Skip to main content
Erschienen in: Cancer and Metastasis Reviews 2/2023

08.06.2023

The role of histone H3 lysine demethylases in glioblastoma

verfasst von: Dejauwne Young, Chandan Guha, Simone Sidoli

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 2/2023

Einloggen, um Zugang zu erhalten

Abstract

Glioblastoma (GBM) is the most aggressive primary brain tumor in adults with an average survival of 15–18 months. Part of its malignancy derives from epigenetic regulation that occurs as the tumor develops and after therapeutic treatment. Specifically, enzymes involved in removing methylations from histone proteins on chromatin, i.e., lysine demethylases (KDMs), have a significant impact on GBM biology and reoccurrence. This knowledge has paved the way to considering KDMs as potential targets for GBM treatment. For example, increases in trimethylation of histone H3 on the lysine 9 residue (H3K9me3) via inhibition of KDM4C and KDM7A has been shown to lead to cell death in Glioblastoma initiating cells. KDM6 has been shown to drive Glioma resistance to receptor tyrosine kinase inhibitors and its inhibition decreases tumor resistance. In addition, increased expression of the histone methyltransferase MLL4 and UTX histone demethylase are associated with prolonged survival in a subset of GBM patients, potentially by regulating histone methylation on the promoter of the mgmt gene. Thus, the complexity of how histone modifiers contribute to glioblastoma pathology and disease progression is yet to be fully understood. To date, most of the current work on histone modifying enzymes in GBM are centered upon histone H3 demethylase enzymes. In this mini-review, we summarize the current knowledge on the role of histone H3 demethylase enzymes in Glioblastoma tumor biology and therapy resistance. The objective of this work is to highlight the current and future potential areas of research for GBM epigenetics therapy.
Literatur
1.
Zurück zum Zitat Weller, M., et al. (2013). Standards of care for treatment of recurrent glioblastoma--Are we there yet? Neuro-Oncology, 15(1), 4–27.PubMedCrossRef Weller, M., et al. (2013). Standards of care for treatment of recurrent glioblastoma--Are we there yet? Neuro-Oncology, 15(1), 4–27.PubMedCrossRef
2.
3.
Zurück zum Zitat Millán-Zambrano, G., et al. (2022). Histone post-translational modifications — cause and consequence of genome function. Nature Reviews Genetics, 23(9), 563–580.PubMedCrossRef Millán-Zambrano, G., et al. (2022). Histone post-translational modifications — cause and consequence of genome function. Nature Reviews Genetics, 23(9), 563–580.PubMedCrossRef
4.
Zurück zum Zitat Hyun, K., et al. (2017). Writing, erasing and reading histone lysine methylations. Experimental & Molecular Medicine, 49(4), e324.CrossRef Hyun, K., et al. (2017). Writing, erasing and reading histone lysine methylations. Experimental & Molecular Medicine, 49(4), e324.CrossRef
5.
6.
Zurück zum Zitat Aymard, F., et al. (2014). Transcriptionally active chromatin recruits homologous recombination at DNA double-strand breaks. Nature Structural & Molecular Biology, 21(4), 366–374.CrossRef Aymard, F., et al. (2014). Transcriptionally active chromatin recruits homologous recombination at DNA double-strand breaks. Nature Structural & Molecular Biology, 21(4), 366–374.CrossRef
7.
Zurück zum Zitat Shilatifard, A. (2012). The COMPASS family of histone H3K4 methylases: Mechanisms of regulation in development and disease pathogenesis. Annual Review of Biochemistry, 81, 65–95.PubMedPubMedCentralCrossRef Shilatifard, A. (2012). The COMPASS family of histone H3K4 methylases: Mechanisms of regulation in development and disease pathogenesis. Annual Review of Biochemistry, 81, 65–95.PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Wagner, E. J., & Carpenter, P. B. (2012). Understanding the language of Lys36 methylation at histone H3. Nature Reviews. Molecular Cell Biology, 13(2), 115–126.PubMedPubMedCentralCrossRef Wagner, E. J., & Carpenter, P. B. (2012). Understanding the language of Lys36 methylation at histone H3. Nature Reviews. Molecular Cell Biology, 13(2), 115–126.PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Zaghi, M., Broccoli, V., & Sessa, A. (2019). H3K36 methylation in neural development and associated diseases. Frontiers in Genetics, 10, 1291.PubMedCrossRef Zaghi, M., Broccoli, V., & Sessa, A. (2019). H3K36 methylation in neural development and associated diseases. Frontiers in Genetics, 10, 1291.PubMedCrossRef
10.
Zurück zum Zitat Oyer, J. A., et al. (2014). Point mutation E1099K in MMSET/NSD2 enhances its methyltranferase activity and leads to altered global chromatin methylation in lymphoid malignancies. Leukemia, 28(1), 198–201.PubMedCrossRef Oyer, J. A., et al. (2014). Point mutation E1099K in MMSET/NSD2 enhances its methyltranferase activity and leads to altered global chromatin methylation in lymphoid malignancies. Leukemia, 28(1), 198–201.PubMedCrossRef
11.
Zurück zum Zitat Peri, S., et al. (2017). NSD1- and NSD2-damaging mutations define a subset of laryngeal tumors with favorable prognosis. Nature. Communications, 8(1), 1772. Peri, S., et al. (2017). NSD1- and NSD2-damaging mutations define a subset of laryngeal tumors with favorable prognosis. Nature. Communications, 8(1), 1772.
12.
Zurück zum Zitat D'Afonseca, V., et al. (2020). Computational analyses on genetic alterations in the NSD genes family and the implications for colorectal cancer development. ecancermedicalscience, 14, 1001. D'Afonseca, V., et al. (2020). Computational analyses on genetic alterations in the NSD genes family and the implications for colorectal cancer development. ecancermedicalscience, 14, 1001.
13.
Zurück zum Zitat D’Amati, A., et al. (2022). NSD1 mutations and pediatric high-grade gliomas: A comparative genomic study in primary and recurrent tumors. Diagnostics, 13(1), 78.PubMedPubMedCentralCrossRef D’Amati, A., et al. (2022). NSD1 mutations and pediatric high-grade gliomas: A comparative genomic study in primary and recurrent tumors. Diagnostics, 13(1), 78.PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Chen, R., et al. (2020). The role of methyltransferase NSD2 as a potential oncogene in human solid tumors. Oncotargets and Therapy, 13, 6837–6846.PubMedPubMedCentralCrossRef Chen, R., et al. (2020). The role of methyltransferase NSD2 as a potential oncogene in human solid tumors. Oncotargets and Therapy, 13, 6837–6846.PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Farooq, Z., et al. (2016). The many faces of histone H3K79 methylation. Mutation Research, Reviews in Mutation Research, 768, 46–52.PubMedCrossRef Farooq, Z., et al. (2016). The many faces of histone H3K79 methylation. Mutation Research, Reviews in Mutation Research, 768, 46–52.PubMedCrossRef
16.
Zurück zum Zitat Kim, W., Choi, M., & Kim, J.-E. (2014). The histone methyltransferase Dot1/DOT1L as a critical regulator of the cell cycle. Cell Cycle, 13(5), 726–738.PubMedPubMedCentralCrossRef Kim, W., Choi, M., & Kim, J.-E. (2014). The histone methyltransferase Dot1/DOT1L as a critical regulator of the cell cycle. Cell Cycle, 13(5), 726–738.PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat Wu, A., et al. (2021). DOT1L complex regulates transcriptional initiation in human erythroleukemic cells. Proceedings of the National Academy of Sciences, 118(27), e2106148118.CrossRef Wu, A., et al. (2021). DOT1L complex regulates transcriptional initiation in human erythroleukemic cells. Proceedings of the National Academy of Sciences, 118(27), e2106148118.CrossRef
18.
Zurück zum Zitat Kari, V., et al. (2019). The histone methyltransferase DOT1L is required for proper DNA damage response, DNA repair, and modulates chemotherapy responsiveness. Clinical. Epigenetics, 11(1), 4. Kari, V., et al. (2019). The histone methyltransferase DOT1L is required for proper DNA damage response, DNA repair, and modulates chemotherapy responsiveness. Clinical. Epigenetics, 11(1), 4.
19.
Zurück zum Zitat Janzen, C. J., et al. (2006). Selective di- or trimethylation of histone H3 lysine 76 by two DOT1 homologs is important for cell cycle regulation in Trypanosoma brucei. Molecular Cell, 23(4), 497–507.PubMedCrossRef Janzen, C. J., et al. (2006). Selective di- or trimethylation of histone H3 lysine 76 by two DOT1 homologs is important for cell cycle regulation in Trypanosoma brucei. Molecular Cell, 23(4), 497–507.PubMedCrossRef
20.
Zurück zum Zitat Sarno, F., Nebbioso, A., & Altucci, L. (2020). DOT1L: a key target in normal chromatin remodelling and in mixed-lineage leukaemia treatment. Epigenetics, 15(5), 439–453.PubMedCrossRef Sarno, F., Nebbioso, A., & Altucci, L. (2020). DOT1L: a key target in normal chromatin remodelling and in mixed-lineage leukaemia treatment. Epigenetics, 15(5), 439–453.PubMedCrossRef
21.
Zurück zum Zitat Padeken, J., Methot, S. P., & Gasser, S. M. (2022). Establishment of H3K9-methylated heterochromatin and its functions in tissue differentiation and maintenance. Nature Reviews. Molecular Cell Biology, 23(9), 623–640.PubMedPubMedCentralCrossRef Padeken, J., Methot, S. P., & Gasser, S. M. (2022). Establishment of H3K9-methylated heterochromatin and its functions in tissue differentiation and maintenance. Nature Reviews. Molecular Cell Biology, 23(9), 623–640.PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Tan, J. Z., et al. (2014). EZH2: biology, disease, and structure-based drug discovery. Acta Pharmacologica Sinica, 35(2), 161–174.PubMedCrossRef Tan, J. Z., et al. (2014). EZH2: biology, disease, and structure-based drug discovery. Acta Pharmacologica Sinica, 35(2), 161–174.PubMedCrossRef
23.
Zurück zum Zitat De Santa, F., et al. (2007). The histone H3 lysine-27 demethylase Jmjd3 links inflammation to inhibition of polycomb-mediated gene silencing. Cell, 130(6), 1083–1094.PubMedCrossRef De Santa, F., et al. (2007). The histone H3 lysine-27 demethylase Jmjd3 links inflammation to inhibition of polycomb-mediated gene silencing. Cell, 130(6), 1083–1094.PubMedCrossRef
24.
Zurück zum Zitat Ernst, P., et al. (2004). An Mll-dependent Hox program drives hematopoietic progenitor expansion. Current Biology, 14(22), 2063–2069.PubMedCrossRef Ernst, P., et al. (2004). An Mll-dependent Hox program drives hematopoietic progenitor expansion. Current Biology, 14(22), 2063–2069.PubMedCrossRef
25.
Zurück zum Zitat Schuettengruber, B., et al. (2011). Trithorax group proteins: Switching genes on and keeping them active. Nature Reviews Molecular Cell Biology, 12(12), 799–814.PubMedCrossRef Schuettengruber, B., et al. (2011). Trithorax group proteins: Switching genes on and keeping them active. Nature Reviews Molecular Cell Biology, 12(12), 799–814.PubMedCrossRef
26.
Zurück zum Zitat Gallo, M., et al. (2013). A tumorigenic MLL-homeobox network in human glioblastoma stem cells. Cancer Research, 73(1), 417–427.PubMedCrossRef Gallo, M., et al. (2013). A tumorigenic MLL-homeobox network in human glioblastoma stem cells. Cancer Research, 73(1), 417–427.PubMedCrossRef
27.
Zurück zum Zitat Spyropoulou, A., et al. (2014). Role of histone lysine methyltransferases SUV39H1 and SETDB1 in gliomagenesis: Modulation of cell proliferation, migration, and colony formation. Neuromolecular Medicine, 16(1), 70–82.PubMedCrossRef Spyropoulou, A., et al. (2014). Role of histone lysine methyltransferases SUV39H1 and SETDB1 in gliomagenesis: Modulation of cell proliferation, migration, and colony formation. Neuromolecular Medicine, 16(1), 70–82.PubMedCrossRef
28.
Zurück zum Zitat Kim, E., et al. (2013). Phosphorylation of EZH2 activates STAT3 signaling via STAT3 methylation and promotes tumorigenicity of glioblastoma stem-like cells. Cancer Cell, 23(6), 839–852.PubMedPubMedCentralCrossRef Kim, E., et al. (2013). Phosphorylation of EZH2 activates STAT3 signaling via STAT3 methylation and promotes tumorigenicity of glioblastoma stem-like cells. Cancer Cell, 23(6), 839–852.PubMedPubMedCentralCrossRef
29.
Zurück zum Zitat Chen, Y. N., et al. (2021). EZH2 is a potential prognostic predictor of glioma. Journal of Cellular and Molecular Medicine, 25(2), 925–936.PubMedCrossRef Chen, Y. N., et al. (2021). EZH2 is a potential prognostic predictor of glioma. Journal of Cellular and Molecular Medicine, 25(2), 925–936.PubMedCrossRef
30.
Zurück zum Zitat Zhang, Y., et al. (2017). EZH2 overexpression is associated with poor prognosis in patients with glioma. Oncotarget, 8(1), 565–573.PubMedCrossRef Zhang, Y., et al. (2017). EZH2 overexpression is associated with poor prognosis in patients with glioma. Oncotarget, 8(1), 565–573.PubMedCrossRef
31.
Zurück zum Zitat Suva, M. L., et al. (2009). EZH2 is essential for glioblastoma cancer stem cell maintenance. Cancer Research, 69(24), 9211–9218.PubMedCrossRef Suva, M. L., et al. (2009). EZH2 is essential for glioblastoma cancer stem cell maintenance. Cancer Research, 69(24), 9211–9218.PubMedCrossRef
32.
Zurück zum Zitat Fan, T. Y., et al. (2014). Inhibition of EZH2 reverses chemotherapeutic drug TMZ chemosensitivity in glioblastoma. International Journal of Clinical and Experimental Pathology, 7(10), 6662–6670.PubMedPubMedCentral Fan, T. Y., et al. (2014). Inhibition of EZH2 reverses chemotherapeutic drug TMZ chemosensitivity in glioblastoma. International Journal of Clinical and Experimental Pathology, 7(10), 6662–6670.PubMedPubMedCentral
33.
Zurück zum Zitat Fontebasso, A. M., et al. (2013). Mutations in SETD2 and genes affecting histone H3K36 methylation target hemispheric high-grade gliomas. Acta Neuropathologica, 125(5), 659–669.PubMedPubMedCentralCrossRef Fontebasso, A. M., et al. (2013). Mutations in SETD2 and genes affecting histone H3K36 methylation target hemispheric high-grade gliomas. Acta Neuropathologica, 125(5), 659–669.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Kaur, E., et al. (2020). Inhibition of SETMAR-H3K36me2-NHEJ repair axis in residual disease cells prevents glioblastoma recurrence. Neuro-Oncology, 22(12), 1785–1796.PubMedPubMedCentralCrossRef Kaur, E., et al. (2020). Inhibition of SETMAR-H3K36me2-NHEJ repair axis in residual disease cells prevents glioblastoma recurrence. Neuro-Oncology, 22(12), 1785–1796.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Macleod, G., et al. (2019). Genome-Wide CRISPR-Cas9 screens expose genetic vulnerabilities and mechanisms of temozolomide sensitivity in glioblastoma stem cells. Cell Reports, 27(3), 971–986.e9.PubMedCrossRef Macleod, G., et al. (2019). Genome-Wide CRISPR-Cas9 screens expose genetic vulnerabilities and mechanisms of temozolomide sensitivity in glioblastoma stem cells. Cell Reports, 27(3), 971–986.e9.PubMedCrossRef
36.
Zurück zum Zitat Fang, Y., Liao, G., & Yu, B. (2019). LSD1/KDM1A inhibitors in clinical trials: Advances and prospects. Journal of Hematology & Oncology, 12(1), 129.CrossRef Fang, Y., Liao, G., & Yu, B. (2019). LSD1/KDM1A inhibitors in clinical trials: Advances and prospects. Journal of Hematology & Oncology, 12(1), 129.CrossRef
37.
Zurück zum Zitat Sareddy, G. R., et al. (2017). Novel KDM1A inhibitors induce differentiation and apoptosis of glioma stem cells via unfolded protein response pathway. Oncogene, 36(17), 2423–2434.PubMedCrossRef Sareddy, G. R., et al. (2017). Novel KDM1A inhibitors induce differentiation and apoptosis of glioma stem cells via unfolded protein response pathway. Oncogene, 36(17), 2423–2434.PubMedCrossRef
38.
39.
Zurück zum Zitat Yi, L., et al. (2016). Stabilization of LSD1 by deubiquitinating enzyme USP7 promotes glioblastoma cell tumorigenesis and metastasis through suppression of the p53 signaling pathway. Oncology Reports, 36(5), 2935–2945.PubMedCrossRef Yi, L., et al. (2016). Stabilization of LSD1 by deubiquitinating enzyme USP7 promotes glioblastoma cell tumorigenesis and metastasis through suppression of the p53 signaling pathway. Oncology Reports, 36(5), 2935–2945.PubMedCrossRef
40.
Zurück zum Zitat Saccà, C. D., et al. (2019). Inhibition of lysine-specific demethylase LSD1 induces senescence in glioblastoma cells through a HIF-1α-dependent pathway. Biochimica et Biophysica Acta, Gene Regulatory Mechanisms, 1862(5), 535–546.PubMedCrossRef Saccà, C. D., et al. (2019). Inhibition of lysine-specific demethylase LSD1 induces senescence in glioblastoma cells through a HIF-1α-dependent pathway. Biochimica et Biophysica Acta, Gene Regulatory Mechanisms, 1862(5), 535–546.PubMedCrossRef
41.
Zurück zum Zitat Zhou, A., et al. (2016). Nuclear GSK3beta promotes tumorigenesis by phosphorylating KDM1A and inducing its deubiquitylation by USP22. Nature Cell Biology, 18(9), 954–966.PubMedPubMedCentralCrossRef Zhou, A., et al. (2016). Nuclear GSK3beta promotes tumorigenesis by phosphorylating KDM1A and inducing its deubiquitylation by USP22. Nature Cell Biology, 18(9), 954–966.PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Kozono, D., et al. (2015). Dynamic epigenetic regulation of glioblastoma tumorigenicity through LSD1 modulation of MYC expression. Proceedings of the National Academy of Sciences of the United States of America, 112(30), E4055–E4064.PubMedPubMedCentral Kozono, D., et al. (2015). Dynamic epigenetic regulation of glioblastoma tumorigenicity through LSD1 modulation of MYC expression. Proceedings of the National Academy of Sciences of the United States of America, 112(30), E4055–E4064.PubMedPubMedCentral
43.
Zurück zum Zitat Faletti, S., et al. (2021). LSD1-directed therapy affects glioblastoma tumorigenicity by deregulating the protective ATF4-dependent integrated stress response. Science Translational Medicine, 13(623), eabf7036.PubMedCrossRef Faletti, S., et al. (2021). LSD1-directed therapy affects glioblastoma tumorigenicity by deregulating the protective ATF4-dependent integrated stress response. Science Translational Medicine, 13(623), eabf7036.PubMedCrossRef
44.
Zurück zum Zitat Wang, L., et al. (2021). Up-regulation of miR-663a inhibits the cancer stem cell-like properties of glioma via repressing the KDM2A-mediated TGF-beta/SMAD signaling pathway. Cell Cycle, 20(19), 1935–1952.PubMedPubMedCentralCrossRef Wang, L., et al. (2021). Up-regulation of miR-663a inhibits the cancer stem cell-like properties of glioma via repressing the KDM2A-mediated TGF-beta/SMAD signaling pathway. Cell Cycle, 20(19), 1935–1952.PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Shou, T., et al. (2019). MicroRNA-3666 suppresses the growth and migration of glioblastoma cells by targeting KDM2A. Molecular Medicine Reports, 19(2), 1049–1055.PubMed Shou, T., et al. (2019). MicroRNA-3666 suppresses the growth and migration of glioblastoma cells by targeting KDM2A. Molecular Medicine Reports, 19(2), 1049–1055.PubMed
46.
Zurück zum Zitat Zhong, C., et al. (2022). HOXA-AS2 contributes to regulatory T cell proliferation and immune tolerance in glioma through the miR-302a/KDM2A/JAG1 axis. Cell Death & Disease, 13(2), 160. Zhong, C., et al. (2022). HOXA-AS2 contributes to regulatory T cell proliferation and immune tolerance in glioma through the miR-302a/KDM2A/JAG1 axis. Cell Death & Disease, 13(2), 160.
47.
Zurück zum Zitat Staberg, M., et al. (2018). Targeting glioma stem-like cell survival and chemoresistance through inhibition of lysine-specific histone demethylase KDM2B. Molecular Oncology, 12(3), 406–420.PubMedPubMedCentralCrossRef Staberg, M., et al. (2018). Targeting glioma stem-like cell survival and chemoresistance through inhibition of lysine-specific histone demethylase KDM2B. Molecular Oncology, 12(3), 406–420.PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Kurt, I. C., et al. (2017). KDM2B, an H3K36-specific demethylase, regulates apoptotic response of GBM cells to TRAIL. Cell Death & Disease, 8(6), e2897.CrossRef Kurt, I. C., et al. (2017). KDM2B, an H3K36-specific demethylase, regulates apoptotic response of GBM cells to TRAIL. Cell Death & Disease, 8(6), e2897.CrossRef
49.
Zurück zum Zitat Mallm, J. P., et al. (2020). Glioblastoma initiating cells are sensitive to histone demethylase inhibition due to epigenetic deregulation. International Journal of Cancer, 146(5), 1281–1292.PubMedCrossRef Mallm, J. P., et al. (2020). Glioblastoma initiating cells are sensitive to histone demethylase inhibition due to epigenetic deregulation. International Journal of Cancer, 146(5), 1281–1292.PubMedCrossRef
50.
Zurück zum Zitat Venneti, S., et al. (2013). Histone 3 lysine 9 trimethylation is differentially associated with isocitrate dehydrogenase mutations in oligodendrogliomas and high-grade astrocytomas. Journal of Neuropathology and Experimental Neurology, 72(4), 298–306.PubMedCrossRef Venneti, S., et al. (2013). Histone 3 lysine 9 trimethylation is differentially associated with isocitrate dehydrogenase mutations in oligodendrogliomas and high-grade astrocytomas. Journal of Neuropathology and Experimental Neurology, 72(4), 298–306.PubMedCrossRef
51.
Zurück zum Zitat Chen, Y., et al. (2020). Wnt-induced stabilization of KDM4C is required for Wnt/beta-catenin target gene expression and glioblastoma tumorigenesis. Cancer Research, 80(5), 1049–1063.PubMedCrossRef Chen, Y., et al. (2020). Wnt-induced stabilization of KDM4C is required for Wnt/beta-catenin target gene expression and glioblastoma tumorigenesis. Cancer Research, 80(5), 1049–1063.PubMedCrossRef
52.
Zurück zum Zitat Lee, D. H., et al. (2021). Histone demethylase KDM4C controls tumorigenesis of glioblastoma by epigenetically regulating p53 and c-Myc. Cell Death & Disease, 12(1), 89.CrossRef Lee, D. H., et al. (2021). Histone demethylase KDM4C controls tumorigenesis of glioblastoma by epigenetically regulating p53 and c-Myc. Cell Death & Disease, 12(1), 89.CrossRef
53.
Zurück zum Zitat Li, M., et al. (2020). The histone demethylase JMJD2A promotes glioma cell growth via targeting Akt-mTOR signaling. Cancer Cell International, 20(1), 101. Li, M., et al. (2020). The histone demethylase JMJD2A promotes glioma cell growth via targeting Akt-mTOR signaling. Cancer Cell International, 20(1), 101.
54.
Zurück zum Zitat Wang, B., et al. (2016). Downregulation of KDM4A suppresses the survival of glioma cells by promoting autophagy. Journal of Molecular Neuroscience, 60(2), 137–144.PubMedCrossRef Wang, B., et al. (2016). Downregulation of KDM4A suppresses the survival of glioma cells by promoting autophagy. Journal of Molecular Neuroscience, 60(2), 137–144.PubMedCrossRef
55.
Zurück zum Zitat Voon, H. P. J., et al. (2018). Inhibition of a K9/K36 demethylase by an H3.3 point mutation found in paediatric glioblastoma. Nature Communications, 9(1), 3142.PubMedPubMedCentralCrossRef Voon, H. P. J., et al. (2018). Inhibition of a K9/K36 demethylase by an H3.3 point mutation found in paediatric glioblastoma. Nature Communications, 9(1), 3142.PubMedPubMedCentralCrossRef
56.
57.
Zurück zum Zitat Huang, M. Y., et al. (2017). MINA controls proliferation and tumorigenesis of glioblastoma by epigenetically regulating cyclins and CDKs via H3K9me3 demethylation. Oncogene, 36(3), 387–396.PubMedCrossRef Huang, M. Y., et al. (2017). MINA controls proliferation and tumorigenesis of glioblastoma by epigenetically regulating cyclins and CDKs via H3K9me3 demethylation. Oncogene, 36(3), 387–396.PubMedCrossRef
58.
Zurück zum Zitat Xuan, F., et al. (2018). MINA53 deficiency leads to glioblastoma cell apoptosis via inducing DNA replication stress and diminishing DNA damage response. Cell Death & Disease, 9(11), 1062.CrossRef Xuan, F., et al. (2018). MINA53 deficiency leads to glioblastoma cell apoptosis via inducing DNA replication stress and diminishing DNA damage response. Cell Death & Disease, 9(11), 1062.CrossRef
59.
Zurück zum Zitat Ohguchi, Y., & Ohguchi, H. (2022). Diverse functions of KDM5 in cancer: Transcriptional repressor or activator? Cancers (Basel), 14(13), 3270. Ohguchi, Y., & Ohguchi, H. (2022). Diverse functions of KDM5 in cancer: Transcriptional repressor or activator? Cancers (Basel), 14(13), 3270.
60.
Zurück zum Zitat Banelli, B., et al. (2015). The histone demethylase KDM5A is a key factor for the resistance to temozolomide in glioblastoma. Cell Cycle, 14(21), 3418–3429.PubMedPubMedCentralCrossRef Banelli, B., et al. (2015). The histone demethylase KDM5A is a key factor for the resistance to temozolomide in glioblastoma. Cell Cycle, 14(21), 3418–3429.PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat Romani, M., et al. (2019). Targeting of histone demethylases KDM5A and KDM6B inhibits the proliferation of temozolomide-resistant glioblastoma cells. Cancers (Basel), 11(6), 878. Romani, M., et al. (2019). Targeting of histone demethylases KDM5A and KDM6B inhibits the proliferation of temozolomide-resistant glioblastoma cells. Cancers (Basel), 11(6), 878.
62.
Zurück zum Zitat Banelli, B., et al. (2017). Small molecules targeting histone demethylase genes (KDMs) inhibit growth of temozolomide-resistant glioblastoma cells. Oncotarget, 8(21), 34896–34910.PubMedPubMedCentralCrossRef Banelli, B., et al. (2017). Small molecules targeting histone demethylase genes (KDMs) inhibit growth of temozolomide-resistant glioblastoma cells. Oncotarget, 8(21), 34896–34910.PubMedPubMedCentralCrossRef
63.
Zurück zum Zitat Dai, B., et al. (2018). Histone demethylase KDM5A inhibits glioma cells migration and invasion by down regulating ZEB1. Biomedicine & Pharmacotherapy, 99, 72–80.CrossRef Dai, B., et al. (2018). Histone demethylase KDM5A inhibits glioma cells migration and invasion by down regulating ZEB1. Biomedicine & Pharmacotherapy, 99, 72–80.CrossRef
64.
Zurück zum Zitat Zhang, P., Sun, Y., & Ma, L. (2015). ZEB1: At the crossroads of epithelial-mesenchymal transition, metastasis and therapy resistance. Cell Cycle, 14(4), 481–487.PubMedPubMedCentralCrossRef Zhang, P., Sun, Y., & Ma, L. (2015). ZEB1: At the crossroads of epithelial-mesenchymal transition, metastasis and therapy resistance. Cell Cycle, 14(4), 481–487.PubMedPubMedCentralCrossRef
65.
Zurück zum Zitat Drongitis, D., et al. (2022). The chromatin-oxygen sensor gene KDM5C associates with novel hypoxia-related signatures in glioblastoma multiforme. International Journal of Molecular Sciences, 23(18), 10250.PubMedPubMedCentralCrossRef Drongitis, D., et al. (2022). The chromatin-oxygen sensor gene KDM5C associates with novel hypoxia-related signatures in glioblastoma multiforme. International Journal of Molecular Sciences, 23(18), 10250.PubMedPubMedCentralCrossRef
66.
Zurück zum Zitat Lewis, P. W., et al. (2013). Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma. Science, 340(6134), 857–861.PubMedPubMedCentralCrossRef Lewis, P. W., et al. (2013). Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma. Science, 340(6134), 857–861.PubMedPubMedCentralCrossRef
67.
Zurück zum Zitat Yang, R., et al. (2022). Homeobox A3 and KDM6A cooperate in transcriptional control of aerobic glycolysis and glioblastoma progression. Neuro-Oncology, 25(4), 635–647.CrossRef Yang, R., et al. (2022). Homeobox A3 and KDM6A cooperate in transcriptional control of aerobic glycolysis and glioblastoma progression. Neuro-Oncology, 25(4), 635–647.CrossRef
68.
Zurück zum Zitat Sherry-Lynes, M. M., et al. (2017). Regulation of the JMJD3 (KDM6B) histone demethylase in glioblastoma stem cells by STAT3. PLoS One, 12(4), e0174775.PubMedPubMedCentralCrossRef Sherry-Lynes, M. M., et al. (2017). Regulation of the JMJD3 (KDM6B) histone demethylase in glioblastoma stem cells by STAT3. PLoS One, 12(4), e0174775.PubMedPubMedCentralCrossRef
69.
Zurück zum Zitat Sui, A., et al. (2022). The epigenetic regulation of OLIG2 by histone demethylase KDM6B in glioma cells. Journal of Molecular Neuroscience, 72(5), 939–946.PubMedCrossRef Sui, A., et al. (2022). The epigenetic regulation of OLIG2 by histone demethylase KDM6B in glioma cells. Journal of Molecular Neuroscience, 72(5), 939–946.PubMedCrossRef
70.
Zurück zum Zitat Liau, B. B., et al. (2017). Adaptive chromatin remodeling drives glioblastoma stem cell plasticity and drug tolerance. Cell Stem Cell, 20(2), 233–246.e7.PubMedCrossRef Liau, B. B., et al. (2017). Adaptive chromatin remodeling drives glioblastoma stem cell plasticity and drug tolerance. Cell Stem Cell, 20(2), 233–246.e7.PubMedCrossRef
71.
Zurück zum Zitat Sui, A., et al. (2019). The histone H3 Lys 27 demethylase KDM6B promotes migration and invasion of glioma cells partly by regulating the expression of SNAI1. Neurochemistry International, 124, 123–129.PubMedCrossRef Sui, A., et al. (2019). The histone H3 Lys 27 demethylase KDM6B promotes migration and invasion of glioma cells partly by regulating the expression of SNAI1. Neurochemistry International, 124, 123–129.PubMedCrossRef
72.
Zurück zum Zitat Ene, C. I., et al. (2012). Histone demethylase Jumonji D3 (JMJD3) as a tumor suppressor by regulating p53 protein nuclear stabilization. PLoS One, 7(12), e51407.PubMedPubMedCentralCrossRef Ene, C. I., et al. (2012). Histone demethylase Jumonji D3 (JMJD3) as a tumor suppressor by regulating p53 protein nuclear stabilization. PLoS One, 7(12), e51407.PubMedPubMedCentralCrossRef
73.
Zurück zum Zitat Rath, B. H., et al. (2018). Inhibition of the histone H3K27 demethylase UTX enhances tumor cell radiosensitivity. Molecular Cancer Therapeutics, 17(5), 1070–1078.PubMedPubMedCentralCrossRef Rath, B. H., et al. (2018). Inhibition of the histone H3K27 demethylase UTX enhances tumor cell radiosensitivity. Molecular Cancer Therapeutics, 17(5), 1070–1078.PubMedPubMedCentralCrossRef
74.
Zurück zum Zitat Jin, N., et al. (2021). Advances in epigenetic therapeutics with focus on solid tumors. Clinical. Epigenetics, 13(1), 83. Jin, N., et al. (2021). Advances in epigenetic therapeutics with focus on solid tumors. Clinical. Epigenetics, 13(1), 83.
75.
Zurück zum Zitat Zhao, Z., & Shilatifard, A. (2019). Epigenetic modifications of histones in cancer. Genome Biology, 20(1), 245. Zhao, Z., & Shilatifard, A. (2019). Epigenetic modifications of histones in cancer. Genome Biology, 20(1), 245.
76.
Zurück zum Zitat Friend, C., et al. (1971). Hemoglobin Synthesis in Murine Virus-Induced Leukemic Cells In Vitro: Stimulation of Erythroid Differentiation by Dimethyl Sulfoxide. Proceedings of the National Academy of Sciences, 68(2), 378–382.CrossRef Friend, C., et al. (1971). Hemoglobin Synthesis in Murine Virus-Induced Leukemic Cells In Vitro: Stimulation of Erythroid Differentiation by Dimethyl Sulfoxide. Proceedings of the National Academy of Sciences, 68(2), 378–382.CrossRef
77.
Zurück zum Zitat Richon, V. M., et al. (1998). A class of hybrid polar inducers of transformed cell differentiation inhibits histone deacetylases. Proceedings of the National Academy of Sciences, 95(6), 3003–3007.CrossRef Richon, V. M., et al. (1998). A class of hybrid polar inducers of transformed cell differentiation inhibits histone deacetylases. Proceedings of the National Academy of Sciences, 95(6), 3003–3007.CrossRef
Metadaten
Titel
The role of histone H3 lysine demethylases in glioblastoma
verfasst von
Dejauwne Young
Chandan Guha
Simone Sidoli
Publikationsdatum
08.06.2023
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 2/2023
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-023-10114-1

Weitere Artikel der Ausgabe 2/2023

Cancer and Metastasis Reviews 2/2023 Zur Ausgabe

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Erhöhtes Risiko fürs Herz unter Checkpointhemmer-Therapie

28.05.2024 Nebenwirkungen der Krebstherapie Nachrichten

Kardiotoxische Nebenwirkungen einer Therapie mit Immuncheckpointhemmern mögen selten sein – wenn sie aber auftreten, wird es für Patienten oft lebensgefährlich. Voruntersuchung und Monitoring sind daher obligat.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.