Skip to main content
Erschienen in: Cancer and Metastasis Reviews 3/2022

16.06.2022

The role of bone marrow adipocytes in cancer progression: the impact of obesity

verfasst von: Marine Hernandez, Sauyeun Shin, Catherine Muller, Camille Attané

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 3/2022

Einloggen, um Zugang zu erhalten

Abstract

Bone marrow adipose tissues (BMATs) and their main cellular component, bone marrow adipocytes (BMAds), are found within the bone marrow (BM), which is a niche for the development of hematological malignancies as well as bone metastasis from solid tumors such as breast and prostate cancers. In humans, BMAds are present within the hematopoietic or “red” BMAT and in the “yellow” BMAT where they are more densely packed. BMAds are emerging as new actors in tumor progression; however, there are many outstanding questions regarding their precise role. In this review, we summarized our current knowledge regarding the development, distribution, and regulation by external stimuli of the BMATs in mice and humans and addressed how obesity could affect these traits. We then discussed the specific metabolic phenotype of BMAds that appear to be different from “classical” white adipocytes, since they are devoid of lipolytic function. According to this characterization, we presented how tumor cells affect the in vitro and in vivo phenotype of BMAds and the signals emanating from BMAds that are susceptible to modulate tumor behavior with a specific emphasis on their metabolic crosstalk with cancer cells. Finally, we discussed how obesity could affect this crosstalk. Deciphering the role of BMAds in tumor progression would certainly lead to the identification of new targets in oncology in the near future.
Literatur
11.
Zurück zum Zitat Nieman, K. M., Kenny, H. A., Penicka, C. V., Ladanyi, A., Buell-Gutbrod, R., Zillhardt, M. R., … & Lengyel, E. (2011). Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nature Medicine, 17(11), 1498–1503. https://doi.org/10.1038/nm.2492 Nieman, K. M., Kenny, H. A., Penicka, C. V., Ladanyi, A., Buell-Gutbrod, R., Zillhardt, M. R., … & Lengyel, E. (2011). Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nature Medicine, 17(11), 1498–1503. https://​doi.​org/​10.​1038/​nm.​2492
18.
Zurück zum Zitat Neumann E. (1882). Das Gesetz der Verbreitung des Gelben und rotten Knochenmaarkes. Zentralbl Med Wissensch., pp. 321–323. Neumann E. (1882). Das Gesetz der Verbreitung des Gelben und rotten Knochenmaarkes. Zentralbl Med Wissensch., pp. 321–323.
19.
Zurück zum Zitat Tavassoli, M. (1976). Marrow adipose cells. Histochemical identification of labile and stable components. Archives of Pathology & Laboratory Medicine, 100(1), 16–18. Tavassoli, M. (1976). Marrow adipose cells. Histochemical identification of labile and stable components. Archives of Pathology & Laboratory Medicine, 100(1), 16–18.
20.
Zurück zum Zitat Scheller, E. L., Doucette, C. R., Learman, B. S., Cawthorn, W. P., Khandaker, S., Schell, B., … & MacDougald, O. A. (2015). Region-specific variation in the properties of skeletal adipocytes reveals regulated and constitutive marrow adipose tissues. Nature Communications, 6(1), 7808. https://doi.org/10.1038/ncomms8808 Scheller, E. L., Doucette, C. R., Learman, B. S., Cawthorn, W. P., Khandaker, S., Schell, B., … & MacDougald, O. A. (2015). Region-specific variation in the properties of skeletal adipocytes reveals regulated and constitutive marrow adipose tissues. Nature Communications, 6(1), 7808. https://​doi.​org/​10.​1038/​ncomms8808
21.
Zurück zum Zitat Styner, M., Pagnotti, G. M., McGrath, C., Wu, X., Sen, B., Uzer, G., … & Rubin, J. (2017). Exercise decreases marrow adipose tissue through ß-oxidation in obese running mice: Exercise decreases mat in obese mice. Journal of Bone and Mineral Research, 32(8), 1692–1702. https://doi.org/10.1002/jbmr.3159 Styner, M., Pagnotti, G. M., McGrath, C., Wu, X., Sen, B., Uzer, G., … & Rubin, J. (2017). Exercise decreases marrow adipose tissue through ß-oxidation in obese running mice: Exercise decreases mat in obese mice. Journal of Bone and Mineral Research, 32(8), 1692–1702. https://​doi.​org/​10.​1002/​jbmr.​3159
24.
Zurück zum Zitat Tratwal, J., Labella, R., Bravenboer, N., Kerckhofs, G., Douni, E., Scheller, E. L., … Naveiras, O. (2020). Reporting guidelines, review of methodological standards, and challenges toward harmonization in bone marrow adiposity research. Report of the Methodologies Working Group of the International Bone Marrow Adiposity Society. Frontiers in Endocrinology, 11, 65. https://doi.org/10.3389/fendo.2020.00065 Tratwal, J., Labella, R., Bravenboer, N., Kerckhofs, G., Douni, E., Scheller, E. L., … Naveiras, O. (2020). Reporting guidelines, review of methodological standards, and challenges toward harmonization in bone marrow adiposity research. Report of the Methodologies Working Group of the International Bone Marrow Adiposity Society. Frontiers in Endocrinology, 11, 65. https://​doi.​org/​10.​3389/​fendo.​2020.​00065
25.
Zurück zum Zitat Cawthorn, W. P., Scheller, E. L., Learman, B. S., Parlee, S. D., Simon, B. R., Mori, H., … & MacDougald, O. A. (2014). Bone marrow adipose tissue is an endocrine organ that contributes to increased circulating adiponectin during caloric restriction. Cell Metabolism, 20(2), 368–375. https://doi.org/10.1016/j.cmet.2014.06.003 Cawthorn, W. P., Scheller, E. L., Learman, B. S., Parlee, S. D., Simon, B. R., Mori, H., … & MacDougald, O. A. (2014). Bone marrow adipose tissue is an endocrine organ that contributes to increased circulating adiponectin during caloric restriction. Cell Metabolism, 20(2), 368–375. https://​doi.​org/​10.​1016/​j.​cmet.​2014.​06.​003
30.
Zurück zum Zitat Pansini, V., Monnet, A., Salleron, J., Hardouin, P., Cortet, B., & Cotten, A. (2014). 3 Tesla (1) H MR spectroscopy of hip bone marrow in a healthy population, assessment of normal fat content values and influence of age and sex. Journal of magnetic resonance imaging: JMRI, 39(2), 369–376. https://doi.org/10.1002/jmri.24176CrossRefPubMed Pansini, V., Monnet, A., Salleron, J., Hardouin, P., Cortet, B., & Cotten, A. (2014). 3 Tesla (1) H MR spectroscopy of hip bone marrow in a healthy population, assessment of normal fat content values and influence of age and sex. Journal of magnetic resonance imaging: JMRI, 39(2), 369–376. https://​doi.​org/​10.​1002/​jmri.​24176CrossRefPubMed
31.
32.
Zurück zum Zitat Suchacki, K. J., Tavares, A. A. S., Mattiucci, D., Scheller, E. L., Papanastasiou, G., Gray, C., … & Cawthorn, W. P. (2020). Bone marrow adipose tissue is a unique adipose subtype with distinct roles in glucose homeostasis. Nature Communications, 11(1), 3097. https://doi.org/10.1038/s41467-020-16878-2 Suchacki, K. J., Tavares, A. A. S., Mattiucci, D., Scheller, E. L., Papanastasiou, G., Gray, C., … & Cawthorn, W. P. (2020). Bone marrow adipose tissue is a unique adipose subtype with distinct roles in glucose homeostasis. Nature Communications, 11(1), 3097. https://​doi.​org/​10.​1038/​s41467-020-16878-2
33.
Zurück zum Zitat Lucas, S., Tencerova, M., von der Weid, B., Andersen, T. L., Attané, C., Behler-Janbeck, F., … & van der Eerden, B. C. J. (2021). Guidelines for biobanking of bone marrow adipose tissue and related cell types: Report of the Biobanking Working Group of the International Bone Marrow Adiposity Society. Frontiers in Endocrinology, 12, 744527. https://doi.org/10.3389/fendo.2021.744527 Lucas, S., Tencerova, M., von der Weid, B., Andersen, T. L., Attané, C., Behler-Janbeck, F., … & van der Eerden, B. C. J. (2021). Guidelines for biobanking of bone marrow adipose tissue and related cell types: Report of the Biobanking Working Group of the International Bone Marrow Adiposity Society. Frontiers in Endocrinology, 12, 744527. https://​doi.​org/​10.​3389/​fendo.​2021.​744527
37.
Zurück zum Zitat Devlin, M. J., Cloutier, A. M., Thomas, N. A., Panus, D. A., Lotinun, S., Pinz, I., … & Bouxsein, M. L. (2010). Caloric restriction leads to high marrow adiposity and low bone mass in growing mice. Journal of Bone and Mineral Research: The Official Journal of the American Society for Bone and Mineral Research, 25(9), 2078–2088. https://doi.org/10.1002/jbmr.82 Devlin, M. J., Cloutier, A. M., Thomas, N. A., Panus, D. A., Lotinun, S., Pinz, I., … & Bouxsein, M. L. (2010). Caloric restriction leads to high marrow adiposity and low bone mass in growing mice. Journal of Bone and Mineral Research: The Official Journal of the American Society for Bone and Mineral Research, 25(9), 2078–2088. https://​doi.​org/​10.​1002/​jbmr.​82
40.
Zurück zum Zitat Abella, E., Feliu, E., Granada, I., Millá, F., Oriol, A., Ribera, J. M., … & Rozman, C. (2002). Bone marrow changes in anorexia nervosa are correlated with the amount of weight loss and not with other clinical findings. American Journal of Clinical Pathology, 118(4), 582–588. https://doi.org/10.1309/2Y7X-YDXK-006B-XLT2 Abella, E., Feliu, E., Granada, I., Millá, F., Oriol, A., Ribera, J. M., … & Rozman, C. (2002). Bone marrow changes in anorexia nervosa are correlated with the amount of weight loss and not with other clinical findings. American Journal of Clinical Pathology, 118(4), 582–588. https://​doi.​org/​10.​1309/​2Y7X-YDXK-006B-XLT2
41.
Zurück zum Zitat Bredella, M. A., Torriani, M., Ghomi, R. H., Thomas, B. J., Brick, D. J., Gerweck, A. V., … & Miller, K. K. (2011). Vertebral bone marrow fat is positively associated with visceral fat and inversely associated with IGF-1 in obese women. Obesity, 19(1), 49–53. https://doi.org/10.1038/oby.2010.106 Bredella, M. A., Torriani, M., Ghomi, R. H., Thomas, B. J., Brick, D. J., Gerweck, A. V., … & Miller, K. K. (2011). Vertebral bone marrow fat is positively associated with visceral fat and inversely associated with IGF-1 in obese women. Obesity, 19(1), 49–53. https://​doi.​org/​10.​1038/​oby.​2010.​106
42.
Zurück zum Zitat Cawthorn, W. P., Scheller, E. L., Parlee, S. D., Pham, H. A., Learman, B. S., Redshaw, C. M. H., … & MacDougald, O. A. (2016). Expansion of bone marrow adipose tissue during caloric restriction is associated with increased circulating glucocorticoids and not with hypoleptinemia. Endocrinology, 157(2), 508–521. https://doi.org/10.1210/en.2015-1477 Cawthorn, W. P., Scheller, E. L., Parlee, S. D., Pham, H. A., Learman, B. S., Redshaw, C. M. H., … & MacDougald, O. A. (2016). Expansion of bone marrow adipose tissue during caloric restriction is associated with increased circulating glucocorticoids and not with hypoleptinemia. Endocrinology, 157(2), 508–521. https://​doi.​org/​10.​1210/​en.​2015-1477
44.
Zurück zum Zitat Bartelt, A., Koehne, T., Tödter, K., Reimer, R., Müller, B., Behler-Janbeck, F., … & Niemeier, A. (2017). Quantification of bone fatty acid metabolism and its regulation by adipocyte lipoprotein lipase. International Journal of Molecular Sciences, 18(6), E1264. https://doi.org/10.3390/ijms18061264 Bartelt, A., Koehne, T., Tödter, K., Reimer, R., Müller, B., Behler-Janbeck, F., … & Niemeier, A. (2017). Quantification of bone fatty acid metabolism and its regulation by adipocyte lipoprotein lipase. International Journal of Molecular Sciences, 18(6), E1264. https://​doi.​org/​10.​3390/​ijms18061264
45.
Zurück zum Zitat Ojala, R., Motiani, K. K., Ivaska, K. K., Arponen, M., Eskelinen, J.-J., Virtanen, K. A., & Hannukainen, J. C. (2020). Bone marrow metabolism is impaired in insulin resistance and improves after exercise training. The Journal of Clinical Endocrinology and Metabolism, 105(12), dgaa516. https://doi.org/10.1210/clinem/dgaa516CrossRefPubMed Ojala, R., Motiani, K. K., Ivaska, K. K., Arponen, M., Eskelinen, J.-J., Virtanen, K. A., & Hannukainen, J. C. (2020). Bone marrow metabolism is impaired in insulin resistance and improves after exercise training. The Journal of Clinical Endocrinology and Metabolism, 105(12), dgaa516. https://​doi.​org/​10.​1210/​clinem/​dgaa516CrossRefPubMed
46.
Zurück zum Zitat Kozubík, A., Sedláková, A., Pospísil, M., & Petrásek, R. (1988). In vivo studies of the relationship between the activation of lipid metabolism, postirradiation bone marrow cell proliferation and radioresistance of mice. General Physiology and Biophysics, 7(3), 293–302.PubMed Kozubík, A., Sedláková, A., Pospísil, M., & Petrásek, R. (1988). In vivo studies of the relationship between the activation of lipid metabolism, postirradiation bone marrow cell proliferation and radioresistance of mice. General Physiology and Biophysics, 7(3), 293–302.PubMed
47.
Zurück zum Zitat Pham, T. T., Ivaska, K. K., Hannukainen, J. C., Virtanen, K. A., Lidell, M. E., Enerbäck, S., … Kiviranta, R. (2020). Human bone marrow adipose tissue is a metabolically active and insulin-sensitive distinct fat depot. The Journal of Clinical Endocrinology and Metabolism, 105(7), dgaa216. https://doi.org/10.1210/clinem/dgaa216 Pham, T. T., Ivaska, K. K., Hannukainen, J. C., Virtanen, K. A., Lidell, M. E., Enerbäck, S., … Kiviranta, R. (2020). Human bone marrow adipose tissue is a metabolically active and insulin-sensitive distinct fat depot. The Journal of Clinical Endocrinology and Metabolism, 105(7), dgaa216. https://​doi.​org/​10.​1210/​clinem/​dgaa216
54.
Zurück zum Zitat Mattiucci, D., Maurizi, G., Izzi, V., Cenci, L., Ciarlantini, M., Mancini, S., … & Poloni, A. (2018). Bone marrow adipocytes support hematopoietic stem cell survival. Journal of Cellular Physiology, 233(2), 1500–1511. https://doi.org/10.1002/jcp.26037 Mattiucci, D., Maurizi, G., Izzi, V., Cenci, L., Ciarlantini, M., Mancini, S., … & Poloni, A. (2018). Bone marrow adipocytes support hematopoietic stem cell survival. Journal of Cellular Physiology, 233(2), 1500–1511. https://​doi.​org/​10.​1002/​jcp.​26037
57.
Zurück zum Zitat Yew Tan, C., Virtue, S., Murfitt, S., Roberts, L. D., Robert, L. D., Phua, Y. H., … & Vidal-Puig, A. (2015). Adipose tissue fatty acid chain length and mono-unsaturation increases with obesity and insulin resistance. Scientific Reports, 5, 18366. https://doi.org/10.1038/srep18366 Yew Tan, C., Virtue, S., Murfitt, S., Roberts, L. D., Robert, L. D., Phua, Y. H., … & Vidal-Puig, A. (2015). Adipose tissue fatty acid chain length and mono-unsaturation increases with obesity and insulin resistance. Scientific Reports, 5, 18366. https://​doi.​org/​10.​1038/​srep18366
58.
Zurück zum Zitat Laurencikiene, J., Skurk, T., Kulyté, A., Hedén, P., Aström, G., Sjölin, E., … & Arner, P. (2011). Regulation of lipolysis in small and large fat cells of the same subject. The Journal of Clinical Endocrinology and Metabolism, 96(12), E2045-2049. https://doi.org/10.1210/jc.2011-1702 Laurencikiene, J., Skurk, T., Kulyté, A., Hedén, P., Aström, G., Sjölin, E., … & Arner, P. (2011). Regulation of lipolysis in small and large fat cells of the same subject. The Journal of Clinical Endocrinology and Metabolism, 96(12), E2045-2049. https://​doi.​org/​10.​1210/​jc.​2011-1702
62.
63.
Zurück zum Zitat Lecka-Czernik, B., Stechschulte, L. A., Czernik, P. J., & Dowling, A. R. (2015). High bone mass in adult mice with diet-induced obesity results from a combination of initial increase in bone mass followed by attenuation in bone formation; implications for high bone mass and decreased bone quality in obesity. Molecular and Cellular Endocrinology, 410, 35–41. https://doi.org/10.1016/j.mce.2015.01.001CrossRefPubMed Lecka-Czernik, B., Stechschulte, L. A., Czernik, P. J., & Dowling, A. R. (2015). High bone mass in adult mice with diet-induced obesity results from a combination of initial increase in bone mass followed by attenuation in bone formation; implications for high bone mass and decreased bone quality in obesity. Molecular and Cellular Endocrinology, 410, 35–41. https://​doi.​org/​10.​1016/​j.​mce.​2015.​01.​001CrossRefPubMed
64.
Zurück zum Zitat Tencerova, M., Figeac, F., Ditzel, N., Taipaleenmäki, H., Nielsen, T. K., & Kassem, M. (2018). High-fat diet-induced obesity promotes expansion of bone marrow adipose tissue and impairs skeletal stem cell functions in mice. Journal of Bone and Mineral Research: The Official Journal of the American Society for Bone and Mineral Research, 33(6), 1154–1165. https://doi.org/10.1002/jbmr.3408CrossRef Tencerova, M., Figeac, F., Ditzel, N., Taipaleenmäki, H., Nielsen, T. K., & Kassem, M. (2018). High-fat diet-induced obesity promotes expansion of bone marrow adipose tissue and impairs skeletal stem cell functions in mice. Journal of Bone and Mineral Research: The Official Journal of the American Society for Bone and Mineral Research, 33(6), 1154–1165. https://​doi.​org/​10.​1002/​jbmr.​3408CrossRef
65.
Zurück zum Zitat Bredella, M. A., Gill, C. M., Gerweck, A. V., Landa, M. G., Kumar, V., Daley, S. M., … & Miller, K. K. (2013). Ectopic and serum lipid levels are positively associated with bone marrow fat in obesity. Radiology, 269(2), 534–541. https://doi.org/10.1148/radiol.13130375 Bredella, M. A., Gill, C. M., Gerweck, A. V., Landa, M. G., Kumar, V., Daley, S. M., … & Miller, K. K. (2013). Ectopic and serum lipid levels are positively associated with bone marrow fat in obesity. Radiology, 269(2), 534–541. https://​doi.​org/​10.​1148/​radiol.​13130375
71.
72.
Zurück zum Zitat da Silva, S. V., Renovato-Martins, M., Ribeiro-Pereira, C., Citelli, M., & Barja-Fidalgo, C. (2016). Obesity modifies bone marrow microenvironment and directs bone marrow mesenchymal cells to adipogenesis. Obesity (Silver Spring, Md.), 24(12), 2522–2532. https://doi.org/10.1002/oby.21660CrossRef da Silva, S. V., Renovato-Martins, M., Ribeiro-Pereira, C., Citelli, M., & Barja-Fidalgo, C. (2016). Obesity modifies bone marrow microenvironment and directs bone marrow mesenchymal cells to adipogenesis. Obesity (Silver Spring, Md.), 24(12), 2522–2532. https://​doi.​org/​10.​1002/​oby.​21660CrossRef
73.
Zurück zum Zitat Tencerova, M., Frost, M., Figeac, F., Nielsen, T. K., Ali, D., Lauterlein, J.-J.L., … & Kassem, M. (2019). Obesity-associated hypermetabolism and accelerated senescence of bone marrow stromal stem cells suggest a potential mechanism for bone fragility. Cell Reports, 27(7), 2050-2062.e6. https://doi.org/10.1016/j.celrep.2019.04.066 Tencerova, M., Frost, M., Figeac, F., Nielsen, T. K., Ali, D., Lauterlein, J.-J.L., … & Kassem, M. (2019). Obesity-associated hypermetabolism and accelerated senescence of bone marrow stromal stem cells suggest a potential mechanism for bone fragility. Cell Reports, 27(7), 2050-2062.e6. https://​doi.​org/​10.​1016/​j.​celrep.​2019.​04.​066
76.
Zurück zum Zitat Laurent, V., Toulet, A., Attané, C., Milhas, D., Dauvillier, S., Zaidi, F., … & Muller, C. (2019). Periprostatic adipose tissue favors prostate cancer cell invasion in an obesity-dependent manner: Role of oxidative stress. Molecular cancer research: MCR, 17(3), 821–835. https://doi.org/10.1158/1541-7786.MCR-18-0748 Laurent, V., Toulet, A., Attané, C., Milhas, D., Dauvillier, S., Zaidi, F., … & Muller, C. (2019). Periprostatic adipose tissue favors prostate cancer cell invasion in an obesity-dependent manner: Role of oxidative stress. Molecular cancer research: MCR, 17(3), 821–835. https://​doi.​org/​10.​1158/​1541-7786.​MCR-18-0748
80.
82.
Zurück zum Zitat Fairfield, H., Costa, S., Falank, C., Farrell, M., Murphy, C. S., D’Amico, A., … & Reagan, M. R. (2020). Multiple myeloma cells alter adipogenesis, increase senescence-related and inflammatory gene transcript expression, and alter metabolism in preadipocytes. Frontiers in Oncology, 10, 584683. https://doi.org/10.3389/fonc.2020.584683 Fairfield, H., Costa, S., Falank, C., Farrell, M., Murphy, C. S., D’Amico, A., … & Reagan, M. R. (2020). Multiple myeloma cells alter adipogenesis, increase senescence-related and inflammatory gene transcript expression, and alter metabolism in preadipocytes. Frontiers in Oncology, 10, 584683. https://​doi.​org/​10.​3389/​fonc.​2020.​584683
83.
Zurück zum Zitat Boyd, A. L., Reid, J. C., Salci, K. R., Aslostovar, L., Benoit, Y. D., Shapovalova, Z., … & Bhatia, M. (2017). Acute myeloid leukaemia disrupts endogenous myelo-erythropoiesis by compromising the adipocyte bone marrow niche. Nature Cell Biology, 19(11), 1336–1347. https://doi.org/10.1038/ncb3625 Boyd, A. L., Reid, J. C., Salci, K. R., Aslostovar, L., Benoit, Y. D., Shapovalova, Z., … & Bhatia, M. (2017). Acute myeloid leukaemia disrupts endogenous myelo-erythropoiesis by compromising the adipocyte bone marrow niche. Nature Cell Biology, 19(11), 1336–1347. https://​doi.​org/​10.​1038/​ncb3625
86.
Zurück zum Zitat Liu, H., Zhai, Y., Zhao, W., Wan, Y., Lu, W., Yang, S., … & Shi, J. (2018). Consolidation chemotherapy prevents relapse by indirectly regulating bone marrow adipogenesis in patients with acute myeloid leukemia. Cellular Physiology and Biochemistry: International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology, 45(6), 2389–2400. https://doi.org/10.1159/000488225 Liu, H., Zhai, Y., Zhao, W., Wan, Y., Lu, W., Yang, S., … & Shi, J. (2018). Consolidation chemotherapy prevents relapse by indirectly regulating bone marrow adipogenesis in patients with acute myeloid leukemia. Cellular Physiology and Biochemistry: International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology, 45(6), 2389–2400. https://​doi.​org/​10.​1159/​000488225
87.
Zurück zum Zitat Heydt, Q., Xintaropoulou, C., Clear, A., Austin, M., Pislariu, I., Miraki-Moud, F., … & Patel, B. (2021). Adipocytes disrupt the translational programme of acute lymphoblastic leukaemia to favour tumour survival and persistence. Nature Communications, 12(1), 5507. https://doi.org/10.1038/s41467-021-25540-4 Heydt, Q., Xintaropoulou, C., Clear, A., Austin, M., Pislariu, I., Miraki-Moud, F., … & Patel, B. (2021). Adipocytes disrupt the translational programme of acute lymphoblastic leukaemia to favour tumour survival and persistence. Nature Communications, 12(1), 5507. https://​doi.​org/​10.​1038/​s41467-021-25540-4
89.
91.
Zurück zum Zitat Lu, W., Wan, Y., Li, Z., Zhu, B., Yin, C., Liu, H., … & Shi, J. (2018). Growth differentiation factor 15 contributes to marrow adipocyte remodeling in response to the growth of leukemic cells. Journal of Experimental & Clinical Cancer Research, 37(1), 66. https://doi.org/10.1186/s13046-018-0738-y Lu, W., Wan, Y., Li, Z., Zhu, B., Yin, C., Liu, H., … & Shi, J. (2018). Growth differentiation factor 15 contributes to marrow adipocyte remodeling in response to the growth of leukemic cells. Journal of Experimental & Clinical Cancer Research, 37(1), 66. https://​doi.​org/​10.​1186/​s13046-018-0738-y
92.
Zurück zum Zitat Diedrich, J. D., Rajagurubandara, E., Herroon, M. K., Mahapatra, G., Hüttemann, M., & Podgorski, I. (2016). Bone marrow adipocytes promote the Warburg phenotype in metastatic prostate tumors via HIF-1α activation. Oncotarget, 7(40), 64854–64877. https://doi.org/10.18632/oncotarget.11712 Diedrich, J. D., Rajagurubandara, E., Herroon, M. K., Mahapatra, G., Hüttemann, M., & Podgorski, I. (2016). Bone marrow adipocytes promote the Warburg phenotype in metastatic prostate tumors via HIF-1α activation. Oncotarget, 7(40), 64854–64877. https://​doi.​org/​10.​18632/​oncotarget.​11712
93.
Zurück zum Zitat Herroon, M. K., Diedrich, J. D., Rajagurubandara, E., Martin, C., Maddipati, K. R., Kim, S., … & Podgorski, I. (2019). Prostate tumor cell-derived il1β induces an inflammatory phenotype in bone marrow adipocytes and reduces sensitivity to docetaxel via lipolysis-dependent mechanisms. Molecular cancer research: MCR, 17(12), 2508–2521. https://doi.org/10.1158/1541-7786.MCR-19-0540 Herroon, M. K., Diedrich, J. D., Rajagurubandara, E., Martin, C., Maddipati, K. R., Kim, S., … & Podgorski, I. (2019). Prostate tumor cell-derived il1β induces an inflammatory phenotype in bone marrow adipocytes and reduces sensitivity to docetaxel via lipolysis-dependent mechanisms. Molecular cancer research: MCR, 17(12), 2508–2521. https://​doi.​org/​10.​1158/​1541-7786.​MCR-19-0540
94.
Zurück zum Zitat Herroon, M. K., Rajagurubandara, E., Hardaway, A. L., Powell, K., Turchick, A., Feldmann, D., & Podgorski, I. (2013). Bone marrow adipocytes promote tumor growth in bone via FABP4-dependent mechanisms. Oncotarget, 4(11), 2108–2123. https://doi.org/10.18632/oncotarget.1482 Herroon, M. K., Rajagurubandara, E., Hardaway, A. L., Powell, K., Turchick, A., Feldmann, D., & Podgorski, I. (2013). Bone marrow adipocytes promote tumor growth in bone via FABP4-dependent mechanisms. Oncotarget, 4(11), 2108–2123. https://​doi.​org/​10.​18632/​oncotarget.​1482
95.
Zurück zum Zitat Tabe, Y., Yamamoto, S., Saitoh, K., Sekihara, K., Monma, N., Ikeo, K., … & Andreeff, M. (2017). Bone marrow adipocytes facilitate fatty acid oxidation activating AMPK and a transcriptional network supporting survival of acute monocytic leukemia cells. Cancer Research, 77(6), 1453–1464. https://doi.org/10.1158/0008-5472.CAN-16-1645 Tabe, Y., Yamamoto, S., Saitoh, K., Sekihara, K., Monma, N., Ikeo, K., … & Andreeff, M. (2017). Bone marrow adipocytes facilitate fatty acid oxidation activating AMPK and a transcriptional network supporting survival of acute monocytic leukemia cells. Cancer Research, 77(6), 1453–1464. https://​doi.​org/​10.​1158/​0008-5472.​CAN-16-1645
97.
Zurück zum Zitat Morris, E. V., Suchacki, K. J., Hocking, J., Cartwright, R., Sowman, A., Gamez, B., … & Edwards, C. M. (2020). Myeloma cells down-regulate adiponectin in bone marrow adipocytes via TNF-alpha. Journal of Bone and Mineral Research: The Official Journal of the American Society for Bone and Mineral Research, 35(5), 942–955. https://doi.org/10.1002/jbmr.3951 Morris, E. V., Suchacki, K. J., Hocking, J., Cartwright, R., Sowman, A., Gamez, B., … & Edwards, C. M. (2020). Myeloma cells down-regulate adiponectin in bone marrow adipocytes via TNF-alpha. Journal of Bone and Mineral Research: The Official Journal of the American Society for Bone and Mineral Research, 35(5), 942–955. https://​doi.​org/​10.​1002/​jbmr.​3951
98.
Zurück zum Zitat Caers, J., Deleu, S., Belaid, Z., De Raeve, H., Van Valckenborgh, E., De Bruyne, E., … & Vanderkerken, K. (2007). Neighboring adipocytes participate in the bone marrow microenvironment of multiple myeloma cells. Leukemia, 21(7), 1580–1584. https://doi.org/10.1038/sj.leu.2404658 Caers, J., Deleu, S., Belaid, Z., De Raeve, H., Van Valckenborgh, E., De Bruyne, E., … & Vanderkerken, K. (2007). Neighboring adipocytes participate in the bone marrow microenvironment of multiple myeloma cells. Leukemia, 21(7), 1580–1584. https://​doi.​org/​10.​1038/​sj.​leu.​2404658
102.
Zurück zum Zitat Chen, G.-L., Luo, Y., Eriksson, D., Meng, X., Qian, C., Bäuerle, T., … Bozec, A. (2016). High fat diet increases melanoma cell growth in the bone marrow by inducing osteopontin and interleukin 6. Oncotarget, 7(18), 26653–26669. https://doi.org/10.18632/oncotarget.8474 Chen, G.-L., Luo, Y., Eriksson, D., Meng, X., Qian, C., Bäuerle, T., … Bozec, A. (2016). High fat diet increases melanoma cell growth in the bone marrow by inducing osteopontin and interleukin 6. Oncotarget, 7(18), 26653–26669. https://​doi.​org/​10.​18632/​oncotarget.​8474
103.
Zurück zum Zitat Guérard, A., Laurent, V., Fromont, G., Estève, D., Gilhodes, J., Bonnelye, E., … & Muller, C. (2021). The chemokine receptor CCR3 is potentially involved in the homing of prostate cancer cells to bone: Implication of bone-marrow adipocytes. International Journal of Molecular Sciences, 22(4), 1994. https://doi.org/10.3390/ijms22041994 Guérard, A., Laurent, V., Fromont, G., Estève, D., Gilhodes, J., Bonnelye, E., … & Muller, C. (2021). The chemokine receptor CCR3 is potentially involved in the homing of prostate cancer cells to bone: Implication of bone-marrow adipocytes. International Journal of Molecular Sciences, 22(4), 1994. https://​doi.​org/​10.​3390/​ijms22041994
107.
Zurück zum Zitat Castillo, J. J., Reagan, J. L., Ingham, R. R., Furman, M., Dalia, S., Merhi, B., … & Mitri, J. (2012). Obesity but not overweight increases the incidence and mortality of leukemia in adults: A meta-analysis of prospective cohort studies. Leukemia Research, 36(7), 868–875. https://doi.org/10.1016/j.leukres.2011.12.020 Castillo, J. J., Reagan, J. L., Ingham, R. R., Furman, M., Dalia, S., Merhi, B., … & Mitri, J. (2012). Obesity but not overweight increases the incidence and mortality of leukemia in adults: A meta-analysis of prospective cohort studies. Leukemia Research, 36(7), 868–875. https://​doi.​org/​10.​1016/​j.​leukres.​2011.​12.​020
108.
109.
Zurück zum Zitat Butturini, A. M., Dorey, F. J., Lange, B. J., Henry, D. W., Gaynon, P. S., Fu, C., … & Carroll, W. L. (2007). Obesity and outcome in pediatric acute lymphoblastic leukemia. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 25(15), 2063–2069. https://doi.org/10.1200/JCO.2006.07.7792 Butturini, A. M., Dorey, F. J., Lange, B. J., Henry, D. W., Gaynon, P. S., Fu, C., … & Carroll, W. L. (2007). Obesity and outcome in pediatric acute lymphoblastic leukemia. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 25(15), 2063–2069. https://​doi.​org/​10.​1200/​JCO.​2006.​07.​7792
111.
Zurück zum Zitat von Drygalski, A., Tran, T. B., Messer, K., Pu, M., Corringham, S., Nelson, C., & Ball, E. D. (2011). Obesity is an independent predictor of poor survival in metastatic breast cancer: Retrospective analysis of a patient cohort whose treatment included high-dose chemotherapy and autologous stem cell support. International Journal of Breast Cancer, 2011, 523276. https://doi.org/10.4061/2011/523276CrossRef von Drygalski, A., Tran, T. B., Messer, K., Pu, M., Corringham, S., Nelson, C., & Ball, E. D. (2011). Obesity is an independent predictor of poor survival in metastatic breast cancer: Retrospective analysis of a patient cohort whose treatment included high-dose chemotherapy and autologous stem cell support. International Journal of Breast Cancer, 2011, 523276. https://​doi.​org/​10.​4061/​2011/​523276CrossRef
112.
Zurück zum Zitat Lazar, I., Clement, E., Dauvillier, S., Milhas, D., Ducoux-Petit, M., LeGonidec, S., … & Nieto, L. (2016). Adipocyte exosomes promote melanoma aggressiveness through fatty acid oxidation: A novel mechanism linking obesity and cancer. Cancer Research, 76(14), 4051–4057. https://doi.org/10.1158/0008-5472.CAN-16-0651 Lazar, I., Clement, E., Dauvillier, S., Milhas, D., Ducoux-Petit, M., LeGonidec, S., … & Nieto, L. (2016). Adipocyte exosomes promote melanoma aggressiveness through fatty acid oxidation: A novel mechanism linking obesity and cancer. Cancer Research, 76(14), 4051–4057. https://​doi.​org/​10.​1158/​0008-5472.​CAN-16-0651
113.
Zurück zum Zitat Clement, E., Lazar, I., Attané, C., Carrié, L., Dauvillier, S., Ducoux-Petit, M., … Nieto, L. (2020). Adipocyte extracellular vesicles carry enzymes and fatty acids that stimulate mitochondrial metabolism and remodeling in tumor cells. The EMBO journal, 39(3), e102525. https://doi.org/10.15252/embj.2019102525 Clement, E., Lazar, I., Attané, C., Carrié, L., Dauvillier, S., Ducoux-Petit, M., … Nieto, L. (2020). Adipocyte extracellular vesicles carry enzymes and fatty acids that stimulate mitochondrial metabolism and remodeling in tumor cells. The EMBO journal, 39(3), e102525. https://​doi.​org/​10.​15252/​embj.​2019102525
114.
Zurück zum Zitat Evangelista, G. C. M., Salvador, P. A., Soares, S. M. A., Barros, L. R. C., da Xavier, F. H., & C., Abdo, L. M., … Gameiro, J. (2019). 4T1 mammary carcinoma colonization of metastatic niches is accelerated by obesity. Frontiers in Oncology, 9, 685. https://doi.org/10.3389/fonc.2019.00685 Evangelista, G. C. M., Salvador, P. A., Soares, S. M. A., Barros, L. R. C., da Xavier, F. H., & C., Abdo, L. M., … Gameiro, J. (2019). 4T1 mammary carcinoma colonization of metastatic niches is accelerated by obesity. Frontiers in Oncology, 9, 685. https://​doi.​org/​10.​3389/​fonc.​2019.​00685
115.
Zurück zum Zitat Yun, J. P., Behan, J. W., Heisterkamp, N., Butturini, A., Klemm, L., Ji, L., … Mittelman, S. D. (2010). Diet-induced obesity accelerates acute lymphoblastic leukemia progression in two murine models. Cancer Prevention Research (Philadelphia, Pa.), 3(10), 1259–1264. https://doi.org/10.1158/1940-6207.CAPR-10-0087 Yun, J. P., Behan, J. W., Heisterkamp, N., Butturini, A., Klemm, L., Ji, L., … Mittelman, S. D. (2010). Diet-induced obesity accelerates acute lymphoblastic leukemia progression in two murine models. Cancer Prevention Research (Philadelphia, Pa.), 3(10), 1259–1264. https://​doi.​org/​10.​1158/​1940-6207.​CAPR-10-0087
Metadaten
Titel
The role of bone marrow adipocytes in cancer progression: the impact of obesity
verfasst von
Marine Hernandez
Sauyeun Shin
Catherine Muller
Camille Attané
Publikationsdatum
16.06.2022
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 3/2022
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-022-10042-6

Weitere Artikel der Ausgabe 3/2022

Cancer and Metastasis Reviews 3/2022 Zur Ausgabe

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Erhöhtes Risiko fürs Herz unter Checkpointhemmer-Therapie

28.05.2024 Nebenwirkungen der Krebstherapie Nachrichten

Kardiotoxische Nebenwirkungen einer Therapie mit Immuncheckpointhemmern mögen selten sein – wenn sie aber auftreten, wird es für Patienten oft lebensgefährlich. Voruntersuchung und Monitoring sind daher obligat.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.