carcinoma-associated fibroblast-like cells under the influence of tumor-derived factors. Analytical Cellular Pathology (Amsterdam), 33(2), 61–79. https://​doi.​org/​10.​3233/​acp-clo-2010-0535CrossRef
134.
Zurück zum Zitat Hasegawa, T., Yashiro, M., Nishii, T., Matsuoka, J., Fuyuhiro, Y., Morisaki, T., et al. (2014). Cancer-associated fibroblasts might sustain the stemness of scirrhous gastric cancer cells via transforming growth factor-β signaling. International Journal of Cancer, 134(8), 1785–1795. https://doi.org/10.1002/ijc.28520CrossRefPubMed Hasegawa, T., Yashiro, M., Nishii, T., Matsuoka, J., Fuyuhiro, Y., Morisaki, T., et al. (2014). Cancer-associated fibroblasts might sustain the stemness of scirrhous gastric cancer cells via transforming growth factor-β signaling. International Journal of Cancer, 134(8), 1785–1795. https://​doi.​org/​10.​1002/​ijc.​28520CrossRefPubMed
138.
Zurück zum Zitat Studeny, M., Marini, F. C., Champlin, R. E., Zompetta, C., Fidler, I. J., & Andreeff, M. (2002). Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Research, 62(13), 3603–3608.PubMed Studeny, M., Marini, F. C., Champlin, R. E., Zompetta, C., Fidler, I. J., & Andreeff, M. (2002). Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Research, 62(13), 3603–3608.PubMed
139.
Zurück zum Zitat Studeny, M., Marini, F. C., Dembinski, J. L., Zompetta, C., Cabreira-Hansen, M., Bekele, B. N., et al. (2004). Mesenchymal stem cells: Potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. Journal of the National Cancer Institute, 96(21), 1593–1603. https://doi.org/10.1093/jnci/djh299CrossRefPubMed Studeny, M., Marini, F. C., Dembinski, J. L., Zompetta, C., Cabreira-Hansen, M., Bekele, B. N., et al. (2004). Mesenchymal stem cells: Potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. Journal of the National Cancer Institute, 96(21), 1593–1603. https://​doi.​org/​10.​1093/​jnci/​djh299CrossRefPubMed
141.
142.
Zurück zum Zitat Zimmerlin, L., Donnenberg, A. D., Rubin, J. P., Basse, P., Landreneau, R. J., & Donnenberg, V. S. (2011). Regenerative therapy and cancer: In vitro and in vivo studies of the interaction between adipose-derived stem cells and breast cancer cells from clinical isolates. Tissue Engineering Part A, 17(1–2), 93–106. https://doi.org/10.1089/ten.TEA.2010.0248CrossRefPubMed Zimmerlin, L., Donnenberg, A. D., Rubin, J. P., Basse, P., Landreneau, R. J., & Donnenberg, V. S. (2011). Regenerative therapy and cancer: In vitro and in vivo studies of the interaction between adipose-derived stem cells and breast cancer cells from clinical isolates. Tissue Engineering Part A, 17(1–2), 93–106. https://​doi.​org/​10.​1089/​ten.​TEA.​2010.​0248CrossRefPubMed
145.
147.
Zurück zum Zitat Tuxhorn, J. A., Ayala, G. E., Smith, M. J., Smith, V. C., Dang, T. D., & Rowley, D. R. (2002). Reactive stroma in human prostate cancer: Induction of myofibroblast phenotype and extracellular matrix remodeling. Clinical Cancer Research, 8(9), 2912–2923.PubMed Tuxhorn, J. A., Ayala, G. E., Smith, M. J., Smith, V. C., Dang, T. D., & Rowley, D. R. (2002). Reactive stroma in human prostate cancer: Induction of myofibroblast phenotype and extracellular matrix remodeling. Clinical Cancer Research, 8(9), 2912–2923.PubMed
148.
Zurück zum Zitat De Boeck, A., Hendrix, A., Maynard, D., Van Bockstal, M., Daniëls, A., Pauwels, P., et al. (2013). Differential secretome analysis of cancer-associated fibroblasts and bone marrow-derived precursors to identify microenvironmental regulators of colon cancer progression. Proteomics, 13(2), 379–388. https://doi.org/10.1002/pmic.201200179CrossRefPubMed De Boeck, A., Hendrix, A., Maynard, D., Van Bockstal, M., Daniëls, A., Pauwels, P., et al. (2013). Differential secretome analysis of cancer-associated fibroblasts and bone marrow-derived precursors to identify microenvironmental regulators of colon cancer progression. Proteomics, 13(2), 379–388. https://​doi.​org/​10.​1002/​pmic.​201200179CrossRefPubMed
150.
151.
Zurück zum Zitat Hutchings, G., Janowicz, K., Moncrieff, L., Dompe, C., Strauss, E., Kocherova, I., et al. (2020). The proliferation and differentiation of adipose-derived stem cells in neovascularization and angiogenesis. International Journal of Molecular Science, 21(11), 3790. https://doi.org/10.3390/ijms21113790CrossRef Hutchings, G., Janowicz, K., Moncrieff, L., Dompe, C., Strauss, E., Kocherova, I., et al. (2020). The proliferation and differentiation of adipose-derived stem cells in neovascularization and angiogenesis. International Journal of Molecular Science, 21(11), 3790. https://​doi.​org/​10.​3390/​ijms21113790CrossRef
153.
Zurück zum Zitat Salha, S., Gehmert, S., Brébant, V., Anker, A., Loibl, M., Prantl, L., et al. (2018). PDGF regulated migration of mesenchymal stem cells towards malignancy acts via the PI3K signaling pathway. Clinical Hemorheology and Microcirculation, 70(4), 543–551. https://doi.org/10.3233/ch-189319CrossRefPubMed Salha, S., Gehmert, S., Brébant, V., Anker, A., Loibl, M., Prantl, L., et al. (2018). PDGF regulated migration of mesenchymal stem cells towards malignancy acts via the PI3K signaling pathway. Clinical Hemorheology and Microcirculation, 70(4), 543–551. https://​doi.​org/​10.​3233/​ch-189319CrossRefPubMed
157.
Zurück zum Zitat Ribeiro, R., Monteiro, C., Silvestre, R., Castela, A., Coutinho, H., Fraga, A., et al. (2012). Human periprostatic white adipose tissue is rich in stromal progenitor cells and a potential source of prostate tumor stroma. Experimental Biology and Medicine (Maywood), 237(10), 1155–1162. https://doi.org/10.1258/ebm.2012.012131CrossRef Ribeiro, R., Monteiro, C., Silvestre, R., Castela, A., Coutinho, H., Fraga, A., et al. (2012). Human periprostatic white adipose tissue is rich in stromal progenitor cells and a potential source of prostate tumor stroma. Experimental Biology and Medicine (Maywood), 237(10), 1155–1162. https://​doi.​org/​10.​1258/​ebm.​2012.​012131CrossRef
168.
Zurück zum Zitat Baker, A. H., Zaltsman, A. B., George, S. J., & Newby, A. C. (1998). Divergent effects of tissue inhibitor of metalloproteinase-1, -2, or -3 overexpression on rat vascular smooth muscle cell invasion, proliferation, and death in vitro. TIMP-3 promotes apoptosis. Journal of Clinical Investigation, 101(6), 1478–1487. https://doi.org/10.1172/jci1584CrossRefPubMedPubMedCentral Baker, A. H., Zaltsman, A. B., George, S. J., & Newby, A. C. (1998). Divergent effects of tissue inhibitor of metalloproteinase-1, -2, or -3 overexpression on rat vascular smooth muscle cell invasion, proliferation, and death in vitro. TIMP-3 promotes apoptosis. Journal of Clinical Investigation, 101(6), 1478–1487. https://​doi.​org/​10.​1172/​jci1584CrossRefPubMedPubMedCentral
169.
Zurück zum Zitat Park, H. Y., Kwon, H. M., Lim, H. J., Hong, B. K., Lee, J. Y., Park, B. E., et al. (2001). Potential role of leptin in angiogenesis: Leptin induces endothelial cell proliferation and expression of matrix metalloproteinases in vivo and in vitro. Experimental & Molecular Medicine, 33(2), 95–102. https://doi.org/10.1038/emm.2001.17CrossRef Park, H. Y., Kwon, H. M., Lim, H. J., Hong, B. K., Lee, J. Y., Park, B. E., et al. (2001). Potential role of leptin in angiogenesis: Leptin induces endothelial cell proliferation and expression of matrix metalloproteinases in vivo and in vitro. Experimental & Molecular Medicine, 33(2), 95–102. https://​doi.​org/​10.​1038/​emm.​2001.​17CrossRef
174.
Zurück zum Zitat Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Ca: A Cancer Journal for Clinicians, 71(3), 209–249. https://doi.org/10.3322/caac.21660CrossRef Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Ca: A Cancer Journal for Clinicians, 71(3), 209–249. https://​doi.​org/​10.​3322/​caac.​21660CrossRef
183.
205.
209.
Zurück zum Zitat Frankenberry, K. A., Skinner, H., Somasundar, P., McFadden, D. W., & Vona-Davis, L. C. (2006). Leptin receptor expression and cell signaling in breast cancer. International Journal of Oncology, 28(4), 985–993.PubMed Frankenberry, K. A., Skinner, H., Somasundar, P., McFadden, D. W., & Vona-Davis, L. C. (2006). Leptin receptor expression and cell signaling in breast cancer. International Journal of Oncology, 28(4), 985–993.PubMed
211.
Zurück zum Zitat Jotzu, C., Alt, E., Welte, G., Li, J., Hennessy, B. T., Devarajan, E., et al. (2011). Adipose tissue derived stem cells differentiate into carcinoma-associated fibroblast-like cells under the influence of tumor derived factors. Cellular Oncology (Dordrecht), 34(1), 55–67. https://doi.org/10.1007/s13402-011-0012-1CrossRef Jotzu, C., Alt, E., Welte, G., Li, J., Hennessy, B. T., Devarajan, E., et al. (2011). Adipose tissue derived stem cells differentiate into carcinoma-associated fibroblast-like cells under the influence of tumor derived factors. Cellular Oncology (Dordrecht), 34(1), 55–67. https://​doi.​org/​10.​1007/​s13402-011-0012-1CrossRef
214.
Zurück zum Zitat Hildenbrand, R., & Schaaf, A. (2009). The urokinase-system in tumor tissue stroma of the breast and breast cancer cell invasion. International Journal of Oncology, 34(1), 15–23.PubMed Hildenbrand, R., & Schaaf, A. (2009). The urokinase-system in tumor tissue stroma of the breast and breast cancer cell invasion. International Journal of Oncology, 34(1), 15–23.PubMed
217.
222.
Zurück zum Zitat Sabol, R. A., Beighley, A., Giacomelli, P., Wise, R. M., Harrison, M. A. A., O’Donnnell, B. A., et al. (2019). Obesity-altered adipose stem cells promote ER+ breast cancer metastasis through estrogen independent pathways. International Journal of Molecular Science, 20(6), 1419. https://doi.org/10.3390/ijms20061419CrossRef Sabol, R. A., Beighley, A., Giacomelli, P., Wise, R. M., Harrison, M. A. A., O’Donnnell, B. A., et al. (2019). Obesity-altered adipose stem cells promote ER+ breast cancer metastasis through estrogen independent pathways. International Journal of Molecular Science, 20(6), 1419. https://​doi.​org/​10.​3390/​ijms20061419CrossRef
226.
245.
259.
Zurück zum Zitat Zhao, B. C., Zhao, B., Han, J. G., Ma, H. C., & Wang, Z. J. (2010). Adipose-derived stem cells promote gastric cancer cell growth, migration and invasion through SDF-1/CXCR4 axis. Hepato-Gastroenterology, 57(104), 1382–1389.PubMed Zhao, B. C., Zhao, B., Han, J. G., Ma, H. C., & Wang, Z. J. (2010). Adipose-derived stem cells promote gastric cancer cell growth, migration and invasion through SDF-1/CXCR4 axis. Hepato-Gastroenterology, 57(104), 1382–1389.PubMed
263.
277.
Zurück zum Zitat De Berti, M., Goupille, C., Doucet, M., Arbion, F., Vilde, A., Body, G., et al. (2022). Oncological safety of autologous fat grafting in breast reconstruction after mastectomy for cancer: A case-control study. Journal of Gynecology Obstetrics and Human Reproduction, 51(1), 102257.CrossRef De Berti, M., Goupille, C., Doucet, M., Arbion, F., Vilde, A., Body, G., et al. (2022). Oncological safety of autologous fat grafting in breast reconstruction after mastectomy for cancer: A case-control study. Journal of Gynecology Obstetrics and Human Reproduction, 51(1), 102257.CrossRef
Metadaten
Titel
The effect of obesity on adipose-derived stromal cells and adipose tissue and their impact on cancer
verfasst von
Bruce A. Bunnell
Elizabeth C. Martin
Margarite D. Matossian
Courtney K. Brock
Khoa Nguyen
Bridgette Collins-Burow
Matthew E. Burow
Publikationsdatum
24.08.2022
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 3/2022
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-022-10063-1

Weitere Artikel der Ausgabe 3/2022

Cancer and Metastasis Reviews 3/2022 Zur Ausgabe

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Erhöhtes Risiko fürs Herz unter Checkpointhemmer-Therapie

28.05.2024 Nebenwirkungen der Krebstherapie Nachrichten

Kardiotoxische Nebenwirkungen einer Therapie mit Immuncheckpointhemmern mögen selten sein – wenn sie aber auftreten, wird es für Patienten oft lebensgefährlich. Voruntersuchung und Monitoring sind daher obligat.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.