Skip to main content

29.04.2024 | New Therapies for Cardiovascular Disease (AA Bavry and MR Massoomi, Section Editors)

Use of Virtual Reality and 3D Models in Contemporary Practice of Cardiology

verfasst von: Iva Minga, Mohammad A. Al-Ani, Sarah Moharem-Elgamal, Aswathy Vaikom House MD, Ahmed Sami Abuzaid MD, Michael Masoomi, Saima Mangi

Erschienen in: Current Cardiology Reports

Einloggen, um Zugang zu erhalten

Abstract

Purpose of Review

To provide an overview of the impact of virtual and augmented reality in contemporary cardiovascular medical practice.

Recent Findings

The utilization of virtual and augmented reality has emerged as an innovative technique in various cardiovascular subspecialties, including interventional adult, pediatric, and adult congenital as well as structural heart disease and heart failure. In particular, electrophysiology has proven valuable for both diagnostic and therapeutic procedures. The incorporation of 3D reconstruction modeling has significantly enhanced our understanding of patient anatomy and morphology, thereby improving diagnostic accuracy and patient outcomes.

Summary

The interactive modeling of cardiac structure and function within the virtual realm plays a pivotal role in comprehending complex congenital, structural, and coronary pathology. This, in turn, contributes to safer interventions and surgical procedures. Noteworthy applications include septal defect device closure, transcatheter valvular interventions, and left atrial occlusion device implantation. The implementation of virtual reality has been shown to yield cost savings in healthcare, reduce procedure time, minimize radiation exposure, lower intravenous contrast usage, and decrease the extent of anesthesia required. These benefits collectively result in a more efficient and effective approach to patient care.
Literatur
1.
Zurück zum Zitat Burdea GC, Coiffet P. Virtual Reality Technology. New York: Wiley; 2003.CrossRef Burdea GC, Coiffet P. Virtual Reality Technology. New York: Wiley; 2003.CrossRef
2.
Zurück zum Zitat Jiang Z, Guo Y, Wang Z. Digital twin to improve the virtual-real integration of industrial IoT. J Ind Inf Integr. 2021;22:100196. Jiang Z, Guo Y, Wang Z. Digital twin to improve the virtual-real integration of industrial IoT. J Ind Inf Integr. 2021;22:100196.
3.
Zurück zum Zitat Haleem A, Javaid M, Vaishya R. Industry 4.0 and its applications in orthopaedics. J Clin Orthop Trauma. 2019;10(3):615–6.PubMedCrossRef Haleem A, Javaid M, Vaishya R. Industry 4.0 and its applications in orthopaedics. J Clin Orthop Trauma. 2019;10(3):615–6.PubMedCrossRef
4.
Zurück zum Zitat Bao X, Mao Y, Lin Q, Qiu Y, Chen S, Li L, et al. Mechanism of Kinect-based virtual reality training for motor functional recovery of upper limbs after subacute stroke. Neural Regen Res. 2013;8(31):2904–13.PubMedPubMedCentral Bao X, Mao Y, Lin Q, Qiu Y, Chen S, Li L, et al. Mechanism of Kinect-based virtual reality training for motor functional recovery of upper limbs after subacute stroke. Neural Regen Res. 2013;8(31):2904–13.PubMedPubMedCentral
5.
Zurück zum Zitat Esfahlani SS. Mixed reality and remote sensing application of unmanned aerial vehicle in fire and smoke detection. J Ind Inf Integr. 2019;15:42–9. Esfahlani SS. Mixed reality and remote sensing application of unmanned aerial vehicle in fire and smoke detection. J Ind Inf Integr. 2019;15:42–9.
6.
Zurück zum Zitat Danielsson O, Holm M, Syberfeldt A. Augmented reality smart glasses in industrial assembly: Current status and future challenges. J Ind Inf Integr. 2020;20:100175. Danielsson O, Holm M, Syberfeldt A. Augmented reality smart glasses in industrial assembly: Current status and future challenges. J Ind Inf Integr. 2020;20:100175.
7.
Zurück zum Zitat Moro C, Stromberga Z, Raikos A, Stirling A. The effectiveness of virtual and augmented reality in health sciences and medical anatomy. Anat Sci Educ. 2017;10(6):549–59.PubMedCrossRef Moro C, Stromberga Z, Raikos A, Stirling A. The effectiveness of virtual and augmented reality in health sciences and medical anatomy. Anat Sci Educ. 2017;10(6):549–59.PubMedCrossRef
8.
Zurück zum Zitat Plasencia DM. One step beyond virtual reality: connecting past and future developments. XRDS. 2015;22(1):18–23.CrossRef Plasencia DM. One step beyond virtual reality: connecting past and future developments. XRDS. 2015;22(1):18–23.CrossRef
10.
Zurück zum Zitat Jan ANB, Joris JD. Design and quantitative resolution measurements of an optical virtual sectioning three-dimensional imaging technique for biomedical specimens, featuring two-micrometer slicing resolution. J Biomed Opt. 2007;12(1):014039.CrossRef Jan ANB, Joris JD. Design and quantitative resolution measurements of an optical virtual sectioning three-dimensional imaging technique for biomedical specimens, featuring two-micrometer slicing resolution. J Biomed Opt. 2007;12(1):014039.CrossRef
11.
Zurück zum Zitat De la Peña N, Weil P, Llobera J, Spanlang B, Friedman D, Sanchez-Vives MV, et al. Immersive Journalism: Immersive Virtual Reality for the First-Person Experience of News. Presence. 2010;19(4):291–301.CrossRef De la Peña N, Weil P, Llobera J, Spanlang B, Friedman D, Sanchez-Vives MV, et al. Immersive Journalism: Immersive Virtual Reality for the First-Person Experience of News. Presence. 2010;19(4):291–301.CrossRef
12.
Zurück zum Zitat Silva JNA, Southworth M, Raptis C, Silva J. Emerging Applications of Virtual Reality in Cardiovascular Medicine. JACC: Basic Transl Sci. 2018;3(3):420–30.PubMed Silva JNA, Southworth M, Raptis C, Silva J. Emerging Applications of Virtual Reality in Cardiovascular Medicine. JACC: Basic Transl Sci. 2018;3(3):420–30.PubMed
13.
Zurück zum Zitat Rymuza B, Grodecki K, Kaminski J, Scislo P, Huczek Z. Holographic imaging during transcatheter aortic valve implantation procedure in bicuspid aortic valve stenosis. Kardiol Pol. 2017;75(10):1056.PubMedCrossRef Rymuza B, Grodecki K, Kaminski J, Scislo P, Huczek Z. Holographic imaging during transcatheter aortic valve implantation procedure in bicuspid aortic valve stenosis. Kardiol Pol. 2017;75(10):1056.PubMedCrossRef
14.
Zurück zum Zitat Gallagher AG, Cates CU. Virtual reality training for the operating room and cardiac catheterisation laboratory. The Lancet. 2004;364(9444):1538–40.CrossRef Gallagher AG, Cates CU. Virtual reality training for the operating room and cardiac catheterisation laboratory. The Lancet. 2004;364(9444):1538–40.CrossRef
15.
Zurück zum Zitat Southworth MK, Silva JR, Silva JNA. Use of extended realities in cardiology. Trends Cardiovasc Med. 2020;30(3):143–8.PubMedCrossRef Southworth MK, Silva JR, Silva JNA. Use of extended realities in cardiology. Trends Cardiovasc Med. 2020;30(3):143–8.PubMedCrossRef
16.
Zurück zum Zitat Culbertson C, Nicolas S, Zaharovits I, London ED, De La Garza R, Brody AL, et al. Methamphetamine craving induced in an online virtual reality environment. Pharmacol Biochem Behav. 2010;96(4):454–60.PubMedPubMedCentralCrossRef Culbertson C, Nicolas S, Zaharovits I, London ED, De La Garza R, Brody AL, et al. Methamphetamine craving induced in an online virtual reality environment. Pharmacol Biochem Behav. 2010;96(4):454–60.PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat •• Arslan F, Gerckens U. Virtual support for remote proctoring in TAVR during COVID-19. Catheter Cardiovasc Interv. 2021;98(5):E733–6. This study demonstrates that virtual monitoring and proctoring of real time highly complex procedures such as TAVR is feasible and efficacious.PubMedPubMedCentralCrossRef •• Arslan F, Gerckens U. Virtual support for remote proctoring in TAVR during COVID-19. Catheter Cardiovasc Interv. 2021;98(5):E733–6. This study demonstrates that virtual monitoring and proctoring of real time highly complex procedures such as TAVR is feasible and efficacious.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Jang S-J, Liu J, Singh G, Al’Aref SJ, Caprio A, Moghadam AAA, et al. Abstract 11714: Augmented Reality Guidance for Transcatheter Septal Puncture Procedure in Structural Heart Interventions. Circulation. 2019;140(Suppl_1):A11714-A. Jang S-J, Liu J, Singh G, Al’Aref SJ, Caprio A, Moghadam AAA, et al. Abstract 11714: Augmented Reality Guidance for Transcatheter Septal Puncture Procedure in Structural Heart Interventions. Circulation. 2019;140(Suppl_1):A11714-A.
20.
Zurück zum Zitat Goo HW, Park SJ, Yoo SJ. Advanced Medical Use of Three-Dimensional Imaging in Congenital Heart Disease: Augmented Reality, Mixed Reality, Virtual Reality, and Three-Dimensional Printing. Korean J Radiol. 2020;21(2):133–45.PubMedPubMedCentralCrossRef Goo HW, Park SJ, Yoo SJ. Advanced Medical Use of Three-Dimensional Imaging in Congenital Heart Disease: Augmented Reality, Mixed Reality, Virtual Reality, and Three-Dimensional Printing. Korean J Radiol. 2020;21(2):133–45.PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Stepanenko A, Perez LM, Ferre JC, Ybarra Falcon C, Perez de la Sota E, San Roman JA, et al. 3D Virtual modelling, 3D printing and extended reality for planning of implant procedure of short-term and long-term mechanical circulatory support devices and heart transplantation. Front Cardiovasc Med. 2023;10:1191705.PubMedPubMedCentralCrossRef Stepanenko A, Perez LM, Ferre JC, Ybarra Falcon C, Perez de la Sota E, San Roman JA, et al. 3D Virtual modelling, 3D printing and extended reality for planning of implant procedure of short-term and long-term mechanical circulatory support devices and heart transplantation. Front Cardiovasc Med. 2023;10:1191705.PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Davies RR, Hussain T, Tandon A. Using virtual reality simulated implantation for fit-testing pediatric patients for adult ventricular assist devices. JTCVS Tech. 2021;6:134–7.PubMedCrossRef Davies RR, Hussain T, Tandon A. Using virtual reality simulated implantation for fit-testing pediatric patients for adult ventricular assist devices. JTCVS Tech. 2021;6:134–7.PubMedCrossRef
23.
Zurück zum Zitat Ramaswamy RK, Marimuthu SK, Ramarathnam KK, Vijayasekharan S, Rao KGS, Balakrishnan KR. Virtual reality-guided left ventricular assist device implantation in pediatric patient: Valuable presurgical tool. Ann Pediatr Cardiol. 2021;14(3):388–92.PubMedPubMedCentralCrossRef Ramaswamy RK, Marimuthu SK, Ramarathnam KK, Vijayasekharan S, Rao KGS, Balakrishnan KR. Virtual reality-guided left ventricular assist device implantation in pediatric patient: Valuable presurgical tool. Ann Pediatr Cardiol. 2021;14(3):388–92.PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Liu J, Al’Aref SJ, Singh G, Caprio A, Moghadam AAA, Jang SJ, et al. An augmented reality system for image guidance of transcatheter procedures for structural heart disease. PLoS ONE. 2019;14(7):e0219174.PubMedPubMedCentralCrossRef Liu J, Al’Aref SJ, Singh G, Caprio A, Moghadam AAA, Jang SJ, et al. An augmented reality system for image guidance of transcatheter procedures for structural heart disease. PLoS ONE. 2019;14(7):e0219174.PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Chu MW, Moore J, Peters T, Bainbridge D, McCarty D, Guiraudon GM, et al. Augmented reality image guidance improves navigation for beating heart mitral valve repair. Innovations (Phila). 2012;7(4):274–81.PubMedCrossRef Chu MW, Moore J, Peters T, Bainbridge D, McCarty D, Guiraudon GM, et al. Augmented reality image guidance improves navigation for beating heart mitral valve repair. Innovations (Phila). 2012;7(4):274–81.PubMedCrossRef
27.
Zurück zum Zitat Bruckheimer E, Rotschild C. Holography for imaging in structural heart disease. EuroIntervention. 2016;12 Suppl X:X81–X4.PubMedCrossRef Bruckheimer E, Rotschild C. Holography for imaging in structural heart disease. EuroIntervention. 2016;12 Suppl X:X81–X4.PubMedCrossRef
28.
Zurück zum Zitat Currie ME, McLeod AJ, Moore JT, Chu MW, Patel R, Kiaii B, et al. Augmented reality system for ultrasound guidance of transcatheter aortic valve implantation. Innovations (Phila). 2016;11(1):31–9; discussion 9. Currie ME, McLeod AJ, Moore JT, Chu MW, Patel R, Kiaii B, et al. Augmented reality system for ultrasound guidance of transcatheter aortic valve implantation. Innovations (Phila). 2016;11(1):31–9; discussion 9.
29.
Zurück zum Zitat Butera G, Sturla F, Pluchinotta FR, Caimi A, Carminati M. Holographic augmented reality and 3D printing for advanced planning of sinus venosus ASD/partial anomalous pulmonary venous return percutaneous management. JACC Cardiovasc Interv. 2019;12(14):1389–91.PubMedCrossRef Butera G, Sturla F, Pluchinotta FR, Caimi A, Carminati M. Holographic augmented reality and 3D printing for advanced planning of sinus venosus ASD/partial anomalous pulmonary venous return percutaneous management. JACC Cardiovasc Interv. 2019;12(14):1389–91.PubMedCrossRef
30.
Zurück zum Zitat Zbronski K, Rymuza B, Scislo P, Kochman J, Huczek Z. Augmented reality in left atrial appendage occlusion. Kardiol Pol. 2018;76(1):212.PubMedCrossRef Zbronski K, Rymuza B, Scislo P, Kochman J, Huczek Z. Augmented reality in left atrial appendage occlusion. Kardiol Pol. 2018;76(1):212.PubMedCrossRef
31.
Zurück zum Zitat Bruckheimer E, Rotschild C. Holography in congenital heart disease: Diagnosis and transcatheter treatment. In: Butera G, Chessa M, Eicken A, Thomson JD, editors. Atlas of cardiac catheterization for congenital heart disease. Cham: Springer International Publishing; 2019. p. 383–6.CrossRef Bruckheimer E, Rotschild C. Holography in congenital heart disease: Diagnosis and transcatheter treatment. In: Butera G, Chessa M, Eicken A, Thomson JD, editors. Atlas of cardiac catheterization for congenital heart disease. Cham: Springer International Publishing; 2019. p. 383–6.CrossRef
33.
Zurück zum Zitat Deng S, Wheeler G, Toussaint N, Munroe L, Bhattacharya S, Sajith G, et al. A virtual reality system for improved image-based planning of complex cardiac procedures. J Imaging. 2021;7(8). Deng S, Wheeler G, Toussaint N, Munroe L, Bhattacharya S, Sajith G, et al. A virtual reality system for improved image-based planning of complex cardiac procedures. J Imaging. 2021;7(8).
34.
Zurück zum Zitat Raimondi F, Vida V, Godard C, Bertelli F, Reffo E, Boddaert N, et al. Fast-track virtual reality for cardiac imaging in congenital heart disease. J Card Surg. 2021;36(7):2598–602.PubMedCrossRef Raimondi F, Vida V, Godard C, Bertelli F, Reffo E, Boddaert N, et al. Fast-track virtual reality for cardiac imaging in congenital heart disease. J Card Surg. 2021;36(7):2598–602.PubMedCrossRef
35.
Zurück zum Zitat Kim B, Loke YH, Mass P, Irwin MR, Capeland C, Olivieri L, et al. A novel virtual reality medical image display system for group discussions of congenital heart disease: Development and usability testing. JMIR Cardio. 2020;4(1):e20633.PubMedPubMedCentralCrossRef Kim B, Loke YH, Mass P, Irwin MR, Capeland C, Olivieri L, et al. A novel virtual reality medical image display system for group discussions of congenital heart disease: Development and usability testing. JMIR Cardio. 2020;4(1):e20633.PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Patel N, Costa A, Sanders SP, Ezon D. Stereoscopic virtual reality does not improve knowledge acquisition of congenital heart disease. Int J Cardiovasc Imaging. 2021;37(7):2283–90.PubMedCrossRef Patel N, Costa A, Sanders SP, Ezon D. Stereoscopic virtual reality does not improve knowledge acquisition of congenital heart disease. Int J Cardiovasc Imaging. 2021;37(7):2283–90.PubMedCrossRef
37.
Zurück zum Zitat Lau I, Gupta A, Sun Z. Clinical value of virtual reality versus 3D printing in congenital heart disease. Biomolecules. 2021;11(6). Lau I, Gupta A, Sun Z. Clinical value of virtual reality versus 3D printing in congenital heart disease. Biomolecules. 2021;11(6).
38.
Zurück zum Zitat Milano EG, Pajaziti E, Schievano S, Cook A, Capelli C. P369 Patient specific virtual reality for education in congenital heart disease. Eur Heart J Cardiovasc Imaging. 2020;21(Supplement_1). Milano EG, Pajaziti E, Schievano S, Cook A, Capelli C. P369 Patient specific virtual reality for education in congenital heart disease. Eur Heart J Cardiovasc Imaging. 2020;21(Supplement_1).
39.
Zurück zum Zitat Ong CS, Krishnan A, Huang CY, Spevak P, Vricella L, Hibino N, et al. Role of virtual reality in congenital heart disease. Congenit Heart Dis. 2018;13(3):357–61.PubMedCrossRef Ong CS, Krishnan A, Huang CY, Spevak P, Vricella L, Hibino N, et al. Role of virtual reality in congenital heart disease. Congenit Heart Dis. 2018;13(3):357–61.PubMedCrossRef
40.
Zurück zum Zitat Sadeghi AH, Maat A, Taverne Y, Cornelissen R, Dingemans AC, Bogers A, et al. Virtual reality and artificial intelligence for 3-dimensional planning of lung segmentectomies. JTCVS Tech. 2021;7:309–21.PubMedPubMedCentralCrossRef Sadeghi AH, Maat A, Taverne Y, Cornelissen R, Dingemans AC, Bogers A, et al. Virtual reality and artificial intelligence for 3-dimensional planning of lung segmentectomies. JTCVS Tech. 2021;7:309–21.PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat van de Woestijne PC, Bakhuis W, Sadeghi AH, Peek JJ, Taverne Y, Bogers A. 3D virtual reality imaging of major aortopulmonary collateral arteries: A novel diagnostic modality. World J Pediatr Congenit Heart Surg. 2021;12(6):765–72.PubMedPubMedCentralCrossRef van de Woestijne PC, Bakhuis W, Sadeghi AH, Peek JJ, Taverne Y, Bogers A. 3D virtual reality imaging of major aortopulmonary collateral arteries: A novel diagnostic modality. World J Pediatr Congenit Heart Surg. 2021;12(6):765–72.PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat • Franson D, Dupuis A, Gulani V, Griswold M, Seiberlich N. A system for real-time, online mixed-reality visualization of cardiac magnetic resonance images. J Imaging. 2021;7(12):274. The work from this paper demonstrates real time system which allows users to view a mixed-reality with cardaic MRI that is shorter than the acquisition time.PubMedPubMedCentralCrossRef • Franson D, Dupuis A, Gulani V, Griswold M, Seiberlich N. A system for real-time, online mixed-reality visualization of cardiac magnetic resonance images. J Imaging. 2021;7(12):274. The work from this paper demonstrates real time system which allows users to view a mixed-reality with cardaic MRI that is shorter than the acquisition time.PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Bindschadler M, Buddhe S, Ferguson MR, Jones T, Friedman SD, Otto RK. HEARTBEAT4D: An open-source toolbox for turning 4D cardiac CT into VR/AR. J Digit Imaging. 2022;35(6):1759–67.PubMedPubMedCentralCrossRef Bindschadler M, Buddhe S, Ferguson MR, Jones T, Friedman SD, Otto RK. HEARTBEAT4D: An open-source toolbox for turning 4D cardiac CT into VR/AR. J Digit Imaging. 2022;35(6):1759–67.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Aeckersberg G, Gkremoutis A, Schmitz-Rixen T, Kaiser E. The relevance of low-fidelity virtual reality simulators compared with other learning methods in basic endovascular skills training. J Vasc Surg. 2019;69(1):227–35.PubMedCrossRef Aeckersberg G, Gkremoutis A, Schmitz-Rixen T, Kaiser E. The relevance of low-fidelity virtual reality simulators compared with other learning methods in basic endovascular skills training. J Vasc Surg. 2019;69(1):227–35.PubMedCrossRef
45.
Zurück zum Zitat Andersen NL, Jensen RO, Posth S, Laursen CB, Jørgensen R, Graumann O. Teaching ultrasound-guided peripheral venous catheter placement through immersive virtual reality: An explorative pilot study. Medicine (Baltimore). 2021;100(27):e26394.PubMedCrossRef Andersen NL, Jensen RO, Posth S, Laursen CB, Jørgensen R, Graumann O. Teaching ultrasound-guided peripheral venous catheter placement through immersive virtual reality: An explorative pilot study. Medicine (Baltimore). 2021;100(27):e26394.PubMedCrossRef
46.
Zurück zum Zitat Arshad I, De Mello P, Ender M, McEwen JD, Ferré ER. Reducing cybersickness in 360-degree virtual reality. Multisens Res. 2021:1–17. Arshad I, De Mello P, Ender M, McEwen JD, Ferré ER. Reducing cybersickness in 360-degree virtual reality. Multisens Res. 2021:1–17.
47.
Zurück zum Zitat Jung C, Wolff G, Wernly B, Bruno RR, Franz M, Schulze PC, et al. Virtual and augmented reality in cardiovascular care: State-of-the-art and future perspectives. JACC Cardiovasc Imaging. 2022;15(3):519–32.PubMedCrossRef Jung C, Wolff G, Wernly B, Bruno RR, Franz M, Schulze PC, et al. Virtual and augmented reality in cardiovascular care: State-of-the-art and future perspectives. JACC Cardiovasc Imaging. 2022;15(3):519–32.PubMedCrossRef
48.
Zurück zum Zitat Mahtab EAF, Egorova AD. Current and future applications of virtual reality technology for cardiac interventions. Nat Rev Cardiol. 2022;19(12):779–80.PubMedPubMedCentralCrossRef Mahtab EAF, Egorova AD. Current and future applications of virtual reality technology for cardiac interventions. Nat Rev Cardiol. 2022;19(12):779–80.PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat •• Pezel T, Coisne A, Bonnet G, Martins RP, Adjedj J, Biere L, et al. Simulation-based training in cardiology: State-of-the-art review from the French Commission of Simulation Teaching (Commission d’enseignement par simulation-COMSI) of the French Society of Cardiology. Arch Cardiovasc Dis. 2021;114(1):73–84. This study showed that simulation learning is an important learning tool in different aspects of cardiology.PubMedCrossRef •• Pezel T, Coisne A, Bonnet G, Martins RP, Adjedj J, Biere L, et al. Simulation-based training in cardiology: State-of-the-art review from the French Commission of Simulation Teaching (Commission d’enseignement par simulation-COMSI) of the French Society of Cardiology. Arch Cardiovasc Dis. 2021;114(1):73–84. This study showed that simulation learning is an important learning tool in different aspects of cardiology.PubMedCrossRef
50.
Zurück zum Zitat Spiegel B, Fuller G, Lopez M, Dupuy T, Noah B, Howard A, et al. Virtual reality for management of pain in hospitalized patients: A randomized comparative effectiveness trial. PLoS ONE. 2019;14(8):e0219115.PubMedPubMedCentralCrossRef Spiegel B, Fuller G, Lopez M, Dupuy T, Noah B, Howard A, et al. Virtual reality for management of pain in hospitalized patients: A randomized comparative effectiveness trial. PLoS ONE. 2019;14(8):e0219115.PubMedPubMedCentralCrossRef
Metadaten
Titel
Use of Virtual Reality and 3D Models in Contemporary Practice of Cardiology
verfasst von
Iva Minga
Mohammad A. Al-Ani
Sarah Moharem-Elgamal
Aswathy Vaikom House MD
Ahmed Sami Abuzaid MD
Michael Masoomi
Saima Mangi
Publikationsdatum
29.04.2024
Verlag
Springer US
Erschienen in
Current Cardiology Reports
Print ISSN: 1523-3782
Elektronische ISSN: 1534-3170
DOI
https://doi.org/10.1007/s11886-024-02061-2

„Jeder Fall von plötzlichem Tod muss obduziert werden!“

17.05.2024 Plötzlicher Herztod Nachrichten

Ein signifikanter Anteil der Fälle von plötzlichem Herztod ist genetisch bedingt. Um ihre Verwandten vor diesem Schicksal zu bewahren, sollten jüngere Personen, die plötzlich unerwartet versterben, ausnahmslos einer Autopsie unterzogen werden.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Schlechtere Vorhofflimmern-Prognose bei kleinem linken Ventrikel

17.05.2024 Vorhofflimmern Nachrichten

Nicht nur ein vergrößerter, sondern auch ein kleiner linker Ventrikel ist bei Vorhofflimmern mit einer erhöhten Komplikationsrate assoziiert. Der Zusammenhang besteht nach Daten aus China unabhängig von anderen Risikofaktoren.

Semaglutid bei Herzinsuffizienz: Wie erklärt sich die Wirksamkeit?

17.05.2024 Herzinsuffizienz Nachrichten

Bei adipösen Patienten mit Herzinsuffizienz des HFpEF-Phänotyps ist Semaglutid von symptomatischem Nutzen. Resultiert dieser Benefit allein aus der Gewichtsreduktion oder auch aus spezifischen Effekten auf die Herzinsuffizienz-Pathogenese? Eine neue Analyse gibt Aufschluss.

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.