Skip to main content
Erschienen in: Molecular and Cellular Pediatrics 1/2021

Open Access 01.12.2021 | Review

The role of the immune system in idiopathic nephrotic syndrome

verfasst von: Agnes Hackl, Seif El Din Abo Zed, Paul Diefenhardt, Julia Binz-Lotter, Rasmus Ehren, Lutz Thorsten Weber

Erschienen in: Molecular and Cellular Pediatrics | Ausgabe 1/2021

Abstract

Idiopathic nephrotic syndrome (INS) in children is characterized by massive proteinuria and hypoalbuminemia and usually responds well to steroids. However, relapses are frequent, which can require multi-drug therapy with deleterious long-term side effects. In the last decades, different hypotheses on molecular mechanisms underlying INS have been proposed and several lines of evidences strongly indicate a crucial role of the immune system in the pathogenesis of non-genetic INS. INS is traditionally considered a T-cell-mediated disorder triggered by a circulating factor, which causes the impairment of the glomerular filtration barrier and subsequent proteinuria. Additionally, the imbalance between Th17/Tregs as well as Th2/Th1 has been implicated in the pathomechanism of INS. Interestingly, B-cells have gained attention, since rituximab, an anti-CD20 antibody demonstrated a good therapeutic response in the treatment of INS. Finally, recent findings indicate that even podocytes can act as antigen-presenting cells under inflammatory stimuli and play a direct role in activating cellular pathways that cause proteinuria. Even though our knowledge on the underlying mechanisms of INS is still incomplete, it became clear that instead of a traditionally implicated cell subset or one particular molecule as a causative factor for INS, a multi-step control system including soluble factors, immune cells, and podocytes is necessary to prevent the occurrence of INS. This present review aims to provide an overview of the current knowledge on this topic, since advances in our understanding of the immunopathogenesis of INS may help drive new tailored therapeutic approaches forward.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
MCD
Minimal change disease
FSGS
Focal segmental glomerulosclerosis
INS
Idiopathic nephrotic syndrome
SSNS
Steroid-sensitive NS
SDNS
Steroid-dependent NS
SRNS
Steroid-resistant NS
IPEX
Immune dysregulation Polyendocrinopathy, Enteropathy, and X-linked syndrome
FoxP3
Forkhead box P3
Tregs
Regulatory T-cells
Teffs
Effector T-cells (Th17, Th1, Th2)
CTLA-4
Cytotoxic T-lymphocyte-associated protein 4
Bcl-2
B-cell lymphoma 2
c-mip
c-maf-inducing protein
RTX
Rituximab
suPAR
Soluble urokinase-type plasminogen activator receptor
CLCF-1
Cardiotrophin-like cytokine factor
Angptl4
Angiopoietin-like 4
LPS
Lipopolysaccharide
SCID
Severe combined immunodeficient
TLR
Toll-like receptor
NF-κB
Nuclear factor kappa-light-chain-enhancer of activated B cells
CD40L
CD40 ligand
GBM
Glomerular basal membrane
MSC
Mesenchymal stem cells
LDL
Low-density lipoprotein
FFA
Free fatty acid

Introduction

Idiopathic nephrotic syndrome (INS) is the most frequent glomerular disease in childhood and is caused by damage to podocytes, resulting in foot process effacement that leads to alterations to the selectivity of the glomerular filtration barrier [1]. It is characterized by episodes of severe proteinuria and hypoalbuminemia often associated with dyslipidemia and edema [1]. Loss of serum proteins leads to a hypercoagulable state, a higher rate of infectious diseases, and fluid balance dysregulation. It affects two to ten children per 100,000 per year, with a cumulative prevalence of 16 per 100,000 children [1]. Electron microscopy examination of renal biopsies reveals diffuse foot process effacement, while renal histology shows either minimal podocyte changes without deposition of antibodies termed minimal change disease (MCD) or focal and segmental glomerulosclerosis (FSGS). Evolution from MCD to FSGS is also possible over time [2]. Although most patients respond favorably to steroids, the relapse rate is as high as 80%, and a long-term combination of steroids and/or alternative immunosuppressive agents are often required to maintain remission [35].
Several lines of evidence strongly indicate a role of the immune system in the pathogenesis of non-genetic INS. Under these are the effectiveness of immunosuppressive therapies, a frequent remission after measles infection, which leads to cell-mediated immunosuppression, and the association of MCD with T-cell lymphomas [6]. In addition, serum from patients with post-transplant relapse of INS as well as supernatants from T-cell hybridomas from individuals with MCD can induce proteinuria in rats [6, 7].
Soluble factors, different immune cells, recently even immunologic properties of podocytes are potentially implicated in the pathogenesis of the disease, but the precise role of the immune system in INS has not yet been completely elucidated. This review aims to provide an overview of current knowledge on the immune system influencing the course of INS and its response to initial steroid treatment, since advances in our understanding of the pathogenesis of INS may help drive new tailored therapeutic approaches forward.

Trigger events

Whereas INS usually arises in healthy children, disease onset and relapses are often associated with intercurrent infections and other immunological triggers. Vaccination and atopy have been described in patients with relapse, suggesting that immune activation is involved in INS exacerbation [811]. Upper airway infections have been reported as the most frequent infections causing nephrotic relapse [1214], and interestingly its likelihood decreases with corticosteroid treatment during intercurrent infections [15, 16]. Also, COVID-19 has been reported as a trigger for recurrence of INS [17]. The immune responses prompted by the infection can lead to relapse by generating pathogen and danger-associated molecular patterns that stimulate Toll-like receptors (TLR) and the complement system. These innate immune reactions activate immune cells to release inflammatory mediators and initiate adaptive, antigen-specific immune responses and induce CD80 expression on podocytes that may directly lead to podocyte injury and foot process effacement (see below).

T-cells and their cytokines

Shalhoub et al. hypothesized that INS represents the renal manifestation of a systemic T-cell dysregulation (deficient suppression) resulting in the production of a circulating mediator, which modifies podocyte structure, leads to foot-process effacement and results in so-called lipoid nephrosis [6, 18, 19]. Compelling evidence for this disease mechanism stems from numerous clinical observations of disease recurrence immediately post-transplant [20, 21] and of trans-placental transmission of the “permeability factor” leading to neonatal transient proteinuria [22]. This hypothesis is further supported by the absence of immune complexes in glomeruli, a frequent remission after measles infection, as well as the association of MCD with T-cell lymphomas [6]. Finally, the findings that injection of supernatants from T-cell hybridomas from patients with MCD orserum from patients with post-transplant relapse of INS can induce proteinuria in rats [7, 23], strengthen the relationship between dysregulated T-lymphocytes and the development of INS.
Different subsets of T-cells have been implicated in the pathogenesis of INS in the last decades. The Immune dysregulation Polyendocrinopathy, Enteropathy, and X-linked (IPEX) syndrome with concomitant nephrotic syndrome provides strong evidence for the crucial role of regulatory T-cells (Tregs) in INS. IPEX syndrome is a rare disorder of the immune regulatory system caused by mutations of forkhead box P3 (FoxP3), which is a transcription factor responsible for the generation and maturation of Tregs (CD4+ CD25+ FoxP3+) [24]. Treg number in physiological states is low, but they can be rapidly generated from immature CD4+ T-cells, that expand in response to stimulation. Several studies in experimental models support the association between low Tregs during a trigger event and proteinuria [25, 26]. For instance, Wang et al. showed that depletion of CD4+ T-cells in BALB/c mice leads to the aggravation of adriamycin-induced nephropathy, while reconstitution with FoxP3-expressing CD4+ CD25+ T-cells ameliorates this disease [27, 28]. In the same model, inducing the expansion of Tregs by administering IL-2/IL-2Ab complexes improved renal function, histological findings, and reduced inflammation [29]. Another study shows that direct infusion of Tregs into Buffalo/Mna rats, a strain that spontaneously develops glomerulosclerosis, is also associated with reduction of proteinuria and amelioration of histological lesions [30]. In lipopolysaccharide (LPS) nephropathy, which represents a model of transient proteinuria, the Treg level was modulated by the administration of IL-2/anti IL-2 immunocomplexes, resulting in a transient protective effect on proteinuria [31]. Human findings support this implication: Benz et al. investigated renal biopsies from 38 pediatric patients and found that the number of FoxP3+ T-cells was significantly lower in MCG and FSGS patients compared to controls while also being exclusively located in the tubulointerstitium, but not in glomeruli [32]. FACS analysis of peripheral blood mononuclear cells from INS patients revealed decreased levels of Tregs [33, 34]. In line with that, the Treg-related regulatory cytokine IL-10 was significantly decreased in lipoid nephrosis [35]. Furthermore, Araya et al. observed that the percentage of Tregs was similar in healthy controls and patients with INS. However, in co-culture of Tregs and effector T-cells (Teffs) from patients with relapse, the concentration of the regulatory cytokine IL-10 was reduced indicating a deficient suppressor function [36]. Interestingly, Shimada et al. showed that Tregs have the potential to turn off CD80 expression on podocytes once it is induced (see below). Subsequently, Tregs dysfunction could make transient proteinuria persistent, leading to podocyte injury [37]. Finally, Treg dysregulation can amplify the neutrophil-induced oxidative burst triggered by an infection, potentially leading to INS relapse [25]. Finally, a clinical relevant point is that a higher ratio of Tregs to Teffs favors steroid sensitivity (steroid sensitive NS [SSNS]) and a reverse ratio points to steroid resistant NS (SRNS) [38, 39].
Another important cell type, Th17cells also derive from the naïve CD4+ progenitor cells, as do Tregs. These two subsets have antagonist effects: a high Th17/Tregs ratio maintains inflammation, while low ratios lead to suppression of inflammatio n[40]. Liu et al. demonstrated that induction of IL-17 released by Th17 cells plays a key role in adriamycin-induced nephrosis most likely through downregulation of phospho-nephrin and Bcl-2 level via overproduction of c-mip [41]. In line with that, May et al. treated human podocytes with supernatants from Th17cells of healthy controls as well as with serum of patients with INS and found significant stimulation of Janus kinases and mitogen-activated protein kinase pathways and an increase in motility of podocytes [42]. Human studies confirm these data: the frequency of mRNA transcripts of Th17 cell-related factors, such as IL-17 or retinoid orphannuclear receptor, was increased in the blood of patients with INS, while it was associated with a decreased number of Tregs [33]. IL-17 expression in respective kidney biopsies revealed higher expression in INS cases compared to healthy controls. Additionally, positive immunostaining for IL-17 was detected in the glomerular compartment [33]. These results were correlated with higher frequencies of circulating Th17 cells and mRNA levels of Th17cell-associated factors in children with INS [43]. In line, Ye et al. showed an excessive increase of Th17 cells by analyzing the peripheral blood of INS patients [34]. Given that Th17 cells have recently been reported to be resistant to glucocorticoid treatment, and glucocorticoid resistance remains a major challenge in the management of INS [42], it can be of importance to delineate the individual immune profile, including the ratio between Th17 and Treg cells, in order to find the most appropriate therapeutic approach in SRNS.
Among Teffs, the Th2 subset was traditionally indicated as a major player in the pathogenesis of INS, because MCD is often associated with atopy and allergy, which in turn are caused by Th2 immunologic responses [4449]. The increased serum immunoglobulin(Ig) E level and preservation of IgG4 observed in MCD are also characteristic of a Th2 response [5052]. Furthermore, Buffalo/Mna rats, which develop MCD spontaneously and FSGS over time, were characterized by Th2 polarization and presented a predominant increase in IL-4 and IL-13 levels, preceding the development of nephrotic syndrome [30, 53]. Indeed, the role of the Th2 subset is also supported by the observation of a specific cytokine profile in patients with MCD [36, 5456]. One of the strongest candidates is IL-13; studies have identified that increased IL-13 expression by CD3+ T-cells can lead to podocyte injury and induce INS in children or MCD-like phenotype in rats [52, 54, 5759]. Notably, overexpression of IL-13 caused the downregulation of nephrin and podocin and increased IL-13 induced an upregulation of CD80 (see below). In contrast, IL-9, a cytokine also attributed to Th2 cells, was shown to protect podocytes from excessive damage in adriamycin-induced podocytopathy, underscoring the varying role of Th2 cells [60]. Notably, some observations negate a crucial role of Th2 cells in the pathogenesis of INS [6163].
Similar to the dichotomy of Tregs/Th17, some findings indicate that the ratio of the Th2/Th1 subsets is much more important in the pathomechanism of INS rather than their absolute count. RNA analysis of rat kidney samples to assess the T-cell infiltrate revealed a cytokine transcript expression profile prompting an involvement of Th2 cells, while a downregulation of Th1 cell cytokines was detected [53]. This shift towards a Th2 phenotype was also observed in children with nephrotic syndrome [64], which was further confirmed by a study analyzing the immune profile in peripheral blood of SSNS patients and SRNS patients, showing an imbalance of Th1 and Th2 [34].
The disproportion between CD4+ and CD8+ T-cells seems to play a relevant role in INS, too. Most patients are found to demonstrate a reduction in CD4+ circulating T-cells and a higher prevalence of CD8+ T-cells during the active phases of disease [55, 64].

B-cells, their antibodies, and cytokines

Although INS has been traditionally considered to be a T-cell mediated disease [6], recently the view shifted towards a potential role of B-cells in the pathogenesis of INS. A case report described a SDNS patient, who received an anti-CD20 antibody, rituximab (RTX), for severe idiopathic thrombocytopenic purpura and reached not only a normal thrombocyte count but also stable remission of proteinuria [65]. Since then, the number of observations and trials reporting successful treatment of nephrotic patients with RTX has been growing consistently, strongly suggesting an involvement of B-cells in INS pathogenesis. Additionally SSNS patients reportedly have higher B-cell levels at disease onset and during relapse, which only normalize when the patient goes into remission [66]. RTX seems to be particularly effective in steroid- or drug-dependent forms of INS [6768] and might even pose as an option for a subset of drug-resistant cases [69]. Taking a look at RTX treatment response can provide insights into particularities of subgroups of INS patients. Ding et al. for example found that patients that had an initial steroid sensitivity and only experienced steroid resistance secondarily, had a higher risk for relapse after kidney transplantation, than patients experiencing steroid resistance from the beginning of their disease. This finding suggests a circulating factor, possibly immune-mediated, as a pathogenic driver [70]. It was also found that roughly two-thirds of patients with secondary steroid resistance reach a complete remission and do not progress any further if treated with RTX, compared to only 26% of patients with initial steroid resistance [71]. Finally, Trautmann et al. were able to show that RTX could be as effective as CNI for SRNS [72]. Taken together, these findings point out the heterogeneity of immunological mechanisms of INS. The effectiveness and safety of RTX for INS are summarized by other reviews [73, 74]. How exactly RTX-mediated B-cell depletion asserts its favourable effect on INS is still unknown. Colucci et al. found the delayed reconstitution of switched memory B-cells after RTX therapy, to be a protective factor against relapse [75]. Others have suggested a direct effect of RTX on the surface of podocytes through an off-target binding to sphyngomyelin-phosphodiesterase-acid-like 3b, thereby exerting a protective effect on the actin cytoskeleton and preventing apoptosis induced by patient sera [76]. However, Kim et al. claim this to be an unspecific finding due to the fixation process of cultured cells, while their study implies local cytokine release by B-cells as the pathogenic effector on podocytes [77].
Previous data had already pointed to a possible role of immunoglobulins as a binding partner to a circulating permeability factor [78]. More recent research suggests the cross-reaction of an antibody against EBNA-1, a protein of the Epstein–Barr virus, with an intracellular podocyte protein as a possible cause of podocyte depletion and subsequent proteinuria [79]. Delville et al. even identified a seven-antibody panel, with the capability to predict the recurrence of FSGS after kidney transplantation at an accuracy of 92%. In this panel, auto-anti-CD40 antibodies were the strongest singular predictor of recurrence, with an accuracy of 76%. If isolated out of patient sera, anti-CD40 antibody showed the potential to induce podocyte damage in cell culture, as well as the ability to amplify damage induced by soluble urokinase-type plasminogen activator receptor (suPAR) through a cooperative effect [80]. Interestingly sCD23, an IgE receptor and B-cell activation marker, was found to be increased during relapse of INS, adding to the assumption of a B-cell dysregulation [81]. Another finding worth mentioning is the significant association of polymorphisms in HLA-DQ1 with SSNS. These polymorphisms could, among other things, lead to a defective antigen presentation, resulting in an abnormal T-cell response [82]. In conclusion, an active role of B-cells in INS pathogenesis gains more and more evidence, challenging the standpoint of INS as a disease only driven by T-cell dysfunction and RTX and other anti-CD20 antibodies pose as promising alternatives to other steroid-sparing agents.

Mononuclear phagocytes and their cytokines

In Buffalo/Mna rats, which develop INS spontaneously, the frequency of monocyte–macrophage lineage cells and the expression of macrophage-associated factors (tumor necrosis factor-α [TNF-α], IL-12) were found to be higher in the kidney infiltrate compared to healthy rats [53]. Interestingly, this infiltration was already prominent at a non-proteinuric stage before the onset of the disease. The examination of adriamycin-induced nephropathy revealed initial interstitial accumulation of macrophages as well [27, 83, 84] with a subsequent reduction of them during the course of the disease [84]. This study has not detected any glomerular macrophage infiltration. Whether macrophages contribute to early podocyte damage or rather act profibrotic in later stages remains to be elucidated. Corresponding to these animal studies, significantly higher numbers of interstitial CD68+ macrophages were detected in kidney samples from children with INS compared to controls, while the frequency of macrophages was higher in the kidney infiltrate of the FSGS group in comparison to the MCD group [32].

Circulating permeability factors

In addition to cytokines and immunoglobulins, other circulating factors have been described in the past years, which are only partially of immune origin [18, 85].
uPAR assembles αvβ3 integrin and activates a signaling cascade modifying adhesion to the extracellular matrix and is expressed by several immune cells, but also by endothelial cells and by podocytes [86]. This receptor is functional in maintaining podocyte shape and sieving properties of glomeruli [87] and its soluble form suPAR has been shown to be increased in the plasma of FSGS patients [88] as well as to positively correlate with the degree of podocyte effacement [89]. However, plasma suPAR levels are influenced by renal function and are elevated in other kidney and liver diseases, too [19, 90].
Cardiotrophin-like cytokine factor 1 (CLCF-1), a member of the IL-6 family, is expressed by several tissues and is known to activate B-cells. It was identified in plasma samples of patients with post-transplant recurrence of FSGS [91]. In line with that, CLCF-1 induces albuminuria in mice and increases albumin permeability in isolated rat glomeruli through the activation of the Janus kinases and pathway, which can be reversed by incubation with anti-CLCF-1 antibodies [91].
Hemopexin, an acute phase protein with anti-oxidant function [92], has been shown to reduce the expression of the glomerular glycocalyx and to alter the integrity of the actin cytoskeleton [93]. In line with that, its active form in circulation was found to be highly increased during relapses of MCD [9496]. Clinically important, proteomics analysis of plasma samples showed that hemopexin can discriminate patients with SSNS versus SRNS pre-treatment [97].
The glycoprotein, angiopoietin-like 4 (Angptl4), inhibits endothelium-bound lipoprotein lipase activity resulting in increased plasma triglyceride levels [98]. Clement at al. reported that glomerular expression of Angptl4 is highly upregulated in serum and podocytes in experimental models of MCD and in human disease [99]. Additionally, podocyte-specific transgenic overexpression of Angptl4 in rats induced nephrotic-range proteinuria, loss of glomerular basement membrane charge, and foot process effacement. It has been proposed that podocytes secrete a hyposialylated form of Angptl4 in MCD, whereas extrarenal organs secrete a sialylated form of Angptl4 in response to an elevated plasma ratio of free fatty acids to albumin. These circulating pools of Angptl4 may reduce proteinuria by interacting with glomerular endothelial β5-integrin [100]. However, progressive accumulation and clustering of Angptl4 in the glomerular basal membrane (GBM) likely activates signals at the podocyte-GBM interface and induces foot-process effacement resulting in proteinuria [101]. Expression of Angptl4 was shown to be decreased upon glucocorticoid administration suggesting a possible role for this protein in SSNS [99], which was confirmed by showing a 16-fold higher Angptl4 level in patients with SSNS relapse vs. in ones with SRNS [102].
Cathepsin-L is an endoprotease responsible for the breakdown of lysosomal proteins. The actin-binding and stabilizing protein synaptopodin is a substrate for cathepsin-L, which thereby has an effect on cytoskeleton organization [103]. Renal cathepsin is overexpressed in both puromycine aminonucleoside nephrosis as well as LPS nephropathy [104] and cathepsin-L knockout mice are protected against LPS nephropathy.

Podocytes as antigen-presenting cells

A new paradigm for the pathogenesis of proteinuria in nephrotic syndrome has emerged after the discovery by Kestila et al. [105] that mutations in the gene NPHS1, which encodes the podocyte-expressed nephrin, cause congenital NS in humans. Additionally, the development of proteinuria in LPS-injected severe combined immunodeficient (SCID) mice, which are devoid of T- and B-cells, suggests that this mouse model of INS may be independent of T- or B-cells [106]. Based on these data, podocytes have attracted particular attention as a key player in the pathogenesis of INS [107, 108].
Recent findings indicate that podocytes can act as antigen-presenting cells and be part of the adaptive immune system (Fig. 1). When exposed to stress conditions (infection, allergens, vaccination), podocytes have been shown to express receptors, characteristic for cells devoted to present antigens [80, 109116]. For instance, exposure to low-dose LPS acting via TLR-4 was shown to upregulate CD80 in podocytes of wild-type and SCID mice, which in both cases caused nephrotic-range proteinuria, indicating that TLR-4 and CD80 in podocytes are possible effectors of proteinuria. LPS also induced CD80 expression in cultured podocytes with actin reorganization and morphological changes [106]. Furthermore, TLR-4 ligands induced CD80 expression in humans via an NF-kB-dependent pathway [111] and CD80 was co-localized with podocyte synaptopodin in human and murine kidney tissue specimens [106]. Finally, it has been shown that mice lacking CD80 are protected from LPS induced proteinuria, thus suggesting that this molecule is the mediator of LPS renal toxicity. Additionally, CD80 has its well-established receptor on T-cells, so that in immune-competent mice, it can also interact with CD28 on CD4+ T-cells, mediating their activation into Teff cells, and with CTLA-4 on Tregs, mediating the block of maturation towards a Teff phenotype, thus determining their activation (CD28) or inhibition (CTLA-4) [117120]. Tregs may further inhibit the immune response by releasing soluble CTLA-4, IL-10, and transforming growth factor-beta (TGF-β) [121]. Human findings support this implication: the urinary CD80/CTLA-4 ratio was more than 100-fold higher in patients with relapse compared with those in remission [122]. Expression of glomerular CD80 was observed in renal biopsies of FSGS and treatment with Abatacept, a fusion CTLA-4 Ig molecule that inhibits CD80, can induce partial or complete remission in post-transplant recurrence of FSGS [123, 124]. CD80 expression can also be induced by polyinosinic-polycytidylic acid [111, 125], which stimulates TLR-3 and is structurally similar to the double-stranded RNA found in some viruses, which may explain the observation that MCD relapse is frequently triggered by an upper respiratory tract infection [126]. However, these data are not fully supported by others and the therapeutic potential of CD80 blockade is still a matter of debate [127].
Shimada et al. proposed the “two-hit” podocyte immune disorder underlying MCD [37]. The first hit is induction of podocyte expression of CD80 in response to a circulating factor such as cytokines, allergens, or microbial products. The second hit represents dysfunction of theauto-regulatory mechanisms (secretion of soluble CTLR-4, IL-10, and TGF-β by Tregs or downregulation of CD80 by podocytes itself), resulting in persistent CD80 expression and proteinuria.
Another co-stimulatory molecule in the adaptive immunity is CD40 [128, 129], which was observed to be constitutively expressed in human cultured podocytes and in glomerular biopsies of FSGS patients [80]. Circulating anti-CD40 IgG has also been additionally identified in the serum of patients with FSGS, but not in that of patients with other glomerular diseases [80]. In this study, purified anti-CD40 IgG from the sera of patients with FSGS was able to induce disruption of the podocyte actin cytoskeleton in vitro, and this effect was partially inhibited by blocking of CD40. Its ligand, CD40L may also exist in a soluble circulating formandthe CD40/CD40L complex mediates pro-inflammatory events [130], promotes redistribution of nephrin in podocytes and increases permeability to albumin in isolated glomeruli [131, 132].

Experimental therapeutic options based on the immunological concept of INS

The resistance to the standard therapy (extensively reviewed by Trautmann et al. [133]) carries a high risk of progression to end-stage renal disease. Therefore, the translation of the promising findings gained in the basic research into the clinical practice is of high importance, in order to achieve advances in the treatment of nephrotic syndrome with higher effectiveness in reducing proteinuria [134].
Ofatumumab, a humanized anti-CD20 antibody, seems to be a new promising therapeutic approach. In comparison to RTX, ofatumumab has the advantage of higher affinity binding to B-cells and may be less prone to the development of antibodies against a murine fragment. Basu et al. administered ofatumumab to two patients with MCD and three patients with FSGS. All received multiple medications before this intervention, including two courses of RTX. After ofatumumab treatment, improvement of proteinuria and increase in the serum albumin levels were noted and no serious side effects were reported [135]. Currently, two randomized control trials are recruiting patients to test ofatumumab (clinicaltrials.govNCT02394106 and clinicaltrials.govNCT02394119) in therapy refractory INS. Ofatumumab has the potential to be an alternative for patients with native kidneys, which show either RTX resistance or RTX intolerance.
Another important candidate for the treatment of drug-resistant INS is abatacept, a fusion CTLA-4 Ig molecule that inhibits CD80, thus disrupting T-cell activation. Yu et al. treated five patients with FSGS, including four with recurrence after renal transplantation. They all achieved remission [123]. In line with that, one case report could confirm the positive effect of abatacept [136]. However, results from other studies on this molecule are discordant and do not confirm the original observation [137]. Therefore, abatacept may be a therapeutic option in CD80 positive cases, but further clinical trials are necessary.
One recent, additional therapy worth mentioning is lipid apheresis, which has been reported to be an effective measure to reduce proteinuria in patients with refractory nephrotic syndrome mostly in the Japanese population [138140]. There are different mechanisms of action, which may contribute to its beneficial effect. Lipid apheresis on one hand reduces macrophage stimulation by lowering the oxidized LDL in the glomerulus, thus diminishing the production of inflammatory cytokines locally. On the other hand, it reduces Angptl4 levels by lowering the level of unbound FFAs in circulation, which in excess can cause proteinuria. Further non-immunological mechanisms of action are reviewed elsewhere [141, 142]. To note, a recent, excellent study, which attempts to distinguish between SSNS and SRNS [97] found that adiponectin and apolipoprotein A1, two proteins strongly related to lipid metabolism, are the ones of the strongest candidate biomarkers to predict steroid resistance, so that lipid apheresis could be considered particularly in patients with SRNS, but further clinical data is missing.
Mesenchymal stem cells (MSC) can serve as a backup option in multi-drug resistant INS via exerting paracrine action and thus causing a persistent reduction of several inflammatory molecules and circulating factors. Indeed, a pediatric patient with FSGS recurrence after kidney transplantation, resistant to plasmapheresis and RTX, presented a stable reduction of proteinuria after MSC infusion. No adverse events were recorded during or after infusion [143]. At the moment two open-label phase I clinical trials are recruiting patients to test the safety and efficacy of mesenchymal stromal cells (clinicaltrials.govNCT02382874) and stem cells infusion (clinicaltrials.govNCT02693366) in multi-drug resistant FSGS.
Some of the molecules having a significant impact on proteinuria in animal models of INS did not fulfill the expectation in clinical settings such as anti-IL-2 antibodies [144], the anti-TGF-β antibody fresolimumab [145] or the anti-TNF-α antibody adalimumab [146]. Other biologicals proposed by basic science experiments are awaiting further investigations in nephrotic patients such as the anti-CD40 blocking antibody lucatumumab, anti-IL-13 antibodies or anti-IL-4 antibodies.

Conclusion

In spite of the numerous experimental and clinical studies performed in the last decades, the immune pathogenesis of the non-genetic, idiopathic nephrotic syndrome is still not completely understood. It seems to be likely that INS is driven by a complex interplay between soluble factors, immunoregulatory cells, and podocytes that may vary between patients. Its outcome is determined by a multi-step control system, where defective regulatory steps may trigger and maintain foot process effacement and the persistence of proteinuria. Studies assessing patients’ individual profiles may help define precise targets for therapeutic intervention, leading to a more successful, personalized therapeutic approach.

Declarations

Not applicable.
Not applicable.

Competing interests

No competing interests declared.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
2.
Zurück zum Zitat Bertelli R, Bonanni A, Caridi G, Canepa A, Ghiggeri GM (2018) Molecular and cellular mechanisms for proteinuria in minimal change disease. Front Med 11;5:170 Bertelli R, Bonanni A, Caridi G, Canepa A, Ghiggeri GM (2018) Molecular and cellular mechanisms for proteinuria in minimal change disease. Front Med 11;5:170
3.
Zurück zum Zitat Trompeter RS, Lloyd BW, Hicks J, White RH, Cameron JS (1985) Long-term outcome for children with minimal-change nephrotic syndrome. Lancet (London, England) 1(8425):368–370CrossRef Trompeter RS, Lloyd BW, Hicks J, White RH, Cameron JS (1985) Long-term outcome for children with minimal-change nephrotic syndrome. Lancet (London, England) 1(8425):368–370CrossRef
4.
Zurück zum Zitat Ponticelli C et al (1993) A randomized trial of cyclosporine in steroid-resistant idiopathic nephrotic syndrome. Kidney Int. 43(6):1377–1384PubMedCrossRef Ponticelli C et al (1993) A randomized trial of cyclosporine in steroid-resistant idiopathic nephrotic syndrome. Kidney Int. 43(6):1377–1384PubMedCrossRef
5.
Zurück zum Zitat Greenbaum LA, Benndorf R, Smoyer WE (2012) Childhood nephrotic syndrome-current and future therapies. Nat Rev Nephrol 8(8):445–458PubMedCrossRef Greenbaum LA, Benndorf R, Smoyer WE (2012) Childhood nephrotic syndrome-current and future therapies. Nat Rev Nephrol 8(8):445–458PubMedCrossRef
6.
Zurück zum Zitat Shalhoub RJ (1974) Pathogenesis of lipoid nephrosis: a disorder of T-cell function. Lancet 304(7880):556–560CrossRef Shalhoub RJ (1974) Pathogenesis of lipoid nephrosis: a disorder of T-cell function. Lancet 304(7880):556–560CrossRef
7.
Zurück zum Zitat Zimmerman SW (1984) Increased urinary protein excretion in the rat produced by serum from a patient with recurrent focal glomerular sclerosis after renal transplantation. Clin Nephrol 22(1):32–38PubMed Zimmerman SW (1984) Increased urinary protein excretion in the rat produced by serum from a patient with recurrent focal glomerular sclerosis after renal transplantation. Clin Nephrol 22(1):32–38PubMed
8.
Zurück zum Zitat Yldz N, Sever L, Kasapçopur Ö, Çullu F, Arsoy N, Çalşkan S (2013) Hepatitis B virus vaccination in children with steroid sensitive nephrotic syndrome: Immunogenicity and safety? Vaccine 31(33):3309–3312CrossRef Yldz N, Sever L, Kasapçopur Ö, Çullu F, Arsoy N, Çalşkan S (2013) Hepatitis B virus vaccination in children with steroid sensitive nephrotic syndrome: Immunogenicity and safety? Vaccine 31(33):3309–3312CrossRef
9.
Zurück zum Zitat Abeyagunawardena AS, Goldblatt D, Andrews N, Trompeter RS (2003) Risk of relapse after meningococcal C conjugate vaccine in nephrotic syndrome. Lancet 362(9382):449–450PubMedCrossRef Abeyagunawardena AS, Goldblatt D, Andrews N, Trompeter RS (2003) Risk of relapse after meningococcal C conjugate vaccine in nephrotic syndrome. Lancet 362(9382):449–450PubMedCrossRef
10.
Zurück zum Zitat Salsano ME, Graziano L, Luongo I, Pilla P, Giordano M, Lama G (2007) Atopy in childhood idiopathic nephrotic syndrome. Acta Paediatr Int J Paediatr 96(4):561–566CrossRef Salsano ME, Graziano L, Luongo I, Pilla P, Giordano M, Lama G (2007) Atopy in childhood idiopathic nephrotic syndrome. Acta Paediatr Int J Paediatr 96(4):561–566CrossRef
11.
Zurück zum Zitat Clajus C, Spiegel J, Bröcker V, Chatzikyrkou C, Kielstein JT (2009) Minimal change nephrotic syndrome in an 82 year old patient following a tetanus-diphteria-poliomyelitis-vaccination. BMC Nephrol 5;10:21 Clajus C, Spiegel J, Bröcker V, Chatzikyrkou C, Kielstein JT (2009) Minimal change nephrotic syndrome in an 82 year old patient following a tetanus-diphteria-poliomyelitis-vaccination. BMC Nephrol 5;10:21
12.
Zurück zum Zitat McDonald JC, Moore DL, Quennec P (1989) Clinical and epidemiologic features of mumps meningoencephalitis and possible vaccine-related disease. Pediatr Infect Dis J 8(11):NovCrossRef McDonald JC, Moore DL, Quennec P (1989) Clinical and epidemiologic features of mumps meningoencephalitis and possible vaccine-related disease. Pediatr Infect Dis J 8(11):NovCrossRef
13.
Zurück zum Zitat Zhang H, Wang Z, Dong L, Guo Y, Wu J, Zhai S (2016) New insight into the pathogenesis of minimal change nephrotic syndrome: role of the persistence of respiratory tract virus in immune disorders. Autoimmunity Rev 15(7) Elsevier B.V:632–637CrossRef Zhang H, Wang Z, Dong L, Guo Y, Wu J, Zhai S (2016) New insight into the pathogenesis of minimal change nephrotic syndrome: role of the persistence of respiratory tract virus in immune disorders. Autoimmunity Rev 15(7) Elsevier B.V:632–637CrossRef
14.
Zurück zum Zitat Noda S et al (2020) Asymptomatic sinusitis as an origin of infection-related glomerulonephritis manifesting steroid-resistant nephrotic syndrome: a case report. Medicine (Baltimore). 99(25):e20572PubMedPubMedCentralCrossRef Noda S et al (2020) Asymptomatic sinusitis as an origin of infection-related glomerulonephritis manifesting steroid-resistant nephrotic syndrome: a case report. Medicine (Baltimore). 99(25):e20572PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Uwaezuoke SN (2015) Steroid-sensitive nephrotic syndrome in children: triggers of relapse and evolving hypotheses on pathogenesis. Italian J Pediatr 41(1) BioMed Central Ltd 21;41:19 Uwaezuoke SN (2015) Steroid-sensitive nephrotic syndrome in children: triggers of relapse and evolving hypotheses on pathogenesis. Italian J Pediatr 41(1) BioMed Central Ltd 21;41:19
16.
Zurück zum Zitat Gulati A, Sinha A, Sreenivas V, Math A, Hari P, Bagga A (2011) Daily corticosteroids reduce infection-associated relapses in frequently relapsing nephrotic syndrome: a randomized controlled trial. Clin J Am Soc Nephrol 6(1):63–69PubMedPubMedCentralCrossRef Gulati A, Sinha A, Sreenivas V, Math A, Hari P, Bagga A (2011) Daily corticosteroids reduce infection-associated relapses in frequently relapsing nephrotic syndrome: a randomized controlled trial. Clin J Am Soc Nephrol 6(1):63–69PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat Enya T et al (2021) Nephrotic syndrome relapse in a boy with COVID-19. CEN Case Rep 10(3):431–434 Enya T et al (2021) Nephrotic syndrome relapse in a boy with COVID-19. CEN Case Rep 10(3):431–434
18.
Zurück zum Zitat Davin JC (2016) The glomerular permeability factors in idiopathic nephrotic syndrome. Pediatr Nephrol 31(2):207–215PubMedCrossRef Davin JC (2016) The glomerular permeability factors in idiopathic nephrotic syndrome. Pediatr Nephrol 31(2):207–215PubMedCrossRef
19.
Zurück zum Zitat Königshausen E, Sellin L (2017) Recent treatment advances and new trials in adult nephrotic syndrome. BioMed Res Int 2017. Hindawi Limited 2017:7689254 Königshausen E, Sellin L (2017) Recent treatment advances and new trials in adult nephrotic syndrome. BioMed Res Int 2017. Hindawi Limited 2017:7689254
20.
Zurück zum Zitat Hoyer JR, Vernier RL, Najarian JS, Raij L, Simmons RL, Michael AF (1972) Recurrence of idiopathic nephrotic syndrome after renal transplantation. Lancet (London, England) 2(7773):343–348CrossRef Hoyer JR, Vernier RL, Najarian JS, Raij L, Simmons RL, Michael AF (1972) Recurrence of idiopathic nephrotic syndrome after renal transplantation. Lancet (London, England) 2(7773):343–348CrossRef
21.
Zurück zum Zitat Mauer SM, Hellerstein S, Cohn RA, Sibley RK, Vernier RL (1979) Recurrence of steroid-responsive nephrotic syndrome after renal transplantation. J Pediatr 95(2):261–264PubMedCrossRef Mauer SM, Hellerstein S, Cohn RA, Sibley RK, Vernier RL (1979) Recurrence of steroid-responsive nephrotic syndrome after renal transplantation. J Pediatr 95(2):261–264PubMedCrossRef
22.
Zurück zum Zitat Kemper MJ, Wolf G, Müller-Wiefel DE (2001) Transmission of glomerular permeability factor from a mother to her child. N Engl J Med. 344(5):386–387PubMedCrossRef Kemper MJ, Wolf G, Müller-Wiefel DE (2001) Transmission of glomerular permeability factor from a mother to her child. N Engl J Med. 344(5):386–387PubMedCrossRef
23.
Zurück zum Zitat Koyama A, Fujisaki M, Kobayashi M, Igarashi M, Narita M (1991) A glomerular permeability factor produced by human T cell hybridomas. Kidney Int. 40(3):453–460PubMedCrossRef Koyama A, Fujisaki M, Kobayashi M, Igarashi M, Narita M (1991) A glomerular permeability factor produced by human T cell hybridomas. Kidney Int. 40(3):453–460PubMedCrossRef
24.
Zurück zum Zitat Park E et al (2015) Familial IPEX syndrome: Different glomerulopathy in two siblings. Pediatr Int 57(2):e59–e61PubMedCrossRef Park E et al (2015) Familial IPEX syndrome: Different glomerulopathy in two siblings. Pediatr Int 57(2):e59–e61PubMedCrossRef
25.
Zurück zum Zitat Bertelli R, Bonanni A, Di Donato A, Cioni M, Ravani P, Ghiggeri GM (2016) Regulatory T cells and minimal change nephropathy: in the midst of a complex network. Clin Exp Immunol 183(2) Blackwell Publishing Ltd:166–174PubMedCrossRef Bertelli R, Bonanni A, Di Donato A, Cioni M, Ravani P, Ghiggeri GM (2016) Regulatory T cells and minimal change nephropathy: in the midst of a complex network. Clin Exp Immunol 183(2) Blackwell Publishing Ltd:166–174PubMedCrossRef
27.
Zurück zum Zitat Wang Y et al (2001) Depletion of CD4+ T cells aggravates glomerular and interstitial injury in murine adriamycin nephropathy. Kidney Int. 59(3):975–984PubMedCrossRef Wang Y et al (2001) Depletion of CD4+ T cells aggravates glomerular and interstitial injury in murine adriamycin nephropathy. Kidney Int. 59(3):975–984PubMedCrossRef
28.
Zurück zum Zitat Mahajan D et al (2006) CD4+CD25+ regulatory T cells protect against injury in an innate murine model of chronic kidney disease. J Am Soc Nephrol 17(10):2731–2741PubMedCrossRef Mahajan D et al (2006) CD4+CD25+ regulatory T cells protect against injury in an innate murine model of chronic kidney disease. J Am Soc Nephrol 17(10):2731–2741PubMedCrossRef
29.
Zurück zum Zitat Polhill T et al (2012) IL-2/IL-2Ab complexes induce regulatory T cell expansion and protect against proteinuric CKD. J Am Soc Nephrol 23(8):1303–1308PubMedPubMedCentralCrossRef Polhill T et al (2012) IL-2/IL-2Ab complexes induce regulatory T cell expansion and protect against proteinuric CKD. J Am Soc Nephrol 23(8):1303–1308PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Bertelli R et al (2014) LPS nephropathy in mice is ameliorated by IL-2 independently of regulatory T cells activity. PLoS One 24;9(10):e111285 Bertelli R et al (2014) LPS nephropathy in mice is ameliorated by IL-2 independently of regulatory T cells activity. PLoS One 24;9(10):e111285
32.
Zurück zum Zitat Benz K, Büttner M, Dittrich K, Campean V, Dötsch J, Amann K (2010) Characterisation of renal immune cell infiltrates in children with nephrotic syndrome. Pediatr Nephrol 25(7):1291–1298PubMedCrossRef Benz K, Büttner M, Dittrich K, Campean V, Dötsch J, Amann K (2010) Characterisation of renal immune cell infiltrates in children with nephrotic syndrome. Pediatr Nephrol 25(7):1291–1298PubMedCrossRef
33.
Zurück zum Zitat Shao XS et al (2009) The prevalence of Th17 cells and FOXP3 regulate T cells (Treg) in children with primary nephrotic syndrome. Pediatr Nephrol 24(9):1683–1690PubMedCrossRef Shao XS et al (2009) The prevalence of Th17 cells and FOXP3 regulate T cells (Treg) in children with primary nephrotic syndrome. Pediatr Nephrol 24(9):1683–1690PubMedCrossRef
34.
Zurück zum Zitat Ye Q et al (2021) The immune cell landscape of peripheral blood mononuclear cells from PNS patients. Sci Rep 22;11(1):13083 Ye Q et al (2021) The immune cell landscape of peripheral blood mononuclear cells from PNS patients. Sci Rep 22;11(1):13083
37.
Zurück zum Zitat Shimada M, Araya C, Rivard C, Ishimoto T, Johnson RJ, Garin EH (2011) Minimal change disease: a ‘two-hit’ podocyte immune disorder? Pediatr Nephrol 26(4):645–649PubMedCrossRef Shimada M, Araya C, Rivard C, Ishimoto T, Johnson RJ, Garin EH (2011) Minimal change disease: a ‘two-hit’ podocyte immune disorder? Pediatr Nephrol 26(4):645–649PubMedCrossRef
38.
Zurück zum Zitat Jaiswal A et al (2014) Regulatory and effector T cells changes in remission and resistant state of childhood nephrotic syndrome. Indian J Nephrol 24(6):349–355PubMedPubMedCentralCrossRef Jaiswal A et al (2014) Regulatory and effector T cells changes in remission and resistant state of childhood nephrotic syndrome. Indian J Nephrol 24(6):349–355PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Guimarães FTL et al (2019) Pediatric patients with steroid-sensitive nephrotic syndrome have higher expression of T regulatory lymphocytes in comparison to steroid-resistant disease. Front Pediatr 2;7:114 Guimarães FTL et al (2019) Pediatric patients with steroid-sensitive nephrotic syndrome have higher expression of T regulatory lymphocytes in comparison to steroid-resistant disease. Front Pediatr 2;7:114
40.
Zurück zum Zitat Noack M, Miossec P (2014) Th17 and regulatory T cell balance in autoimmune and inflammatory diseases. Autoimmunity Rev 13(6) Elsevier:668–677CrossRef Noack M, Miossec P (2014) Th17 and regulatory T cell balance in autoimmune and inflammatory diseases. Autoimmunity Rev 13(6) Elsevier:668–677CrossRef
41.
Zurück zum Zitat Liu Y, Su L, Lin Q, Han Y, You P, Fan Q (2015) Induction of C-Mip by IL-17 plays an important role in adriamycin-induced podocyte damage. Cell Physiol Biochem. 36(4):1274–1290PubMedCrossRef Liu Y, Su L, Lin Q, Han Y, You P, Fan Q (2015) Induction of C-Mip by IL-17 plays an important role in adriamycin-induced podocyte damage. Cell Physiol Biochem. 36(4):1274–1290PubMedCrossRef
42.
Zurück zum Zitat May CJ et al (2019) Human Th17 cells produce a soluble mediator that increases podocyte motility via signaling pathways that mimic PAR-1 activation. Am J Physiol Ren Physiol 317(4):F913–F921CrossRef May CJ et al (2019) Human Th17 cells produce a soluble mediator that increases podocyte motility via signaling pathways that mimic PAR-1 activation. Am J Physiol Ren Physiol 317(4):F913–F921CrossRef
43.
Zurück zum Zitat Wang L et al (2013) The role of Th17/IL-17 in the pathogenesis of primary nephrotic syndrome in children. Kidney Blood Press Res 37(4–5):332–345PubMedCrossRef Wang L et al (2013) The role of Th17/IL-17 in the pathogenesis of primary nephrotic syndrome in children. Kidney Blood Press Res 37(4–5):332–345PubMedCrossRef
44.
Zurück zum Zitat Kanai T et al (2010) Th2 cells predominate in idiopathic steroid-sensitive nephrotic syndrome. Clin Exp Nephrol 14(6):578–583PubMedCrossRef Kanai T et al (2010) Th2 cells predominate in idiopathic steroid-sensitive nephrotic syndrome. Clin Exp Nephrol 14(6):578–583PubMedCrossRef
45.
Zurück zum Zitat Ikeuchi Y, Kobayashi Y, Arakawa H, Suzuki M, Tamra K, Morikawa A (2009) Polymorphisms in interleukin-4-related genes in patients with minimal change nephrotic syndrome. Pediatr Nephrol 24(3):489–495PubMedCrossRef Ikeuchi Y, Kobayashi Y, Arakawa H, Suzuki M, Tamra K, Morikawa A (2009) Polymorphisms in interleukin-4-related genes in patients with minimal change nephrotic syndrome. Pediatr Nephrol 24(3):489–495PubMedCrossRef
46.
Zurück zum Zitat van den Berg JG, Weening JJ (2004) Role of the immune system in the pathogenesis of idiopathic nephrotic syndrome. Clin Sci (Lond) 107(2):125–136CrossRef van den Berg JG, Weening JJ (2004) Role of the immune system in the pathogenesis of idiopathic nephrotic syndrome. Clin Sci (Lond) 107(2):125–136CrossRef
47.
Zurück zum Zitat Wittig H, Goldman A (1970) Nephrotic syndrome associated with inhaled allergens. Lancet 14;1(7646):542–3 Wittig H, Goldman A (1970) Nephrotic syndrome associated with inhaled allergens. Lancet 14;1(7646):542–3
48.
Zurück zum Zitat Meadow SR, Sarsfield JK, Scott DG, Rajah SM (1981) Steroid-responsive nephrotic syndrome and allergy: immunological studies. Arch Dis Child 56(7):517–524PubMedPubMedCentralCrossRef Meadow SR, Sarsfield JK, Scott DG, Rajah SM (1981) Steroid-responsive nephrotic syndrome and allergy: immunological studies. Arch Dis Child 56(7):517–524PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Hardwicke J, Soothill JF, Squire JR, Holti G (1959) Nephrotic syndrome with pollen hypersensitivity. Lancet (London, England) 1(7071):500–502CrossRef Hardwicke J, Soothill JF, Squire JR, Holti G (1959) Nephrotic syndrome with pollen hypersensitivity. Lancet (London, England) 1(7071):500–502CrossRef
50.
Zurück zum Zitat Yokoyama H et al (1985) Immunodynamics of minimal change nephrotic syndrome in adults T and B lymphocyte subsets and serum immunoglobulin levels. Clin Exp Immunol 61(3):601–607PubMedPubMedCentral Yokoyama H et al (1985) Immunodynamics of minimal change nephrotic syndrome in adults T and B lymphocyte subsets and serum immunoglobulin levels. Clin Exp Immunol 61(3):601–607PubMedPubMedCentral
51.
Zurück zum Zitat Warshaw BL, Check IJ (1989) IgG subclasses in children with nephrotic syndrome. Am J Clin Pathol 92(1):68–72PubMedCrossRef Warshaw BL, Check IJ (1989) IgG subclasses in children with nephrotic syndrome. Am J Clin Pathol 92(1):68–72PubMedCrossRef
52.
Zurück zum Zitat Kimata H, Fujimoto M, Furusho K (1995) Involvement of interleukin (IL)-13, but not IL-4, in spontaneous IgE and IgG4 production in nephrotic syndrome. Eur J Immunol 25(6):1497–1501PubMedCrossRef Kimata H, Fujimoto M, Furusho K (1995) Involvement of interleukin (IL)-13, but not IL-4, in spontaneous IgE and IgG4 production in nephrotic syndrome. Eur J Immunol 25(6):1497–1501PubMedCrossRef
53.
Zurück zum Zitat Le Berre L, Hervé C, Buzelen F, Usal C, Soulillou JP, Dantal J (2005) Renal macrophage activation and Th2 polarization precedes the development of nephrotic syndrome in Buffalo/Mna rats. Kidney Int 68(5):2079–2090PubMedCrossRef Le Berre L, Hervé C, Buzelen F, Usal C, Soulillou JP, Dantal J (2005) Renal macrophage activation and Th2 polarization precedes the development of nephrotic syndrome in Buffalo/Mna rats. Kidney Int 68(5):2079–2090PubMedCrossRef
54.
Zurück zum Zitat Yap HK, Cheung W, Murugasu B, Sim SK, Seah CC, Jordan SC (1999) Th1 and Th2 cytokine mRNA profiles in childhood nephrotic syndrome: evidence for increased IL-13 mRNA expression in relapse. J Am Soc Nephrol 10(3):529–537PubMedCrossRef Yap HK, Cheung W, Murugasu B, Sim SK, Seah CC, Jordan SC (1999) Th1 and Th2 cytokine mRNA profiles in childhood nephrotic syndrome: evidence for increased IL-13 mRNA expression in relapse. J Am Soc Nephrol 10(3):529–537PubMedCrossRef
55.
Zurück zum Zitat Lama G, Luongo I, Tirino G, Borriello A, Carangio C, Salsano ME (2002) T-lymphocyte populations and cytokines in childhood nephrotic syndrome. Am J Kidney Dis 39(5):958–965PubMedCrossRef Lama G, Luongo I, Tirino G, Borriello A, Carangio C, Salsano ME (2002) T-lymphocyte populations and cytokines in childhood nephrotic syndrome. Am J Kidney Dis 39(5):958–965PubMedCrossRef
56.
Zurück zum Zitat Cho BS, Yoon SR, Jang JY, Pyun KH, Lee CE (1999) Up-regulation of interleukin-4 and CD23/FcepsilonRII in minimal change nephrotic syndrome. Pediatr Nephrol 13(3):199–204PubMedCrossRef Cho BS, Yoon SR, Jang JY, Pyun KH, Lee CE (1999) Up-regulation of interleukin-4 and CD23/FcepsilonRII in minimal change nephrotic syndrome. Pediatr Nephrol 13(3):199–204PubMedCrossRef
57.
Zurück zum Zitat Cheung W, Wei CL, Seah CC, Jordan SC, Yap HK (2004) Atopy, serum IgE, and interleukin-14 in steroid-responsive nephrotic syndrome. Pediatr Nephrol 19(6):627–632PubMedCrossRef Cheung W, Wei CL, Seah CC, Jordan SC, Yap HK (2004) Atopy, serum IgE, and interleukin-14 in steroid-responsive nephrotic syndrome. Pediatr Nephrol 19(6):627–632PubMedCrossRef
58.
Zurück zum Zitat Wei CL et al (2005) Interleukin-13 genetic polymorphisms in Singapore Chinese children correlate with long-term outcome of minimal-change disease. Nephrol Dial Transplant 20(4):728–734PubMedCrossRef Wei CL et al (2005) Interleukin-13 genetic polymorphisms in Singapore Chinese children correlate with long-term outcome of minimal-change disease. Nephrol Dial Transplant 20(4):728–734PubMedCrossRef
59.
Zurück zum Zitat Lai KW et al (2007) Overexpression of interleukin-13 induces minimal-change-like nephropathy in rats. J Am Soc Nephrol 18(5):1476–1485PubMedCrossRef Lai KW et al (2007) Overexpression of interleukin-13 induces minimal-change-like nephropathy in rats. J Am Soc Nephrol 18(5):1476–1485PubMedCrossRef
60.
Zurück zum Zitat Xiong T et al (2020) Interleukin-9 protects from early podocyte injury and progressive glomerulosclerosis in adriamycin-induced nephropathy. Kidney Int 98(3):615–629PubMedCrossRef Xiong T et al (2020) Interleukin-9 protects from early podocyte injury and progressive glomerulosclerosis in adriamycin-induced nephropathy. Kidney Int 98(3):615–629PubMedCrossRef
61.
Zurück zum Zitat Stachowski J et al (2000) Th1/Th2 balance and CD45-positive T cell subsets in primary nephrotic syndrome. Pediatr Nephrol 14(8–9):779–785PubMedCrossRef Stachowski J et al (2000) Th1/Th2 balance and CD45-positive T cell subsets in primary nephrotic syndrome. Pediatr Nephrol 14(8–9):779–785PubMedCrossRef
62.
Zurück zum Zitat Araya CE et al (2006) A case of unfulfilled expectations. Cytokines in idiopathic minimal lesion nephrotic syndrome. Pediatr Nephrol 21(5):603–610PubMedCrossRef Araya CE et al (2006) A case of unfulfilled expectations. Cytokines in idiopathic minimal lesion nephrotic syndrome. Pediatr Nephrol 21(5):603–610PubMedCrossRef
63.
Zurück zum Zitat Kaneko K et al (2002) Th1/Th2 balance in childhood idiopathic nephrotic syndrome. Clin Nephrol 58(6):393–7 Kaneko K et al (2002) Th1/Th2 balance in childhood idiopathic nephrotic syndrome. Clin Nephrol 58(6):393–7
64.
Zurück zum Zitat Kemper MJ, Zepf K, Klaassen I, Link A, Müller-Wiefel DE (2005) Changes of lymphocyte populations in pediatric steroid-sensitive nephrotic syndrome are more pronounced in remission than in relapse. Am J Nephrol 25(2):132–137PubMedCrossRef Kemper MJ, Zepf K, Klaassen I, Link A, Müller-Wiefel DE (2005) Changes of lymphocyte populations in pediatric steroid-sensitive nephrotic syndrome are more pronounced in remission than in relapse. Am J Nephrol 25(2):132–137PubMedCrossRef
65.
Zurück zum Zitat Benz K, Dötsch J, Rascher W, Stachel D (2004) Change of the course of steroid-dependent nephrotic syndrome after rituximab therapy. Pediatr Nephrol 19(7):794–797PubMedCrossRef Benz K, Dötsch J, Rascher W, Stachel D (2004) Change of the course of steroid-dependent nephrotic syndrome after rituximab therapy. Pediatr Nephrol 19(7):794–797PubMedCrossRef
66.
Zurück zum Zitat Colucci M, Carsetti R, Cascioli S, Serafinelli J, Emma F, Vivarelli M (2019) B cell phenotype in pediatric idiopathic nephrotic syndrome. Pediatr Nephrol 34(1):177–181PubMedCrossRef Colucci M, Carsetti R, Cascioli S, Serafinelli J, Emma F, Vivarelli M (2019) B cell phenotype in pediatric idiopathic nephrotic syndrome. Pediatr Nephrol 34(1):177–181PubMedCrossRef
67.
Zurück zum Zitat Ravani P et al (2015) Rituximab in children with steroid-dependent nephrotic syndrome: a multicenter, open-label, noninferiority, randomized controlled trial. J Am Soc Nephrol 26(9):2259–2266PubMedPubMedCentralCrossRef Ravani P et al (2015) Rituximab in children with steroid-dependent nephrotic syndrome: a multicenter, open-label, noninferiority, randomized controlled trial. J Am Soc Nephrol 26(9):2259–2266PubMedPubMedCentralCrossRef
68.
Zurück zum Zitat Iijima K et al (2014) Rituximab for childhood-onset, complicated, frequently relapsing nephrotic syndrome or steroid-dependent nephrotic syndrome: A multicentre, double-blind, randomised, placebo-controlled trial. Lancet 384(9950):1273–1281PubMedCrossRef Iijima K et al (2014) Rituximab for childhood-onset, complicated, frequently relapsing nephrotic syndrome or steroid-dependent nephrotic syndrome: A multicentre, double-blind, randomised, placebo-controlled trial. Lancet 384(9950):1273–1281PubMedCrossRef
69.
Zurück zum Zitat Ahn YH et al (2018) Efficacy and safety of rituximab in childhood-onset, dif fi cult-to-treat nephrotic syndrome. 97(46):e13157 Ahn YH et al (2018) Efficacy and safety of rituximab in childhood-onset, dif fi cult-to-treat nephrotic syndrome. 97(46):e13157
70.
Zurück zum Zitat Ding WY et al (2014) Initial steroid sensitivity in children with steroid-resistant nephrotic syndrome predicts post-transplant recurrence. J Am Soc Nephrol 25(6):1342–1348PubMedPubMedCentralCrossRef Ding WY et al (2014) Initial steroid sensitivity in children with steroid-resistant nephrotic syndrome predicts post-transplant recurrence. J Am Soc Nephrol 25(6):1342–1348PubMedPubMedCentralCrossRef
71.
Zurück zum Zitat Mason AE et al (2020) Response to first course of intensified immunosuppression in genetically stratified steroid resistant nephrotic syndrome. Clin J Am Soc Nephrol 15(7):983–994PubMedPubMedCentralCrossRef Mason AE et al (2020) Response to first course of intensified immunosuppression in genetically stratified steroid resistant nephrotic syndrome. Clin J Am Soc Nephrol 15(7):983–994PubMedPubMedCentralCrossRef
72.
Zurück zum Zitat Trautmann A et al (2015) Spectrum of steroid-resistant and congenital nephrotic syndrome in children: the podoNet registry cohort. Clin J Am Soc Nephrol 10(4):592–600PubMedPubMedCentralCrossRef Trautmann A et al (2015) Spectrum of steroid-resistant and congenital nephrotic syndrome in children: the podoNet registry cohort. Clin J Am Soc Nephrol 10(4):592–600PubMedPubMedCentralCrossRef
73.
Zurück zum Zitat Ravani P, Bonanni A, Rossi R, Caridi G, Ghiggeri GM (2016) Anti-CD20 antibodies for idiopathic nephrotic syndrome in children. Clin J Am Soc Nephrol 11(4):710–720PubMedCrossRef Ravani P, Bonanni A, Rossi R, Caridi G, Ghiggeri GM (2016) Anti-CD20 antibodies for idiopathic nephrotic syndrome in children. Clin J Am Soc Nephrol 11(4):710–720PubMedCrossRef
74.
Zurück zum Zitat Kamei K, Ishikura K, Sako M, Ito S, Nozu K, Iijima K (2020) Rituximab therapy for refractory steroid-resistant nephrotic syndrome in children. Pediatr Nephrol 35(1) Springer:17–24PubMedCrossRef Kamei K, Ishikura K, Sako M, Ito S, Nozu K, Iijima K (2020) Rituximab therapy for refractory steroid-resistant nephrotic syndrome in children. Pediatr Nephrol 35(1) Springer:17–24PubMedCrossRef
75.
Zurück zum Zitat Colucci M et al (2016) B cell reconstitution after rituximab treatment in idiopathic nephrotic syndrome. J Am Soc Nephrol 27(6):1811–1822PubMedCrossRef Colucci M et al (2016) B cell reconstitution after rituximab treatment in idiopathic nephrotic syndrome. J Am Soc Nephrol 27(6):1811–1822PubMedCrossRef
77.
Zurück zum Zitat Kim AHJ et al (2017) B cell-derived IL-4 acts on podocytes to induce proteinuria and foot process effacement. JCI Insight 2;2(21):e81836 Kim AHJ et al (2017) B cell-derived IL-4 acts on podocytes to induce proteinuria and foot process effacement. JCI Insight 2;2(21):e81836
78.
Zurück zum Zitat Dantal J et al (1998) Antihuman immunoglobulin affinity immunoadsorption strongly decreases proteinuria in patients with relapsing nephrotic syndrome. J Am Soc Nephrol 9(9):1709–1715PubMedCrossRef Dantal J et al (1998) Antihuman immunoglobulin affinity immunoadsorption strongly decreases proteinuria in patients with relapsing nephrotic syndrome. J Am Soc Nephrol 9(9):1709–1715PubMedCrossRef
79.
Zurück zum Zitat Dossier C, Jamin A, Deschênes G (2017) Idiopathic nephrotic syndrome: The EBV hypothesis. Pediatr Res 81(1–2) Nature Publishing Group:233–239PubMedCrossRef Dossier C, Jamin A, Deschênes G (2017) Idiopathic nephrotic syndrome: The EBV hypothesis. Pediatr Res 81(1–2) Nature Publishing Group:233–239PubMedCrossRef
80.
Zurück zum Zitat Delville M et al (2014) A circulating antibody panel for pretransplant prediction of FSGS recurrence after kidney transplantation. Sci Transl Med 1;6(256):256ra136 Delville M et al (2014) A circulating antibody panel for pretransplant prediction of FSGS recurrence after kidney transplantation. Sci Transl Med 1;6(256):256ra136
81.
Zurück zum Zitat Kemper MJ, Meyer-Jark T, Lilova M, Müller-Wiefel DE (2003) Combined T- and B-cell activation in childhood steroid-sensitive nephrotic syndrome. Clin Nephrol 60(10):OctCrossRef Kemper MJ, Meyer-Jark T, Lilova M, Müller-Wiefel DE (2003) Combined T- and B-cell activation in childhood steroid-sensitive nephrotic syndrome. Clin Nephrol 60(10):OctCrossRef
82.
Zurück zum Zitat Gbadegesin RA et al (2015) HLA-DQA1 and PLCG2 are candidate risk loci for childhood-onset steroid-sensitive nephrotic syndrome. J Am Soc Nephrol 26(7):1701–1710PubMedCrossRef Gbadegesin RA et al (2015) HLA-DQA1 and PLCG2 are candidate risk loci for childhood-onset steroid-sensitive nephrotic syndrome. J Am Soc Nephrol 26(7):1701–1710PubMedCrossRef
83.
Zurück zum Zitat Lee VWS et al (2006) Adriamycin nephropathy in severe combined immunodeficient (SCID) mice. Nephrol Dial Transplant 21(11):3293–3298PubMedCrossRef Lee VWS et al (2006) Adriamycin nephropathy in severe combined immunodeficient (SCID) mice. Nephrol Dial Transplant 21(11):3293–3298PubMedCrossRef
84.
Zurück zum Zitat Vielhauer V et al (2004) CCR1 blockade reduces interstitial inflammation and fibrosis in mice with glomerulosclerosis and nephrotic syndrome. Kidney Int. 66(6):2264–2278PubMedCrossRef Vielhauer V et al (2004) CCR1 blockade reduces interstitial inflammation and fibrosis in mice with glomerulosclerosis and nephrotic syndrome. Kidney Int. 66(6):2264–2278PubMedCrossRef
85.
Zurück zum Zitat Braun F, Homeyer I, Alachkar N, Huber TB (2021) Immune-mediated entities of (primary) focal segmental glomerulosclerosis. Cell Tissue Res 385(2):423–434 Braun F, Homeyer I, Alachkar N, Huber TB (2021) Immune-mediated entities of (primary) focal segmental glomerulosclerosis. Cell Tissue Res 385(2):423–434
86.
Zurück zum Zitat Ossowski L, Aguirre-Ghiso JA (2000) Urokinase receptor and integrin partnership: coordination of signaling for cell adhesion, migration and growth. Curr Opin Cell Biol 12(5):613–620PubMedCrossRef Ossowski L, Aguirre-Ghiso JA (2000) Urokinase receptor and integrin partnership: coordination of signaling for cell adhesion, migration and growth. Curr Opin Cell Biol 12(5):613–620PubMedCrossRef
87.
Zurück zum Zitat Wei C et al (2008) Modification of kidney barrier function by the urokinase receptor. Nat Med 14(1):55–63PubMedCrossRef Wei C et al (2008) Modification of kidney barrier function by the urokinase receptor. Nat Med 14(1):55–63PubMedCrossRef
89.
Zurück zum Zitat Alachkar N et al (2013) Podocyte effacement closely links to suPAR levels at time of posttransplantation focal segmental glomerulosclerosis occurrence and improves with therapy. Transplantation 96(7):649–656PubMedPubMedCentralCrossRef Alachkar N et al (2013) Podocyte effacement closely links to suPAR levels at time of posttransplantation focal segmental glomerulosclerosis occurrence and improves with therapy. Transplantation 96(7):649–656PubMedPubMedCentralCrossRef
90.
Zurück zum Zitat Kronbichler A, Saleem MA, Meijers B, Il Shin J (2016) Soluble urokinase receptors in focal segmental glomerulosclerosis: a review on the scientific point of view. J Immunol Res 2016:2068691PubMedPubMedCentralCrossRef Kronbichler A, Saleem MA, Meijers B, Il Shin J (2016) Soluble urokinase receptors in focal segmental glomerulosclerosis: a review on the scientific point of view. J Immunol Res 2016:2068691PubMedPubMedCentralCrossRef
91.
Zurück zum Zitat Savin VJ et al (2015) Renal and hematological effects of CLCF-1, a b-cell-stimulating cytokine of the il-6 family. J Immunol Res 2015:714964 Savin VJ et al (2015) Renal and hematological effects of CLCF-1, a b-cell-stimulating cytokine of the il-6 family. J Immunol Res 2015:714964
92.
Zurück zum Zitat Gutteridge JM (1995) Lipid peroxidation and antioxidants as biomarkers of tissue damage. Clin Chem 41(12 Pt 2):1819–1828PubMedCrossRef Gutteridge JM (1995) Lipid peroxidation and antioxidants as biomarkers of tissue damage. Clin Chem 41(12 Pt 2):1819–1828PubMedCrossRef
93.
Zurück zum Zitat Lennon R et al (2008) Hemopexin induces nephrin-dependent reorganization of the actin cytoskeleton in podocytes. J Am Soc Nephrol 19(11):2140–2149PubMedPubMedCentralCrossRef Lennon R et al (2008) Hemopexin induces nephrin-dependent reorganization of the actin cytoskeleton in podocytes. J Am Soc Nephrol 19(11):2140–2149PubMedPubMedCentralCrossRef
94.
Zurück zum Zitat Kam Cheung P, Stulp B, Immenschuh S, Borghuis T, Baller JFW, Bakker WW (1999) Is 100KF an Isoform of Hemopexin? Immunochemical Characterization of the Vasoactive Plasma Factor 100KFCrossRef Kam Cheung P, Stulp B, Immenschuh S, Borghuis T, Baller JFW, Bakker WW (1999) Is 100KF an Isoform of Hemopexin? Immunochemical Characterization of the Vasoactive Plasma Factor 100KFCrossRef
95.
Zurück zum Zitat Cheung PK, Klok PA, Baller JFW, Bakker WW (2000) Induction of experimental proteinuria in vivo following infusion of human plasma hemopexin. Kidney Int 57(4):1512–1520PubMedCrossRef Cheung PK, Klok PA, Baller JFW, Bakker WW (2000) Induction of experimental proteinuria in vivo following infusion of human plasma hemopexin. Kidney Int 57(4):1512–1520PubMedCrossRef
96.
Zurück zum Zitat Bakker WW et al (2005) Altered activity of plasma hemopexin in patients with minimal change disease in relapse. Pediatr Nephrol 20(10):1410–1415PubMedCrossRef Bakker WW et al (2005) Altered activity of plasma hemopexin in patients with minimal change disease in relapse. Pediatr Nephrol 20(10):1410–1415PubMedCrossRef
97.
Zurück zum Zitat Agrawal S et al (2020) Predicting and defining steroid resistance in pediatric nephrotic syndrome using plasma proteomics. Kidney Int Rep 5(1):66–80PubMedCrossRef Agrawal S et al (2020) Predicting and defining steroid resistance in pediatric nephrotic syndrome using plasma proteomics. Kidney Int Rep 5(1):66–80PubMedCrossRef
98.
Zurück zum Zitat Yoshida K, Shimizugawa T, Ono M, Furukawa H (2002) Angiopoietin-like protein 4 is a potent hyperlipidemia-inducing factor in mice and inhibitor of lipoprotein lipase. J Lipid Res 43(11):1770–1772PubMedCrossRef Yoshida K, Shimizugawa T, Ono M, Furukawa H (2002) Angiopoietin-like protein 4 is a potent hyperlipidemia-inducing factor in mice and inhibitor of lipoprotein lipase. J Lipid Res 43(11):1770–1772PubMedCrossRef
99.
Zurück zum Zitat Clement LC et al (2011) Podocyte-secreted angiopoietin-like-4 mediates proteinuria in glucocorticoid-sensitive nephrotic syndrome. Nat Med 17(1):117–122PubMedCrossRef Clement LC et al (2011) Podocyte-secreted angiopoietin-like-4 mediates proteinuria in glucocorticoid-sensitive nephrotic syndrome. Nat Med 17(1):117–122PubMedCrossRef
100.
Zurück zum Zitat Clement LC, Macé C, Avila-Casado C, Joles JA, Kersten S, Chugh SS (2014) Circulating angiopoietin-like 4 links proteinuria with hypertriglyceridemia in nephrotic syndrome. Nat Med 20(1):37–46PubMedCrossRef Clement LC, Macé C, Avila-Casado C, Joles JA, Kersten S, Chugh SS (2014) Circulating angiopoietin-like 4 links proteinuria with hypertriglyceridemia in nephrotic syndrome. Nat Med 20(1):37–46PubMedCrossRef
101.
Zurück zum Zitat Chugh SS, Clement LC, Mac C (2012) New insights into human minimal change disease: Lessons from animal models. Am J Kidney Dis 59(2):284–292PubMedCrossRef Chugh SS, Clement LC, Mac C (2012) New insights into human minimal change disease: Lessons from animal models. Am J Kidney Dis 59(2):284–292PubMedCrossRef
102.
Zurück zum Zitat Bennett MR (2013) Biomarkers of therapeutic response in primary nephrotic syndrome: response. Pediatr Nephrol 28(1):161–162PubMedCrossRef Bennett MR (2013) Biomarkers of therapeutic response in primary nephrotic syndrome: response. Pediatr Nephrol 28(1):161–162PubMedCrossRef
103.
Zurück zum Zitat Faul C et al (2008) The actin cytoskeleton of kidney podocytes is a direct target of the antiproteinuric effect of cyclosporine A. Nat Med 14(9):931–938PubMedPubMedCentralCrossRef Faul C et al (2008) The actin cytoskeleton of kidney podocytes is a direct target of the antiproteinuric effect of cyclosporine A. Nat Med 14(9):931–938PubMedPubMedCentralCrossRef
104.
Zurück zum Zitat Sever S et al (2007) Proteolytic processing of dynamin by cytoplasmic cathepsin L is a mechanism for proteinuric kidney disease. J Clin Invest 117(8):2095–2104PubMedPubMedCentralCrossRef Sever S et al (2007) Proteolytic processing of dynamin by cytoplasmic cathepsin L is a mechanism for proteinuric kidney disease. J Clin Invest 117(8):2095–2104PubMedPubMedCentralCrossRef
105.
Zurück zum Zitat Kestilä M et al (1998) Positionally cloned gene for a novel glomerular protein--nephrin--is mutated in congenital nephrotic syndrome. Mol Cell 1(4):575–582PubMedCrossRef Kestilä M et al (1998) Positionally cloned gene for a novel glomerular protein--nephrin--is mutated in congenital nephrotic syndrome. Mol Cell 1(4):575–582PubMedCrossRef
107.
Zurück zum Zitat Brinkkoetter PT, Ising C, Benzing T (2013) The role of the podocyte in albumin filtration. Nat Rev Nephrol 9(6):328–336PubMedCrossRef Brinkkoetter PT, Ising C, Benzing T (2013) The role of the podocyte in albumin filtration. Nat Rev Nephrol 9(6):328–336PubMedCrossRef
108.
Zurück zum Zitat Kaneko K, Tsuji S, Kimata T, Kitao T, Yamanouchi S, Kato S (2015) Pathogenesis of childhood idiopathic nephrotic syndrome: a paradigm shift from T-cells to podocytes. World J Pediatr 11(1) Institute of Pediatrics of Zhejiang University:21–28PubMedCrossRef Kaneko K, Tsuji S, Kimata T, Kitao T, Yamanouchi S, Kato S (2015) Pathogenesis of childhood idiopathic nephrotic syndrome: a paradigm shift from T-cells to podocytes. World J Pediatr 11(1) Institute of Pediatrics of Zhejiang University:21–28PubMedCrossRef
109.
Zurück zum Zitat Goldwich A et al (2013) Podocytes are nonhematopoietic professional antigen-presenting cells. J AmSoc Nephrol 24(6):906–916 Goldwich A et al (2013) Podocytes are nonhematopoietic professional antigen-presenting cells. J AmSoc Nephrol 24(6):906–916
110.
111.
Zurück zum Zitat Shimada M et al (2012) Toll-like receptor 3 ligands induce CD80 expression in human podocytes via an NF-κB-dependent pathway. Nephrol Dial Transplant 27(1):81–89PubMedCrossRef Shimada M et al (2012) Toll-like receptor 3 ligands induce CD80 expression in human podocytes via an NF-κB-dependent pathway. Nephrol Dial Transplant 27(1):81–89PubMedCrossRef
112.
113.
Zurück zum Zitat Reiser J, Mundel P (2004) Danger signaling by glomerular podocytes defines a novel function of inducible B7-1 in the pathogenesis of nephrotic syndrome. J Am Soc Nephrol 15(9):2246–2248PubMedCrossRef Reiser J, Mundel P (2004) Danger signaling by glomerular podocytes defines a novel function of inducible B7-1 in the pathogenesis of nephrotic syndrome. J Am Soc Nephrol 15(9):2246–2248PubMedCrossRef
114.
Zurück zum Zitat Huber TB et al (2002) Expression of functional CCR and CXCR chemokine receptors in podocytes. J Immunol 168(12):6244–6252PubMedCrossRef Huber TB et al (2002) Expression of functional CCR and CXCR chemokine receptors in podocytes. J Immunol 168(12):6244–6252PubMedCrossRef
115.
Zurück zum Zitat Lee HS (2012) Mechanisms and consequences of TGF-β overexpression by podocytes in progressive podocyte disease. Cell Tissue Res 347(1):129–140PubMedCrossRef Lee HS (2012) Mechanisms and consequences of TGF-β overexpression by podocytes in progressive podocyte disease. Cell Tissue Res 347(1):129–140PubMedCrossRef
116.
Zurück zum Zitat Xing CY, Saleem MA, Coward RJ, Ni L, Witherden IR, Mathieson PW (2006) Direct effects of dexamethasone on human podocytes. Kidney Int 70(6):1038–1045PubMedCrossRef Xing CY, Saleem MA, Coward RJ, Ni L, Witherden IR, Mathieson PW (2006) Direct effects of dexamethasone on human podocytes. Kidney Int 70(6):1038–1045PubMedCrossRef
117.
Zurück zum Zitat Abbas AK, Sharpe AH (1999) T-cell stimulation: an abundance of B7s. Nat Med 5(12):1345–1346PubMedCrossRef Abbas AK, Sharpe AH (1999) T-cell stimulation: an abundance of B7s. Nat Med 5(12):1345–1346PubMedCrossRef
118.
Zurück zum Zitat Chambers CA, Allison JP (1999) Costimulatory regulation of T cell function. Curr Opin Cell Biol 11(2):203–210PubMedCrossRef Chambers CA, Allison JP (1999) Costimulatory regulation of T cell function. Curr Opin Cell Biol 11(2):203–210PubMedCrossRef
119.
Zurück zum Zitat Henry J, Miller MM, Pontarotti P (1999) Structure and evolution of the extended B7 family. Immunol Today 20(6):285–8 Henry J, Miller MM, Pontarotti P (1999) Structure and evolution of the extended B7 family. Immunol Today 20(6):285–8
120.
121.
Zurück zum Zitat Diefenhardt P et al (2018) IL-10 receptor signaling empowers regulatory T cells to control Th17 responses and protect from GN. J Am Soc Nephrol 29(7):1825–1837PubMedPubMedCentralCrossRef Diefenhardt P et al (2018) IL-10 receptor signaling empowers regulatory T cells to control Th17 responses and protect from GN. J Am Soc Nephrol 29(7):1825–1837PubMedPubMedCentralCrossRef
124.
Zurück zum Zitat Alachkar N, Carter-Monroe N, Reiser J (2014) Abatacept in B7-1-positive proteinuric kidney disease. N Engl J Med 370(13):1263–1264PubMed Alachkar N, Carter-Monroe N, Reiser J (2014) Abatacept in B7-1-positive proteinuric kidney disease. N Engl J Med 370(13):1263–1264PubMed
125.
Zurück zum Zitat Ishimoto T et al (2013) Toll-like receptor 3 ligand, polyIC, induces proteinuria and glomerular CD80, and increases urinary CD80 in mice. Nephrol Dial Transplant 28(6):1439–46 Ishimoto T et al (2013) Toll-like receptor 3 ligand, polyIC, induces proteinuria and glomerular CD80, and increases urinary CD80 in mice. Nephrol Dial Transplant 28(6):1439–46
126.
Zurück zum Zitat Alwadhi RK, Mathew JL, Rath B (2004) Clinical profile of children with nephrotic syndrome not on glucorticoid therapy, but presenting with infection. J Paediatr Child Health 40(1–2):28–32PubMedCrossRef Alwadhi RK, Mathew JL, Rath B (2004) Clinical profile of children with nephrotic syndrome not on glucorticoid therapy, but presenting with infection. J Paediatr Child Health 40(1–2):28–32PubMedCrossRef
127.
Zurück zum Zitat Novelli R, Benigni A, Remuzzi G (2018) The role of B7-1 in proteinuria of glomerular origin. Nat Rev Nephrol 14(9) Nature Publishing Group:589–596PubMedCrossRef Novelli R, Benigni A, Remuzzi G (2018) The role of B7-1 in proteinuria of glomerular origin. Nat Rev Nephrol 14(9) Nature Publishing Group:589–596PubMedCrossRef
128.
Zurück zum Zitat Quezada SA, Jarvinen LZ, Lind EF, Noelle RJ (2004) CD40/CD154 interactions at the interface of tolerance and immunity. Annu Rev Immunol 22:307–328PubMedCrossRef Quezada SA, Jarvinen LZ, Lind EF, Noelle RJ (2004) CD40/CD154 interactions at the interface of tolerance and immunity. Annu Rev Immunol 22:307–328PubMedCrossRef
129.
Zurück zum Zitat Chatzigeorgiou A, Lyberi M, Chatzilymperis G, Nezos A, Kamper E (2009) CD40/CD40L signaling and its implication in health and disease. Bio Factors 35(6):474–483 Chatzigeorgiou A, Lyberi M, Chatzilymperis G, Nezos A, Kamper E (2009) CD40/CD40L signaling and its implication in health and disease. Bio Factors 35(6):474–483
130.
Zurück zum Zitat Hassan GS, Merhi Y, Mourad W (2012) CD40 Ligand: a neo-inflammatory molecule in vascular diseases. Immunobiology 217(5) Elsevier GmbH:521–532PubMedCrossRef Hassan GS, Merhi Y, Mourad W (2012) CD40 Ligand: a neo-inflammatory molecule in vascular diseases. Immunobiology 217(5) Elsevier GmbH:521–532PubMedCrossRef
131.
Zurück zum Zitat Kairaitis L, Wang Y, Zheng L, Tay YC, Wang Y, Harris DCH (2003) Blockade of CD40-CD40 ligand protects against renal injury in chronic proteinuric renal disease. Kidney Int 64(4):1265–1272PubMedCrossRef Kairaitis L, Wang Y, Zheng L, Tay YC, Wang Y, Harris DCH (2003) Blockade of CD40-CD40 ligand protects against renal injury in chronic proteinuric renal disease. Kidney Int 64(4):1265–1272PubMedCrossRef
132.
Zurück zum Zitat Doublier S et al (2017) Soluble CD40 ligand directly alters glomerular permeability and may act as a circulating permeability factor in FSGS. PLoS One 20;12(11):e0188045 Doublier S et al (2017) Soluble CD40 ligand directly alters glomerular permeability and may act as a circulating permeability factor in FSGS. PLoS One 20;12(11):e0188045
133.
Zurück zum Zitat Trautmann A et al (2020) IPNA clinical practice recommendations for the diagnosis and management of children with steroid-resistant nephrotic syndrome. Pediatr Nephrol 35(8):1529–1561PubMedPubMedCentralCrossRef Trautmann A et al (2020) IPNA clinical practice recommendations for the diagnosis and management of children with steroid-resistant nephrotic syndrome. Pediatr Nephrol 35(8):1529–1561PubMedPubMedCentralCrossRef
134.
Zurück zum Zitat Couser WG (2012) Basic and translational concepts of immune-mediated glomerular diseases. J Am Soc Nephrol 23(3):381–399PubMedCrossRef Couser WG (2012) Basic and translational concepts of immune-mediated glomerular diseases. J Am Soc Nephrol 23(3):381–399PubMedCrossRef
135.
Zurück zum Zitat Basu B (2014) Ofatumumab for rituximab-resistant nephrotic syndrome. N Engl J Med 370(13):1268–1270PubMedCrossRef Basu B (2014) Ofatumumab for rituximab-resistant nephrotic syndrome. N Engl J Med 370(13):1268–1270PubMedCrossRef
136.
Zurück zum Zitat Sprenger-Mähr H, Zitt E, Soleiman A, Lhotta K (2016) Successful treatment of focal segmental glomerulosclerosis after kidney transplantation with plasma exchange and abatacept in a patient with juvenile rheumatoid arthritis. Case Rep Transplant 2016:1–4CrossRef Sprenger-Mähr H, Zitt E, Soleiman A, Lhotta K (2016) Successful treatment of focal segmental glomerulosclerosis after kidney transplantation with plasma exchange and abatacept in a patient with juvenile rheumatoid arthritis. Case Rep Transplant 2016:1–4CrossRef
137.
Zurück zum Zitat Benigni A, Gagliardini E, Remuzzi G (2014) Abatacept in B7-1-positive proteinuric kidney disease. N Engl J Med 370(13):1261–1263PubMedCrossRef Benigni A, Gagliardini E, Remuzzi G (2014) Abatacept in B7-1-positive proteinuric kidney disease. N Engl J Med 370(13):1261–1263PubMedCrossRef
138.
139.
Zurück zum Zitat Muso E et al (2015) A prospective observational survey on the long-term effect of ldl apheresis on drug-resistant nephrotic syndrome. Nephron Extra 5(2):58–66PubMedPubMedCentralCrossRef Muso E et al (2015) A prospective observational survey on the long-term effect of ldl apheresis on drug-resistant nephrotic syndrome. Nephron Extra 5(2):58–66PubMedPubMedCentralCrossRef
140.
Zurück zum Zitat Shah L et al (2019) LDL-apheresis-induced remission of focal segmental glomerulosclerosis recurrence in pediatric renal transplant recipients. Pediatr Nephrol 34(11):2343–2350PubMedCrossRef Shah L et al (2019) LDL-apheresis-induced remission of focal segmental glomerulosclerosis recurrence in pediatric renal transplant recipients. Pediatr Nephrol 34(11):2343–2350PubMedCrossRef
141.
Zurück zum Zitat Agrawal S, Zaritsky JJ, Fornoni A, Smoyer WE (2017) Dyslipidaemia in nephrotic syndrome: mechanisms and treatment. Nat Rev Nephrol 14(1) Nature Publishing Group:57–70PubMedPubMedCentralCrossRef Agrawal S, Zaritsky JJ, Fornoni A, Smoyer WE (2017) Dyslipidaemia in nephrotic syndrome: mechanisms and treatment. Nat Rev Nephrol 14(1) Nature Publishing Group:57–70PubMedPubMedCentralCrossRef
142.
Zurück zum Zitat Raina R, Krishnappa V (2019) An update on LDL apheresis for nephrotic syndrome. Pediatr Nephrol 34(10) Springer Verlag:1655–1669PubMedCrossRef Raina R, Krishnappa V (2019) An update on LDL apheresis for nephrotic syndrome. Pediatr Nephrol 34(10) Springer Verlag:1655–1669PubMedCrossRef
143.
Zurück zum Zitat Belingheri M et al (2013) Allogeneic mesenchymal stem cell infusion for the stabilization of focal segmental glomerulosclerosis. Biologicals 41(6):439–45 Belingheri M et al (2013) Allogeneic mesenchymal stem cell infusion for the stabilization of focal segmental glomerulosclerosis. Biologicals 41(6):439–45
144.
Zurück zum Zitat Bonanni A et al (2015) A pilot study of IL2 in drug-resistant idiopathic nephrotic syndrome. PLoS One 28;10(9):e0138343 Bonanni A et al (2015) A pilot study of IL2 in drug-resistant idiopathic nephrotic syndrome. PLoS One 28;10(9):e0138343
145.
Zurück zum Zitat Trachtman H et al (2011) A phase 1, single-dose study of fresolimumab, an anti-TGF-Β antibody, in treatment-resistant primary focal segmental glomerulosclerosis. Kidney Int 79(11):1236–1243PubMedPubMedCentralCrossRef Trachtman H et al (2011) A phase 1, single-dose study of fresolimumab, an anti-TGF-Β antibody, in treatment-resistant primary focal segmental glomerulosclerosis. Kidney Int 79(11):1236–1243PubMedPubMedCentralCrossRef
146.
Zurück zum Zitat Trachtman H et al (2015) Efficacy of galactose and adalimumab in patients with resistant focal segmental glomerulosclerosis: report of the font clinical trial group Clinical Research. BMC Nephrol 22;16:111 Trachtman H et al (2015) Efficacy of galactose and adalimumab in patients with resistant focal segmental glomerulosclerosis: report of the font clinical trial group Clinical Research. BMC Nephrol 22;16:111
Metadaten
Titel
The role of the immune system in idiopathic nephrotic syndrome
verfasst von
Agnes Hackl
Seif El Din Abo Zed
Paul Diefenhardt
Julia Binz-Lotter
Rasmus Ehren
Lutz Thorsten Weber
Publikationsdatum
01.12.2021
Verlag
Springer International Publishing
Erschienen in
Molecular and Cellular Pediatrics / Ausgabe 1/2021
Elektronische ISSN: 2194-7791
DOI
https://doi.org/10.1186/s40348-021-00128-6

Weitere Artikel der Ausgabe 1/2021

Molecular and Cellular Pediatrics 1/2021 Zur Ausgabe

Ähnliche Überlebensraten nach Reanimation während des Transports bzw. vor Ort

29.05.2024 Reanimation im Kindesalter Nachrichten

Laut einer Studie aus den USA und Kanada scheint es bei der Reanimation von Kindern außerhalb einer Klinik keinen Unterschied für das Überleben zu machen, ob die Wiederbelebungsmaßnahmen während des Transports in die Klinik stattfinden oder vor Ort ausgeführt werden. Jedoch gibt es dabei einige Einschränkungen und eine wichtige Ausnahme.

Alter der Mutter beeinflusst Risiko für kongenitale Anomalie

28.05.2024 Kinder- und Jugendgynäkologie Nachrichten

Welchen Einfluss das Alter ihrer Mutter auf das Risiko hat, dass Kinder mit nicht chromosomal bedingter Malformation zur Welt kommen, hat eine ungarische Studie untersucht. Sie zeigt: Nicht nur fortgeschrittenes Alter ist riskant.

Begünstigt Bettruhe der Mutter doch das fetale Wachstum?

Ob ungeborene Kinder, die kleiner als die meisten Gleichaltrigen sind, schneller wachsen, wenn die Mutter sich mehr ausruht, wird diskutiert. Die Ergebnisse einer US-Studie sprechen dafür.

Bei Amblyopie früher abkleben als bisher empfohlen?

22.05.2024 Fehlsichtigkeit Nachrichten

Bei Amblyopie ist das frühzeitige Abkleben des kontralateralen Auges in den meisten Fällen wohl effektiver als der Therapiestandard mit zunächst mehrmonatigem Brilletragen.

Update Pädiatrie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.