Skip to main content
Erschienen in: Current Cardiology Reports 7/2023

25.05.2023 | Regenerative Medicine (SM Wu, Section Editor)

Emerging Signaling Regulation of Sinoatrial Node Dysfunction

verfasst von: Mingjie Zheng, Shannon Erhardt, Yuhan Cao, Jun Wang

Erschienen in: Current Cardiology Reports | Ausgabe 7/2023

Einloggen, um Zugang zu erhalten

Abstract

Purpose of Review

The sinoatrial node (SAN), the natural pacemaker of the heart, is responsible for generating electrical impulses and initiating each heartbeat. Sinoatrial node dysfunction (SND) causes various arrhythmias such as sinus arrest, SAN block, and tachycardia/bradycardia syndrome. Unraveling the underlying mechanisms of SND is of paramount importance in the pursuit of developing effective therapeutic strategies for patients with SND. This review provides a concise summary of the most recent progress in the signaling regulation of SND.

Recent Findings

Recent studies indicate that SND can be caused by abnormal intercellular and intracellular signaling, various forms of heart failure (HF), and diabetes. These discoveries provide novel insights into the underlying mechanisms SND, advancing our understanding of its pathogenesis.

Summary

SND can cause severe cardiac arrhythmias associated with syncope and an increased risk of sudden death. In addition to ion channels, the SAN is susceptible to the influence of various signalings including Hippo, AMP-activated protein kinase (AMPK), mechanical force, and natriuretic peptide receptors. New cellular and molecular mechanisms related to SND are also deciphered in systemic diseases such as HF and diabetes. Progress in these studies contributes to the development of potential therapeutics for SND.
Literatur
1.
Zurück zum Zitat Linscheid N, Logantha S, Poulsen PC, Zhang S, Schrolkamp M, Egerod KL, Thompson JJ, Kitmitto A, Galli G, Humphries MJ, Zhang H, Pers TH, Olsen JV, Boyett M, Lundby A. Quantitative proteomics and single-nucleus transcriptomics of the sinus node elucidates the foundation of cardiac pacemaking. Nat Commun. 2019;10(1):2889. Linscheid N, Logantha S, Poulsen PC, Zhang S, Schrolkamp M, Egerod KL, Thompson JJ, Kitmitto A, Galli G, Humphries MJ, Zhang H, Pers TH, Olsen JV, Boyett M, Lundby A. Quantitative proteomics and single-nucleus transcriptomics of the sinus node elucidates the foundation of cardiac pacemaking. Nat Commun. 2019;10(1):2889.
2.
Zurück zum Zitat Mesirca P, Fedorov VV, Hund TJ, Torrente AG, Bidaud I, Mohler PJ, Mangoni ME. Pharmacologic approach to sinoatrial node dysfunction. Annu Rev Pharmacol Toxicol. 2021;61:757–78.PubMedCrossRef Mesirca P, Fedorov VV, Hund TJ, Torrente AG, Bidaud I, Mohler PJ, Mangoni ME. Pharmacologic approach to sinoatrial node dysfunction. Annu Rev Pharmacol Toxicol. 2021;61:757–78.PubMedCrossRef
3.
Zurück zum Zitat Kusumoto FM, Schoenfeld MH, Barrett C, Edgerton JR, Ellenbogen KA, Gold MR, Goldschlager NF, Hamilton RM, Joglar JA, Kim RJ, Lee R, Marine JE, McLeod CJ, Oken KR, Patton KK, Pellegrini CN, Selzman KA, Thompson A, Varosy PD. 2018 ACC/AHA/HRS guideline on the evaluation and management of patients with bradycardia and cardiac conduction delay: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines, and the Heart Rhythm Society. Circulation. 2019;140(8):e333–81.PubMed Kusumoto FM, Schoenfeld MH, Barrett C, Edgerton JR, Ellenbogen KA, Gold MR, Goldschlager NF, Hamilton RM, Joglar JA, Kim RJ, Lee R, Marine JE, McLeod CJ, Oken KR, Patton KK, Pellegrini CN, Selzman KA, Thompson A, Varosy PD. 2018 ACC/AHA/HRS guideline on the evaluation and management of patients with bradycardia and cardiac conduction delay: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines, and the Heart Rhythm Society. Circulation. 2019;140(8):e333–81.PubMed
5.
Zurück zum Zitat Page RL, Joglar JA, Caldwell MA, Calkins H, Conti JB, Deal BJ, Estes NA 3rd, Field ME, Goldberger ZD, Hammill SC, Indik JH, Lindsay BD, Olshansky B, Russo AM, Shen WK, Tracy CM, Al-Khatib SM. Evidence Review Committee Chairdouble, d., 2015 ACC/AHA/HRS guideline for the management of adult patients with supraventricular tachycardia: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. Circulation. 2016;133(14):e506–74. Page RL, Joglar JA, Caldwell MA, Calkins H, Conti JB, Deal BJ, Estes NA 3rd, Field ME, Goldberger ZD, Hammill SC, Indik JH, Lindsay BD, Olshansky B, Russo AM, Shen WK, Tracy CM, Al-Khatib SM. Evidence Review Committee Chairdouble, d., 2015 ACC/AHA/HRS guideline for the management of adult patients with supraventricular tachycardia: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. Circulation. 2016;133(14):e506–74.
7.
Zurück zum Zitat Opthof T. The normal range and determinants of the intrinsic heart rate in man. Cardiovasc Res. 2000;45(1):177–84.PubMedCrossRef Opthof T. The normal range and determinants of the intrinsic heart rate in man. Cardiovasc Res. 2000;45(1):177–84.PubMedCrossRef
8.
Zurück zum Zitat Bouman LN, Jongsma HJ. Structure and function of the sino-atrial node: a review. Eur Heart J. 1986;7(2):94–104.PubMedCrossRef Bouman LN, Jongsma HJ. Structure and function of the sino-atrial node: a review. Eur Heart J. 1986;7(2):94–104.PubMedCrossRef
9.
Zurück zum Zitat Dobrzynski H, Li J, Tellez J, Greener ID, Nikolski VP, Wright SE, Parson SH, Jones SA, Lancaster MK, Yamamoto M, Honjo H, Takagishi Y, Kodama I, Efimov IR, Billeter R, Boyett MR. Computer three-dimensional reconstruction of the sinoatrial node. Circulation. 2005;111(7):846–54.PubMedCrossRef Dobrzynski H, Li J, Tellez J, Greener ID, Nikolski VP, Wright SE, Parson SH, Jones SA, Lancaster MK, Yamamoto M, Honjo H, Takagishi Y, Kodama I, Efimov IR, Billeter R, Boyett MR. Computer three-dimensional reconstruction of the sinoatrial node. Circulation. 2005;111(7):846–54.PubMedCrossRef
10.
Zurück zum Zitat Schuessler RB, Boineau JP, Bromberg BI. Origin of the sinus impulse. J Cardiovasc Electrophysiol. 1996;7(3):263–74.PubMedCrossRef Schuessler RB, Boineau JP, Bromberg BI. Origin of the sinus impulse. J Cardiovasc Electrophysiol. 1996;7(3):263–74.PubMedCrossRef
11.
Zurück zum Zitat Tsutsui K, Monfredi OJ, Sirenko-Tagirova SG, Maltseva LA, Bychkov R, Kim MS, Ziman BD, Tarasov KV, Tarasova YS, Zhang J, Wang M, Maltsev AV, Brennan JA, Efimov IR, Stern MD, Maltsev VA, Lakatta EG. A coupled-clock system drives the automaticity of human sinoatrial nodal pacemaker cells. Sci Signal. 2018;11(534). Tsutsui K, Monfredi OJ, Sirenko-Tagirova SG, Maltseva LA, Bychkov R, Kim MS, Ziman BD, Tarasov KV, Tarasova YS, Zhang J, Wang M, Maltsev AV, Brennan JA, Efimov IR, Stern MD, Maltsev VA, Lakatta EG. A coupled-clock system drives the automaticity of human sinoatrial nodal pacemaker cells. Sci Signal. 2018;11(534).
12.
Zurück zum Zitat Wei X, Yohannan S, Richards JR. Physiology, cardiac repolarization dispersion and reserve. In StatPearls, Treasure Island (FL). 2022. Wei X, Yohannan S, Richards JR. Physiology, cardiac repolarization dispersion and reserve. In StatPearls, Treasure Island (FL). 2022.
13.
Zurück zum Zitat Lakatta EG, Maltsev VA, Vinogradova TM. A coupled SYSTEM of intracellular Ca2+ clocks and surface membrane voltage clocks controls the timekeeping mechanism of the heart’s pacemaker. Circ Res. 2010;106(4):659–73.PubMedPubMedCentralCrossRef Lakatta EG, Maltsev VA, Vinogradova TM. A coupled SYSTEM of intracellular Ca2+ clocks and surface membrane voltage clocks controls the timekeeping mechanism of the heart’s pacemaker. Circ Res. 2010;106(4):659–73.PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Moghtadaei M, Jansen HJ, Mackasey M, Rafferty SA, Bogachev O, Sapp JL, Howlett SE, Rose RA. The impacts of age and frailty on heart rate and sinoatrial node function. J Physiol. 2016;594(23):7105–26.PubMedPubMedCentralCrossRef Moghtadaei M, Jansen HJ, Mackasey M, Rafferty SA, Bogachev O, Sapp JL, Howlett SE, Rose RA. The impacts of age and frailty on heart rate and sinoatrial node function. J Physiol. 2016;594(23):7105–26.PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Lamas GA, Lee K, Sweeney M, Leon A, Yee R, Ellenbogen K, Greer S, Wilber D, Silverman R, Marinchak R, Bernstein R, Mittleman RS, Lieberman EH, Sullivan C, Zorn L, Flaker G, Schron E, Orav EJ, Goldman L. The mode selection trial (MOST) in sinus node dysfunction: design, rationale, and baseline characteristics of the first 1000 patients. Am Heart J. 2000;140(4):541–51.PubMedCrossRef Lamas GA, Lee K, Sweeney M, Leon A, Yee R, Ellenbogen K, Greer S, Wilber D, Silverman R, Marinchak R, Bernstein R, Mittleman RS, Lieberman EH, Sullivan C, Zorn L, Flaker G, Schron E, Orav EJ, Goldman L. The mode selection trial (MOST) in sinus node dysfunction: design, rationale, and baseline characteristics of the first 1000 patients. Am Heart J. 2000;140(4):541–51.PubMedCrossRef
16.
Zurück zum Zitat Jackson LR 2nd, Rathakrishnan B, Campbell K, Thomas KL, Piccini JP, Bahnson T, Stiber JA, Daubert JP. Sinus node dysfunction and atrial fibrillation: a reversible phenomenon? Pac Clin Electrophysiol. 2017;40(4):442–50.CrossRef Jackson LR 2nd, Rathakrishnan B, Campbell K, Thomas KL, Piccini JP, Bahnson T, Stiber JA, Daubert JP. Sinus node dysfunction and atrial fibrillation: a reversible phenomenon? Pac Clin Electrophysiol. 2017;40(4):442–50.CrossRef
17.
Zurück zum Zitat Wallace MJ, El Refaey M, Mesirca P, Hund TJ, Mangoni ME, Mohler PJ. Genetic complexity of sinoatrial node dysfunction. Front Genet. 2021;12: 654925.PubMedPubMedCentralCrossRef Wallace MJ, El Refaey M, Mesirca P, Hund TJ, Mangoni ME, Mohler PJ. Genetic complexity of sinoatrial node dysfunction. Front Genet. 2021;12: 654925.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Sanders P, Kistler PM, Morton JB, Spence SJ, Kalman JM. Remodeling of sinus node function in patients with congestive heart failure: reduction in sinus node reserve. Circulation. 2004;110(8):897–903.PubMedCrossRef Sanders P, Kistler PM, Morton JB, Spence SJ, Kalman JM. Remodeling of sinus node function in patients with congestive heart failure: reduction in sinus node reserve. Circulation. 2004;110(8):897–903.PubMedCrossRef
19.
Zurück zum Zitat Lu YY, Lin FJ, Chen YC, Kao YH, Higa S, Chen SA, Chen YJ. Role of endothelin-1 in right atrial arrhythmogenesis in rabbits with monocrotaline-induced pulmonary arterial hypertension. Intern J Mole Sci. 2022;23(19). Lu YY, Lin FJ, Chen YC, Kao YH, Higa S, Chen SA, Chen YJ. Role of endothelin-1 in right atrial arrhythmogenesis in rabbits with monocrotaline-induced pulmonary arterial hypertension. Intern J Mole Sci. 2022;23(19).
20.
Zurück zum Zitat Al Kury LT, Chacar S, Alefishat E, Khraibi AA, Nader M. Structural and electrical remodeling of the sinoatrial node in diabetes: new dimensions and perspectives. Front Endocrinol. 2022;13: 946313.CrossRef Al Kury LT, Chacar S, Alefishat E, Khraibi AA, Nader M. Structural and electrical remodeling of the sinoatrial node in diabetes: new dimensions and perspectives. Front Endocrinol. 2022;13: 946313.CrossRef
21.
Zurück zum Zitat Villalba-Orero M, Garcia-Pavia P, Lara-Pezzi E. Non-invasive assessment of HFpEF in mouse models: current gaps and future directions. BMC Med. 2022;20(1):349. Villalba-Orero M, Garcia-Pavia P, Lara-Pezzi E. Non-invasive assessment of HFpEF in mouse models: current gaps and future directions. BMC Med. 2022;20(1):349.
22.
Zurück zum Zitat Ahmed A, Pothineni NVK, Charate R, Garg J, Elbey M, de Asmundis C, LaMeir M, Romeya A, Shivamurthy P, Olshansky B, Russo A, Gopinathannair R, Lakkireddy D. Inappropriate sinus tachycardia: etiology, pathophysiology, and management: JACC review topic of the week. J Am Coll Cardiol. 2022;79(24):2450–62.PubMedCrossRef Ahmed A, Pothineni NVK, Charate R, Garg J, Elbey M, de Asmundis C, LaMeir M, Romeya A, Shivamurthy P, Olshansky B, Russo A, Gopinathannair R, Lakkireddy D. Inappropriate sinus tachycardia: etiology, pathophysiology, and management: JACC review topic of the week. J Am Coll Cardiol. 2022;79(24):2450–62.PubMedCrossRef
23.
Zurück zum Zitat Bai J, Lu Y, Zhang H. In silico study of the effects of anti-arrhythmic drug treatment on sinoatrial node function for patients with atrial fibrillation. Sci Rep. 2020;10(1):305. Bai J, Lu Y, Zhang H. In silico study of the effects of anti-arrhythmic drug treatment on sinoatrial node function for patients with atrial fibrillation. Sci Rep. 2020;10(1):305.
24.
Zurück zum Zitat Dobrzynski H, Boyett MR, Anderson RH. New insights into pacemaker activity: promoting understanding of sick sinus syndrome. Circulation. 2007;115(14):1921–32.PubMedCrossRef Dobrzynski H, Boyett MR, Anderson RH. New insights into pacemaker activity: promoting understanding of sick sinus syndrome. Circulation. 2007;115(14):1921–32.PubMedCrossRef
25.
Zurück zum Zitat Wang J, Liu S, Heallen T, Martin JF. The Hippo pathway in the heart: pivotal roles in development, disease, and regeneration. Nat Rev Cardiol. 2018;15(11):672–84.PubMedCrossRef Wang J, Liu S, Heallen T, Martin JF. The Hippo pathway in the heart: pivotal roles in development, disease, and regeneration. Nat Rev Cardiol. 2018;15(11):672–84.PubMedCrossRef
26.
Zurück zum Zitat Heallen T, Zhang M, Wang J, Bonilla-Claudio M, Klysik E, Johnson RL, Martin JF. Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size. Science. 2011;332(6028):458–61.PubMedPubMedCentralCrossRef Heallen T, Zhang M, Wang J, Bonilla-Claudio M, Klysik E, Johnson RL, Martin JF. Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size. Science. 2011;332(6028):458–61.PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Heallen T, Morikawa Y, Leach J, Tao G, Willerson JT, Johnson RL, Martin JF. Hippo signaling impedes adult heart regeneration. Development. 2013;140(23):4683–90.PubMedPubMedCentralCrossRef Heallen T, Morikawa Y, Leach J, Tao G, Willerson JT, Johnson RL, Martin JF. Hippo signaling impedes adult heart regeneration. Development. 2013;140(23):4683–90.PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Chen SN, Gurha P, Lombardi R, Ruggiero A, Willerson JT, Marian AJ. The hippo pathway is activated and is a causal mechanism for adipogenesis in arrhythmogenic cardiomyopathy. Circ Res. 2014;114(3):454–68.PubMedCrossRef Chen SN, Gurha P, Lombardi R, Ruggiero A, Willerson JT, Marian AJ. The hippo pathway is activated and is a causal mechanism for adipogenesis in arrhythmogenic cardiomyopathy. Circ Res. 2014;114(3):454–68.PubMedCrossRef
29.
Zurück zum Zitat • Li N, Artiga E, Kalyanasundaram A, Hansen BJ, Webb A, Pietrzak M, Biesiadecki B, Whitson B, Mokadam NA, Janssen PML, Hummel JD, Mohler PJ, Dobrzynski H, Fedorov VV. Altered microRNA and mRNA profiles during heart failure in the human sinoatrial node. Sci Rep. 2021;11(1):19328. Findings provide an analysis of the miRNA and mRNA profiles of human SAN of HF transplant hearts and donor hearts without HF and arrhythmia history, establish a resource for the investigation of novel molecular targets for SAN dysfunction treatments. • Li N, Artiga E, Kalyanasundaram A, Hansen BJ, Webb A, Pietrzak M, Biesiadecki B, Whitson B, Mokadam NA, Janssen PML, Hummel JD, Mohler PJ, Dobrzynski H, Fedorov VV. Altered microRNA and mRNA profiles during heart failure in the human sinoatrial node. Sci Rep. 2021;11(1):19328. Findings provide an analysis of the miRNA and mRNA profiles of human SAN of HF transplant hearts and donor hearts without HF and arrhythmia history, establish a resource for the investigation of novel molecular targets for SAN dysfunction treatments.
30.
Zurück zum Zitat Yu SD, Yu JY, Guo Y, Liu XY, Liang T, Chen LZ, Chu YP, Zhang HP. Bioinformatic analysis for the identification of potential gene interactions and therapeutic targets in atrial fibrillation. Eur Rev Med Pharmacol Sci. 2021;25(5):2281–90.PubMed Yu SD, Yu JY, Guo Y, Liu XY, Liang T, Chen LZ, Chu YP, Zhang HP. Bioinformatic analysis for the identification of potential gene interactions and therapeutic targets in atrial fibrillation. Eur Rev Med Pharmacol Sci. 2021;25(5):2281–90.PubMed
31.
Zurück zum Zitat •• Zheng M, Li RG, Song J, Zhao X, Tang L, Erhardt S, Chen W, Nguyen BH, Li X, Li M, Wang J, Evans SM, Christoffels VM, Li N, Wang J. Hippo-Yap signaling maintains sinoatrial node homeostasis. Circulation. 2022;146(22):1694–711. This study finds that Hippo signaling deletion causes SAN dysfunction and cardiac arrhythmias. Hippo signaling cell-autonomously regulates pacemaker cell calcium handling and non-cell-autonomously promotes fibroblasts proliferation in the SAN. •• Zheng M, Li RG, Song J, Zhao X, Tang L, Erhardt S, Chen W, Nguyen BH, Li X, Li M, Wang J, Evans SM, Christoffels VM, Li N, Wang J. Hippo-Yap signaling maintains sinoatrial node homeostasis. Circulation. 2022;146(22):1694–711. This study finds that Hippo signaling deletion causes SAN dysfunction and cardiac arrhythmias. Hippo signaling cell-autonomously regulates pacemaker cell calcium handling and non-cell-autonomously promotes fibroblasts proliferation in the SAN.
32.
Zurück zum Zitat Romani P, Valcarcel-Jimenez L, Frezza C, Dupont S. Crosstalk between mechanotransduction and metabolism. Nat Rev Mol Cell Biol. 2021;22(1):22–38.CrossRef Romani P, Valcarcel-Jimenez L, Frezza C, Dupont S. Crosstalk between mechanotransduction and metabolism. Nat Rev Mol Cell Biol. 2021;22(1):22–38.CrossRef
34.
Zurück zum Zitat Turner D, Kang C, Mesirca P, Hong J, Mangoni ME, Glukhov AV, Sah R. Electrophysiological and molecular mechanisms of sinoatrial node mechanosensitivity. Frontiers in cardiovascular medicine. 2021;8: 662410.PubMedPubMedCentralCrossRef Turner D, Kang C, Mesirca P, Hong J, Mangoni ME, Glukhov AV, Sah R. Electrophysiological and molecular mechanisms of sinoatrial node mechanosensitivity. Frontiers in cardiovascular medicine. 2021;8: 662410.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Quinn TA, Kohl P. Cardiac mechano-electric coupling: acute effects of mechanical stimulation on heart rate and rhythm. Physiol Rev. 2021;101(1):37–92.CrossRef Quinn TA, Kohl P. Cardiac mechano-electric coupling: acute effects of mechanical stimulation on heart rate and rhythm. Physiol Rev. 2021;101(1):37–92.CrossRef
36.
Zurück zum Zitat Coste B, Mathur J, Schmidt M, Earley TJ, Ranade S, Petrus MJ, Dubin AE, Patapoutian A. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science. 2010;330(6000):55–60.PubMedPubMedCentralCrossRef Coste B, Mathur J, Schmidt M, Earley TJ, Ranade S, Petrus MJ, Dubin AE, Patapoutian A. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science. 2010;330(6000):55–60.PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Coste B, Xiao B, Santos JS, Syeda R, Grandl J, Spencer KS, Kim SE, Schmidt M, Mathur J, Dubin AE, Montal M, Patapoutian A. Piezo proteins are pore-forming subunits of mechanically activated channels. Nature. 2012;483(7388):176–81.PubMedPubMedCentralCrossRef Coste B, Xiao B, Santos JS, Syeda R, Grandl J, Spencer KS, Kim SE, Schmidt M, Mathur J, Dubin AE, Montal M, Patapoutian A. Piezo proteins are pore-forming subunits of mechanically activated channels. Nature. 2012;483(7388):176–81.PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Froese A, Breher SS, Waldeyer C, Schindler RF, Nikolaev VO, Rinne S, Wischmeyer E, Schlueter J, Becher J, Simrick S, Vauti F, Kuhtz J, Meister P, Kreissl S, Torlopp A, Liebig SK, Laakmann S, Muller TD, Neumann J, Stieber J, Ludwig A, Maier SK, Decher N, Arnold HH, Kirchhof P, Fabritz L, Brand T. Popeye domain containing proteins are essential for stress-mediated modulation of cardiac pacemaking in mice. J Clin Investig. 2012;122(3):1119–30.PubMedPubMedCentralCrossRef Froese A, Breher SS, Waldeyer C, Schindler RF, Nikolaev VO, Rinne S, Wischmeyer E, Schlueter J, Becher J, Simrick S, Vauti F, Kuhtz J, Meister P, Kreissl S, Torlopp A, Liebig SK, Laakmann S, Muller TD, Neumann J, Stieber J, Ludwig A, Maier SK, Decher N, Arnold HH, Kirchhof P, Fabritz L, Brand T. Popeye domain containing proteins are essential for stress-mediated modulation of cardiac pacemaking in mice. J Clin Investig. 2012;122(3):1119–30.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Tan JH, Liu W, Saint DA. Trek-like potassium channels in rat cardiac ventricular myocytes are activated by intracellular ATP. J Membr Biol. 2002;185(3):201–7.PubMedCrossRef Tan JH, Liu W, Saint DA. Trek-like potassium channels in rat cardiac ventricular myocytes are activated by intracellular ATP. J Membr Biol. 2002;185(3):201–7.PubMedCrossRef
40.
Zurück zum Zitat Unudurthi SD, Wu X, Qian L, Amari F, Onal B, Li N, Makara MA, Smith SA, Snyder J, Fedorov VV, Coppola V, Anderson ME, Mohler PJ, Hund TJ. Two-pore K+ channel TREK-1 regulates sinoatrial node membrane excitability. J Am Heart Assoc. 2016:5(4):e002865. Unudurthi SD, Wu X, Qian L, Amari F, Onal B, Li N, Makara MA, Smith SA, Snyder J, Fedorov VV, Coppola V, Anderson ME, Mohler PJ, Hund TJ. Two-pore K+ channel TREK-1 regulates sinoatrial node membrane excitability. J Am Heart Assoc. 2016:5(4):e002865.
41.
Zurück zum Zitat Hund TJ, Snyder JS, Wu X, Glynn P, Koval OM, Onal B, Leymaster ND, Unudurthi SD, Curran J, Camardo C, Wright PJ, Binkley PF, Anderson ME, Mohler PJ. beta(IV)-Spectrin regulates TREK-1 membrane targeting in the heart. Cardiovasc Res. 2014;102(1):166–75.PubMedPubMedCentralCrossRef Hund TJ, Snyder JS, Wu X, Glynn P, Koval OM, Onal B, Leymaster ND, Unudurthi SD, Curran J, Camardo C, Wright PJ, Binkley PF, Anderson ME, Mohler PJ. beta(IV)-Spectrin regulates TREK-1 membrane targeting in the heart. Cardiovasc Res. 2014;102(1):166–75.PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Ma S, Meng Z, Chen R, Guan KL. The Hippo pathway: biology and pathophysiology. Annu Rev Biochem. 2019;88:577–604.PubMedCrossRef Ma S, Meng Z, Chen R, Guan KL. The Hippo pathway: biology and pathophysiology. Annu Rev Biochem. 2019;88:577–604.PubMedCrossRef
43.
Zurück zum Zitat MacGrogan D, Munch J, de la Pompa JL. Notch and interacting signalling pathways in cardiac development, disease, and regeneration. Nat Rev Cardiol. 2018;15(11):685–704.PubMedCrossRef MacGrogan D, Munch J, de la Pompa JL. Notch and interacting signalling pathways in cardiac development, disease, and regeneration. Nat Rev Cardiol. 2018;15(11):685–704.PubMedCrossRef
45.
Zurück zum Zitat Rentschler S, Yen AH, Lu J, Petrenko NB, Lu MM, Manderfield LJ, Patel VV, Fishman GI, Epstein JA. Myocardial Notch signaling reprograms cardiomyocytes to a conduction-like phenotype. Circulation. 2012;126(9):1058–66.PubMedCentralCrossRef Rentschler S, Yen AH, Lu J, Petrenko NB, Lu MM, Manderfield LJ, Patel VV, Fishman GI, Epstein JA. Myocardial Notch signaling reprograms cardiomyocytes to a conduction-like phenotype. Circulation. 2012;126(9):1058–66.PubMedCentralCrossRef
46.
Zurück zum Zitat Wang Y, Lu P, Jiang L, Wu B, Zhou B. Control of sinus venous valve and sinoatrial node development by endocardial NOTCH1. Cardiovasc Res. 2020;116(8):1473–86.PubMedCrossRef Wang Y, Lu P, Jiang L, Wu B, Zhou B. Control of sinus venous valve and sinoatrial node development by endocardial NOTCH1. Cardiovasc Res. 2020;116(8):1473–86.PubMedCrossRef
47.
Zurück zum Zitat Qiao Y, Lipovsky C, Hicks S, Bhatnagar S, Li G, Khandekar A, Guzy R, Woo KV, Nichols CG, Efimov IR, Rentschler S. Transient Notch activation induces long-term gene expression changes leading to sick sinus syndrome in mice. Circ Res. 2017;121(5):549–63.PubMedPubMedCentralCrossRef Qiao Y, Lipovsky C, Hicks S, Bhatnagar S, Li G, Khandekar A, Guzy R, Woo KV, Nichols CG, Efimov IR, Rentschler S. Transient Notch activation induces long-term gene expression changes leading to sick sinus syndrome in mice. Circ Res. 2017;121(5):549–63.PubMedPubMedCentralCrossRef
48.
49.
Zurück zum Zitat Altarejos JY, Taniguchi M, Clanachan AS, Lopaschuk GD. Myocardial ischemia differentially regulates LKB1 and an alternate 5’-AMP-activated protein kinase kinase. J Biol Chem. 2005;280(1):183–90.PubMedCrossRef Altarejos JY, Taniguchi M, Clanachan AS, Lopaschuk GD. Myocardial ischemia differentially regulates LKB1 and an alternate 5’-AMP-activated protein kinase kinase. J Biol Chem. 2005;280(1):183–90.PubMedCrossRef
50.
Zurück zum Zitat Kudo N, Gillespie JG, Kung L, Witters LA, Schulz R, Clanachan AS, Lopaschuk GD. Characterization of 5′AMP-activated protein kinase activity in the heart and its role in inhibiting acetyl-CoA carboxylase during reperfusion following ischemia. Biochem Biophys Acta. 1996;1301(1–2):67–75.PubMedCrossRef Kudo N, Gillespie JG, Kung L, Witters LA, Schulz R, Clanachan AS, Lopaschuk GD. Characterization of 5′AMP-activated protein kinase activity in the heart and its role in inhibiting acetyl-CoA carboxylase during reperfusion following ischemia. Biochem Biophys Acta. 1996;1301(1–2):67–75.PubMedCrossRef
51.
Zurück zum Zitat Pulinilkunnil T, Puthanveetil P, Kim MS, Wang F, Schmitt V, Rodrigues B. Ischemia-reperfusion alters cardiac lipoprotein lipase. Biochem Biophys Acta. 2010;1801(2):171–5.PubMed Pulinilkunnil T, Puthanveetil P, Kim MS, Wang F, Schmitt V, Rodrigues B. Ischemia-reperfusion alters cardiac lipoprotein lipase. Biochem Biophys Acta. 2010;1801(2):171–5.PubMed
52.
Zurück zum Zitat Feng Y, Zhang Y, Xiao H. AMPK and cardiac remodelling. Science China Life sciences. 2018;61(1):14–23.PubMedCrossRef Feng Y, Zhang Y, Xiao H. AMPK and cardiac remodelling. Science China Life sciences. 2018;61(1):14–23.PubMedCrossRef
53.
Zurück zum Zitat Nagendran J, Waller TJ, Dyck JR. AMPK signalling and the control of substrate use in the heart. Mol Cell Endocrinol. 2013;366(2):180–93.PubMedCrossRef Nagendran J, Waller TJ, Dyck JR. AMPK signalling and the control of substrate use in the heart. Mol Cell Endocrinol. 2013;366(2):180–93.PubMedCrossRef
54.
Zurück zum Zitat Arad M, Benson DW, Perez-Atayde AR, McKenna WJ, Sparks EA, Kanter RJ, McGarry K, Seidman JG, Seidman CE. Constitutively active AMP kinase mutations cause glycogen storage disease mimicking hypertrophic cardiomyopathy. J Clin Investig. 2002;109(3):357–62.PubMedPubMedCentralCrossRef Arad M, Benson DW, Perez-Atayde AR, McKenna WJ, Sparks EA, Kanter RJ, McGarry K, Seidman JG, Seidman CE. Constitutively active AMP kinase mutations cause glycogen storage disease mimicking hypertrophic cardiomyopathy. J Clin Investig. 2002;109(3):357–62.PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat Blair E, Redwood C, Ashrafian H, Oliveira M, Broxholme J, Kerr B, Salmon A, Ostman-Smith I, Watkins H. Mutations in the gamma(2) subunit of AMP-activated protein kinase cause familial hypertrophic cardiomyopathy: evidence for the central role of energy compromise in disease pathogenesis. Hum Mol Genet. 2001;10(11):1215–20.PubMedCrossRef Blair E, Redwood C, Ashrafian H, Oliveira M, Broxholme J, Kerr B, Salmon A, Ostman-Smith I, Watkins H. Mutations in the gamma(2) subunit of AMP-activated protein kinase cause familial hypertrophic cardiomyopathy: evidence for the central role of energy compromise in disease pathogenesis. Hum Mol Genet. 2001;10(11):1215–20.PubMedCrossRef
56.
Zurück zum Zitat Gollob MH, Green MS, Tang AS, Gollob T, Karibe A, Ali Hassan AS, Ahmad F, Lozado R, Shah G, Fananapazir L, Bachinski LL, Roberts R. Identification of a gene responsible for familial Wolff-Parkinson-White syndrome. N Engl J Med. 2001;344(24):1823–31.PubMedCrossRef Gollob MH, Green MS, Tang AS, Gollob T, Karibe A, Ali Hassan AS, Ahmad F, Lozado R, Shah G, Fananapazir L, Bachinski LL, Roberts R. Identification of a gene responsible for familial Wolff-Parkinson-White syndrome. N Engl J Med. 2001;344(24):1823–31.PubMedCrossRef
57.
Zurück zum Zitat Zou L, Shen M, Arad M, He H, Lofgren B, Ingwall JS, Seidman CE, Seidman JG, Tian R. N488I mutation of the gamma2-subunit results in bidirectional changes in AMP-activated protein kinase activity. Circ Res. 2005;97(4):323–8.PubMedCrossRef Zou L, Shen M, Arad M, He H, Lofgren B, Ingwall JS, Seidman CE, Seidman JG, Tian R. N488I mutation of the gamma2-subunit results in bidirectional changes in AMP-activated protein kinase activity. Circ Res. 2005;97(4):323–8.PubMedCrossRef
58.
Zurück zum Zitat Davies JK, Wells DJ, Liu K, Whitrow HR, Daniel TD, Grignani R, Lygate CA, Schneider JE, Noel G, Watkins H, Carling D. Characterization of the role of gamma2 R531G mutation in AMP-activated protein kinase in cardiac hypertrophy and Wolff-Parkinson-White syndrome. Am J Physiol. Heart Circ Physiol. 2006;290(5):H1942–51. Davies JK, Wells DJ, Liu K, Whitrow HR, Daniel TD, Grignani R, Lygate CA, Schneider JE, Noel G, Watkins H, Carling D. Characterization of the role of gamma2 R531G mutation in AMP-activated protein kinase in cardiac hypertrophy and Wolff-Parkinson-White syndrome. Am J Physiol. Heart Circ Physiol. 2006;290(5):H1942–51.
59.
Zurück zum Zitat Yavari A, Bellahcene M, Bucchi A, Sirenko S, Pinter K, Herring N, Jung JJ, Tarasov KV, Sharpe EJ, Wolfien M, Czibik G, Steeples V, Ghaffari S, Nguyen C, Stockenhuber A, Clair JRS, Rimmbach C, Okamoto Y, Yang D, Wang M, Ziman BD, Moen JM, Riordon DR, Ramirez C, Paina M, Lee J, Zhang J, Ahmet I, Matt MG, Tarasova YS, Baban D, Sahgal N, Lockstone H, Puliyadi R, de Bono J, Siggs OM, Gomes J, Muskett H, Maguire ML, Beglov Y, Kelly M, Dos Santos PPN, Bright NJ, Woods A, Gehmlich K, Isackson H, Douglas G, Ferguson DJP, Schneider JE, Tinker A, Wolkenhauer O, Channon KM, Cornall RJ, Sternick EB, Paterson DJ, Redwood CS, Carling D, Proenza C, David R, Baruscotti M, DiFrancesco D, Lakatta EG, Watkins H, Ashrafian H. Mammalian gamma2 AMPK regulates intrinsic heart rate. Nat Comm. 2017;8(1):1258. Yavari A, Bellahcene M, Bucchi A, Sirenko S, Pinter K, Herring N, Jung JJ, Tarasov KV, Sharpe EJ, Wolfien M, Czibik G, Steeples V, Ghaffari S, Nguyen C, Stockenhuber A, Clair JRS, Rimmbach C, Okamoto Y, Yang D, Wang M, Ziman BD, Moen JM, Riordon DR, Ramirez C, Paina M, Lee J, Zhang J, Ahmet I, Matt MG, Tarasova YS, Baban D, Sahgal N, Lockstone H, Puliyadi R, de Bono J, Siggs OM, Gomes J, Muskett H, Maguire ML, Beglov Y, Kelly M, Dos Santos PPN, Bright NJ, Woods A, Gehmlich K, Isackson H, Douglas G, Ferguson DJP, Schneider JE, Tinker A, Wolkenhauer O, Channon KM, Cornall RJ, Sternick EB, Paterson DJ, Redwood CS, Carling D, Proenza C, David R, Baruscotti M, DiFrancesco D, Lakatta EG, Watkins H, Ashrafian H. Mammalian gamma2 AMPK regulates intrinsic heart rate. Nat Comm. 2017;8(1):1258.
60.
Zurück zum Zitat Xiao B, Heath R, Saiu P, Leiper FC, Leone P, Jing C, Walker PA, Haire L, Eccleston JF, Davis CT, Martin SR, Carling D, Gamblin SJ. Structural basis for AMP binding to mammalian AMP-activated protein kinase. Nature. 2007;449(7161):496–500.PubMedCrossRef Xiao B, Heath R, Saiu P, Leiper FC, Leone P, Jing C, Walker PA, Haire L, Eccleston JF, Davis CT, Martin SR, Carling D, Gamblin SJ. Structural basis for AMP binding to mammalian AMP-activated protein kinase. Nature. 2007;449(7161):496–500.PubMedCrossRef
61.
Zurück zum Zitat Scott JW, Hawley SA, Green KA, Anis M, Stewart G, Scullion GA, Norman DG, Hardie DG. CBS domains form energy-sensing modules whose binding of adenosine ligands is disrupted by disease mutations. J Clin Investig. 2004;113(2):274–84.PubMedCrossRef Scott JW, Hawley SA, Green KA, Anis M, Stewart G, Scullion GA, Norman DG, Hardie DG. CBS domains form energy-sensing modules whose binding of adenosine ligands is disrupted by disease mutations. J Clin Investig. 2004;113(2):274–84.PubMedCrossRef
62.
Zurück zum Zitat Yavari A, Stocker CJ, Ghaffari S, Wargent ET, Steeples V, Czibik G, Pinter K, Bellahcene M, Woods A, Martinez de Morentin PB, Cansell C, Lam BY, Chuster A, Petkevicius K, Nguyen-Tu MS, Martinez-Sanchez A, Pullen TJ, Oliver PL, Stockenhuber A, Nguyen C, Lazdam M, O'Dowd JF, Harikumar P, Toth M, Beall C, Kyriakou T, Parnis J, Sarma D, Katritsis G, Wortmann DD, Harper AR, Brown LA, Willows R, Gandra S, Poncio V, de Oliveira Figueiredo MJ, Qi NR, Peirson SN, McCrimmon RJ, Gereben B, Tretter L, Fekete C, Redwood C, Yeo GS, Heisler LK, Rutter GA, Smith MA, Withers DJ, Carling D, Sternick EB, Arch JR, Cawthorne MA, Watkins H, Ashrafian H. Chronic Activation of gamma2 AMPK Induces Obesity and Reduces beta Cell Function. Cell Metabol. 2016;23(5):821–36. Yavari A, Stocker CJ, Ghaffari S, Wargent ET, Steeples V, Czibik G, Pinter K, Bellahcene M, Woods A, Martinez de Morentin PB, Cansell C, Lam BY, Chuster A, Petkevicius K, Nguyen-Tu MS, Martinez-Sanchez A, Pullen TJ, Oliver PL, Stockenhuber A, Nguyen C, Lazdam M, O'Dowd JF, Harikumar P, Toth M, Beall C, Kyriakou T, Parnis J, Sarma D, Katritsis G, Wortmann DD, Harper AR, Brown LA, Willows R, Gandra S, Poncio V, de Oliveira Figueiredo MJ, Qi NR, Peirson SN, McCrimmon RJ, Gereben B, Tretter L, Fekete C, Redwood C, Yeo GS, Heisler LK, Rutter GA, Smith MA, Withers DJ, Carling D, Sternick EB, Arch JR, Cawthorne MA, Watkins H, Ashrafian H. Chronic Activation of gamma2 AMPK Induces Obesity and Reduces beta Cell Function. Cell Metabol. 2016;23(5):821–36.
63.
Zurück zum Zitat Daniel T, Carling D. Functional analysis of mutations in the gamma 2 subunit of AMP-activated protein kinase associated with cardiac hypertrophy and Wolff-Parkinson-White syndrome. J Biol Chem. 2002;277(52):51017–24.PubMedCrossRef Daniel T, Carling D. Functional analysis of mutations in the gamma 2 subunit of AMP-activated protein kinase associated with cardiac hypertrophy and Wolff-Parkinson-White syndrome. J Biol Chem. 2002;277(52):51017–24.PubMedCrossRef
64.
Zurück zum Zitat D’Souza A, Bucchi A, Johnsen AB, Logantha SJ, Monfredi O, Yanni J, Prehar S, Hart G, Cartwright E, Wisloff U, Dobryznski H, DiFrancesco D, Morris GM, Boyett MR. Exercise training reduces resting heart rate via downregulation of the funny channel HCN4. Nat Commun. 2014;5:3775.PubMedCrossRef D’Souza A, Bucchi A, Johnsen AB, Logantha SJ, Monfredi O, Yanni J, Prehar S, Hart G, Cartwright E, Wisloff U, Dobryznski H, DiFrancesco D, Morris GM, Boyett MR. Exercise training reduces resting heart rate via downregulation of the funny channel HCN4. Nat Commun. 2014;5:3775.PubMedCrossRef
65.
Zurück zum Zitat D’Souza A, Pearman CM, Wang Y, Nakao S, Logantha S, Cox C, Bennett H, Zhang Y, Johnsen AB, Linscheid N, Poulsen PC, Elliott J, Coulson J, McPhee J, Robertson A, da Costa Martins PA, Kitmitto A, Wisloff U, Cartwright EJ, Monfredi O, Lundby A, Dobrzynski H, Oceandy D, Morris GM, Boyett MR. Targeting miR-423-5p reverses exercise training-induced HCN4 channel remodeling and sinus bradycardia. Circ Res. 2017;121(9):1058–68.PubMedPubMedCentralCrossRef D’Souza A, Pearman CM, Wang Y, Nakao S, Logantha S, Cox C, Bennett H, Zhang Y, Johnsen AB, Linscheid N, Poulsen PC, Elliott J, Coulson J, McPhee J, Robertson A, da Costa Martins PA, Kitmitto A, Wisloff U, Cartwright EJ, Monfredi O, Lundby A, Dobrzynski H, Oceandy D, Morris GM, Boyett MR. Targeting miR-423-5p reverses exercise training-induced HCN4 channel remodeling and sinus bradycardia. Circ Res. 2017;121(9):1058–68.PubMedPubMedCentralCrossRef
66.
Zurück zum Zitat Wojtaszewski JF, Nielsen P, Hansen BF, Richter EA, Kiens B. Isoform-specific and exercise intensity-dependent activation of 5′-AMP-activated protein kinase in human skeletal muscle. J Physiol. 2000;528(Pt 1):221–6. Wojtaszewski JF, Nielsen P, Hansen BF, Richter EA, Kiens B. Isoform-specific and exercise intensity-dependent activation of 5′-AMP-activated protein kinase in human skeletal muscle. J Physiol. 2000;528(Pt 1):221–6.
67.
Zurück zum Zitat Winder WW, Hardie DG. Inactivation of acetyl-CoA carboxylase and activation of AMP-activated protein kinase in muscle during exercise. Am J Physiol. 1996;270(2 Pt 1):E299-304.PubMed Winder WW, Hardie DG. Inactivation of acetyl-CoA carboxylase and activation of AMP-activated protein kinase in muscle during exercise. Am J Physiol. 1996;270(2 Pt 1):E299-304.PubMed
68.
Zurück zum Zitat Moghtadaei M, Polina I, Rose RA. Electrophysiological effects of natriuretic peptides in the heart are mediated by multiple receptor subtypes. Prog Biophys Mol Biol. 2016;120(1–3):37–49.PubMedCrossRef Moghtadaei M, Polina I, Rose RA. Electrophysiological effects of natriuretic peptides in the heart are mediated by multiple receptor subtypes. Prog Biophys Mol Biol. 2016;120(1–3):37–49.PubMedCrossRef
69.
Zurück zum Zitat Potter LR, Abbey-Hosch S, Dickey DM. Natriuretic peptides, their receptors, and cyclic guanosine monophosphate-dependent signaling functions. Endocr Rev. 2006;27(1):47–72.PubMedCrossRef Potter LR, Abbey-Hosch S, Dickey DM. Natriuretic peptides, their receptors, and cyclic guanosine monophosphate-dependent signaling functions. Endocr Rev. 2006;27(1):47–72.PubMedCrossRef
70.
Zurück zum Zitat Schirger JA, Heublein DM, Chen HH, Lisy O, Jougasaki M, Wennberg PW, Burnett JC Jr. Presence of dendroaspis natriuretic peptide-like immunoreactivity in human plasma and its increase during human heart failure. Mayo Clin Proc. 1999;74(2):126–30.CrossRef Schirger JA, Heublein DM, Chen HH, Lisy O, Jougasaki M, Wennberg PW, Burnett JC Jr. Presence of dendroaspis natriuretic peptide-like immunoreactivity in human plasma and its increase during human heart failure. Mayo Clin Proc. 1999;74(2):126–30.CrossRef
71.
Zurück zum Zitat Vollmar AM, Gerbes AL, Nemer M, Schulz R. Detection of C-type natriuretic peptide (CNP) transcript in the rat heart and immune organs. Endocrinology. 1993;132(4):1872–4.PubMedCrossRef Vollmar AM, Gerbes AL, Nemer M, Schulz R. Detection of C-type natriuretic peptide (CNP) transcript in the rat heart and immune organs. Endocrinology. 1993;132(4):1872–4.PubMedCrossRef
72.
Zurück zum Zitat Wei CM, Heublein DM, Perrella MA, Lerman A, Rodeheffer RJ, McGregor CG, Edwards WD, Schaff HV, Burnett JC Jr. Natriuretic peptide system in human heart failure. Circulation. 1993;88(3):1004–9.PubMedCrossRef Wei CM, Heublein DM, Perrella MA, Lerman A, Rodeheffer RJ, McGregor CG, Edwards WD, Schaff HV, Burnett JC Jr. Natriuretic peptide system in human heart failure. Circulation. 1993;88(3):1004–9.PubMedCrossRef
73.
Zurück zum Zitat Nakao K, Ogawa Y, Suga S, Imura H. Molecular biology and biochemistry of the natriuretic peptide system. II: Natriuretic peptide receptors. J Hyperten. 1992;10(10):1111–4. Nakao K, Ogawa Y, Suga S, Imura H. Molecular biology and biochemistry of the natriuretic peptide system. II: Natriuretic peptide receptors. J Hyperten. 1992;10(10):1111–4.
74.
Zurück zum Zitat Egom EE, Vella K, Hua R, Jansen HJ, Moghtadaei M, Polina I, Bogachev O, Hurnik R, Mackasey M, Rafferty S, Ray G, Rose RA. Impaired sinoatrial node function and increased susceptibility to atrial fibrillation in mice lacking natriuretic peptide receptor C. J Physiol. 2015;593(5):1127–46.PubMedPubMedCentralCrossRef Egom EE, Vella K, Hua R, Jansen HJ, Moghtadaei M, Polina I, Bogachev O, Hurnik R, Mackasey M, Rafferty S, Ray G, Rose RA. Impaired sinoatrial node function and increased susceptibility to atrial fibrillation in mice lacking natriuretic peptide receptor C. J Physiol. 2015;593(5):1127–46.PubMedPubMedCentralCrossRef
75.
Zurück zum Zitat Dickey DM, Potter LR. Dendroaspis natriuretic peptide and the designer natriuretic peptide, CD-NP, are resistant to proteolytic inactivation. J Mol Cell Cardiol. 2011;51(1):67–71.PubMedPubMedCentralCrossRef Dickey DM, Potter LR. Dendroaspis natriuretic peptide and the designer natriuretic peptide, CD-NP, are resistant to proteolytic inactivation. J Mol Cell Cardiol. 2011;51(1):67–71.PubMedPubMedCentralCrossRef
76.
Zurück zum Zitat Bender AT, Beavo JA. Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol Rev. 2006;58(3):488–520.PubMedCrossRef Bender AT, Beavo JA. Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol Rev. 2006;58(3):488–520.PubMedCrossRef
77.
Zurück zum Zitat Lohmann SM, Fischmeister R, Walter U. Signal transduction by cGMP in heart. Basic Res Cardiol. 1991;86(6):503–14.PubMedCrossRef Lohmann SM, Fischmeister R, Walter U. Signal transduction by cGMP in heart. Basic Res Cardiol. 1991;86(6):503–14.PubMedCrossRef
78.
Zurück zum Zitat Maurice DH, Palmer D, Tilley DG, Dunkerley HA, Netherton SJ, Raymond DR, Elbatarny HS, Jimmo SL. Cyclic nucleotide phosphodiesterase activity, expression, and targeting in cells of the cardiovascular system. Mol Pharmacol. 2003;64(3):533–46.PubMedCrossRef Maurice DH, Palmer D, Tilley DG, Dunkerley HA, Netherton SJ, Raymond DR, Elbatarny HS, Jimmo SL. Cyclic nucleotide phosphodiesterase activity, expression, and targeting in cells of the cardiovascular system. Mol Pharmacol. 2003;64(3):533–46.PubMedCrossRef
79.
80.
Zurück zum Zitat Zaccolo M, Movsesian MA. cAMP and cGMP signaling cross-talk: role of phosphodiesterases and implications for cardiac pathophysiology. Circ Res. 2007;100(11):1569–78.PubMedCrossRef Zaccolo M, Movsesian MA. cAMP and cGMP signaling cross-talk: role of phosphodiesterases and implications for cardiac pathophysiology. Circ Res. 2007;100(11):1569–78.PubMedCrossRef
81.
Zurück zum Zitat Anand-Srivastava MB. Natriuretic peptide receptor-C signaling and regulation. Peptides. 2005;26(6):1044–59.PubMedCrossRef Anand-Srivastava MB. Natriuretic peptide receptor-C signaling and regulation. Peptides. 2005;26(6):1044–59.PubMedCrossRef
82.
Zurück zum Zitat Pandey KN. Genetic ablation and guanylyl cyclase/natriuretic peptide receptor-A: impact on the pathophysiology of cardiovascular dysfunction. Intern J Mole Sci. 2019;20(16). Pandey KN. Genetic ablation and guanylyl cyclase/natriuretic peptide receptor-A: impact on the pathophysiology of cardiovascular dysfunction. Intern J Mole Sci. 2019;20(16).
83.
Zurück zum Zitat Oliver PM, Fox JE, Kim R, Rockman HA, Kim HS, Reddick RL, Pandey KN, Milgram SL, Smithies O, Maeda N. Hypertension, cardiac hypertrophy, and sudden death in mice lacking natriuretic peptide receptor A. Proc Natl Acad Sci USA. 1997;94(26):14730–5.PubMedPubMedCentralCrossRef Oliver PM, Fox JE, Kim R, Rockman HA, Kim HS, Reddick RL, Pandey KN, Milgram SL, Smithies O, Maeda N. Hypertension, cardiac hypertrophy, and sudden death in mice lacking natriuretic peptide receptor A. Proc Natl Acad Sci USA. 1997;94(26):14730–5.PubMedPubMedCentralCrossRef
84.
Zurück zum Zitat Vellaichamy E, Khurana ML, Fink J, Pandey KN. Involvement of the NF-kappa B/matrix metalloproteinase pathway in cardiac fibrosis of mice lacking guanylyl cyclase/natriuretic peptide receptor A. J Biol Chem. 2005;280(19):19230–42.PubMedCrossRef Vellaichamy E, Khurana ML, Fink J, Pandey KN. Involvement of the NF-kappa B/matrix metalloproteinase pathway in cardiac fibrosis of mice lacking guanylyl cyclase/natriuretic peptide receptor A. J Biol Chem. 2005;280(19):19230–42.PubMedCrossRef
85.
Zurück zum Zitat Vellaichamy E, Zhao D, Somanna N, Pandey KN. Genetic disruption of guanylyl cyclase/natriuretic peptide receptor-A upregulates ACE and AT1 receptor gene expression and signaling: role in cardiac hypertrophy. Physiol Genomics. 2007;31(2):193–202.PubMedCrossRef Vellaichamy E, Zhao D, Somanna N, Pandey KN. Genetic disruption of guanylyl cyclase/natriuretic peptide receptor-A upregulates ACE and AT1 receptor gene expression and signaling: role in cardiac hypertrophy. Physiol Genomics. 2007;31(2):193–202.PubMedCrossRef
86.
Zurück zum Zitat Das S, Au E, Krazit ST, Pandey KN. Targeted disruption of guanylyl cyclase-A/natriuretic peptide receptor-A gene provokes renal fibrosis and remodeling in null mutant mice: role of proinflammatory cytokines. Endocrinology. 2010;151(12):5841–50.PubMedPubMedCentralCrossRef Das S, Au E, Krazit ST, Pandey KN. Targeted disruption of guanylyl cyclase-A/natriuretic peptide receptor-A gene provokes renal fibrosis and remodeling in null mutant mice: role of proinflammatory cytokines. Endocrinology. 2010;151(12):5841–50.PubMedPubMedCentralCrossRef
87.
Zurück zum Zitat Das S, Periyasamy R, Pandey KN. Activation of IKK/NF-kappaB provokes renal inflammatory responses in guanylyl cyclase/natriuretic peptide receptor-A gene-knockout mice. Physiol Genomics. 2012;44(7):430–42.PubMedPubMedCentralCrossRef Das S, Periyasamy R, Pandey KN. Activation of IKK/NF-kappaB provokes renal inflammatory responses in guanylyl cyclase/natriuretic peptide receptor-A gene-knockout mice. Physiol Genomics. 2012;44(7):430–42.PubMedPubMedCentralCrossRef
88.
Zurück zum Zitat Shi SJ, Vellaichamy E, Chin SY, Smithies O, Navar LG, Pandey KN. Natriuretic peptide receptor A mediates renal sodium excretory responses to blood volume expansion. Am J Physiol Renal Physiol. 2003;285(4):F694-702.PubMedCrossRef Shi SJ, Vellaichamy E, Chin SY, Smithies O, Navar LG, Pandey KN. Natriuretic peptide receptor A mediates renal sodium excretory responses to blood volume expansion. Am J Physiol Renal Physiol. 2003;285(4):F694-702.PubMedCrossRef
89.
Zurück zum Zitat Kumar P, Periyasamy R, Das S, Neerukonda S, Mani I, Pandey KN. All-trans retinoic acid and sodium butyrate enhance natriuretic peptide receptor a gene transcription: role of histone modification. Mol Pharmacol. 2014;85(6):946–57.PubMedPubMedCentralCrossRef Kumar P, Periyasamy R, Das S, Neerukonda S, Mani I, Pandey KN. All-trans retinoic acid and sodium butyrate enhance natriuretic peptide receptor a gene transcription: role of histone modification. Mol Pharmacol. 2014;85(6):946–57.PubMedPubMedCentralCrossRef
90.
Zurück zum Zitat Oliver PM, John SW, Purdy KE, Kim R, Maeda N, Goy MF, Smithies O. Natriuretic peptide receptor 1 expression influences blood pressures of mice in a dose-dependent manner. Proc Natl Acad Sci USA. 1998;95(5):2547–51.PubMedPubMedCentralCrossRef Oliver PM, John SW, Purdy KE, Kim R, Maeda N, Goy MF, Smithies O. Natriuretic peptide receptor 1 expression influences blood pressures of mice in a dose-dependent manner. Proc Natl Acad Sci USA. 1998;95(5):2547–51.PubMedPubMedCentralCrossRef
91.
Zurück zum Zitat Pandey KN, Oliver PM, Maeda N, Smithies O. Hypertension associated with decreased testosterone levels in natriuretic peptide receptor-A gene-knockout and gene-duplicated mutant mouse models. Endocrinology. 1999;140(11):5112–9.CrossRef Pandey KN, Oliver PM, Maeda N, Smithies O. Hypertension associated with decreased testosterone levels in natriuretic peptide receptor-A gene-knockout and gene-duplicated mutant mouse models. Endocrinology. 1999;140(11):5112–9.CrossRef
92.
Zurück zum Zitat Vellaichamy E, Das S, Subramanian U, Maeda N, Pandey KN. Genetically altered mutant mouse models of guanylyl cyclase/natriuretic peptide receptor-A exhibit the cardiac expression of proinflammatory mediators in a gene-dose-dependent manner. Endocrinology. 2014;155(3):1045–56.PubMedPubMedCentralCrossRef Vellaichamy E, Das S, Subramanian U, Maeda N, Pandey KN. Genetically altered mutant mouse models of guanylyl cyclase/natriuretic peptide receptor-A exhibit the cardiac expression of proinflammatory mediators in a gene-dose-dependent manner. Endocrinology. 2014;155(3):1045–56.PubMedPubMedCentralCrossRef
93.
Zurück zum Zitat Dorey TW, Mackasey M, Jansen HJ, McRae MD, Bohne LJ, Liu Y, Belke DD, Atkinson L, Rose RA. Natriuretic peptide receptor B maintains heart rate and sinoatrial node function via cyclic GMP-mediated signalling. Cardiovasc Res. 2022;118(8):1917–31.PubMedCrossRef Dorey TW, Mackasey M, Jansen HJ, McRae MD, Bohne LJ, Liu Y, Belke DD, Atkinson L, Rose RA. Natriuretic peptide receptor B maintains heart rate and sinoatrial node function via cyclic GMP-mediated signalling. Cardiovasc Res. 2022;118(8):1917–31.PubMedCrossRef
94.
Zurück zum Zitat Azer J, Hua R, Vella K, Rose RA. Natriuretic peptides regulate heart rate and sinoatrial node function by activating multiple natriuretic peptide receptors. J Mol Cell Cardiol. 2012;53(5):715–24.PubMedCrossRef Azer J, Hua R, Vella K, Rose RA. Natriuretic peptides regulate heart rate and sinoatrial node function by activating multiple natriuretic peptide receptors. J Mol Cell Cardiol. 2012;53(5):715–24.PubMedCrossRef
95.
Zurück zum Zitat Jansen HJ, Moghtadaei M, Rafferty SA, Belke DD, Rose RA. Loss of natriuretic peptide receptor C enhances sinoatrial node dysfunction in aging and frail mice. J Gerontol Ser A Biol Sci Med Sci. 2022;77(5):902–8.CrossRef Jansen HJ, Moghtadaei M, Rafferty SA, Belke DD, Rose RA. Loss of natriuretic peptide receptor C enhances sinoatrial node dysfunction in aging and frail mice. J Gerontol Ser A Biol Sci Med Sci. 2022;77(5):902–8.CrossRef
96.
Zurück zum Zitat Mackasey M, Egom EE, Jansen HJ, Hua R, Moghtadaei M, Liu Y, Kaur J, McRae MD, Bogachev O, Rafferty SA, Ray G, Kirkby AW, Rose RA. Natriuretic peptide receptor-C protects against angiotensin II-mediated sinoatrial node disease in mice. JACC Basic to translational science. 2018;3(6):824–43.PubMedPubMedCentralCrossRef Mackasey M, Egom EE, Jansen HJ, Hua R, Moghtadaei M, Liu Y, Kaur J, McRae MD, Bogachev O, Rafferty SA, Ray G, Kirkby AW, Rose RA. Natriuretic peptide receptor-C protects against angiotensin II-mediated sinoatrial node disease in mice. JACC Basic to translational science. 2018;3(6):824–43.PubMedPubMedCentralCrossRef
97.
Zurück zum Zitat Xue JB, Val-Blasco A, Davoodi M, Gomez S, Yaniv Y, Benitah JP, Gomez AM. Heart failure in mice induces a dysfunction of the sinus node associated with reduced CaMKII signaling. J Gene Physiol. 2022;154(9). Xue JB, Val-Blasco A, Davoodi M, Gomez S, Yaniv Y, Benitah JP, Gomez AM. Heart failure in mice induces a dysfunction of the sinus node associated with reduced CaMKII signaling. J Gene Physiol. 2022;154(9).
98.
Zurück zum Zitat Ren L, Gopireddy RR, Perkins G, Zhang H, Timofeyev V, Lyu Y, Diloretto DA, Trinh P, Sirish P, Overton JL, Xu W, Grainger N, Xiang YK, Dedkova EN, Zhang XD, Yamoah EN, Navedo MF, Thai PN, Chiamvimonvat N. Disruption of mitochondria-sarcoplasmic reticulum microdomain connectomics contributes to sinus node dysfunction in heart failure. Proc Nat Acad Sci USA. 2022;119(36):e2206708119. Ren L, Gopireddy RR, Perkins G, Zhang H, Timofeyev V, Lyu Y, Diloretto DA, Trinh P, Sirish P, Overton JL, Xu W, Grainger N, Xiang YK, Dedkova EN, Zhang XD, Yamoah EN, Navedo MF, Thai PN, Chiamvimonvat N. Disruption of mitochondria-sarcoplasmic reticulum microdomain connectomics contributes to sinus node dysfunction in heart failure. Proc Nat Acad Sci USA. 2022;119(36):e2206708119.
99.
Zurück zum Zitat •• Mesquita T, Zhang R, Cho JH, Zhang R, Lin YN, Sanchez L, Goldhaber JI, Yu JK, Liang JA, Liu W, Trayanova NA, Cingolani E. Mechanisms of sinoatrial node dysfunction in heart failure with preserved ejection fraction. Circulation. 2022;145(1):45–60. Findings from this study suggest that HFpEF Rats exhibited intrinsic SAN dysfunction accompanied by the limited chronotropic response because both the “membrane clock” (ion channels) and the “CA2+ clock” (spontaneous Ca2+ release events) are altered. •• Mesquita T, Zhang R, Cho JH, Zhang R, Lin YN, Sanchez L, Goldhaber JI, Yu JK, Liang JA, Liu W, Trayanova NA, Cingolani E. Mechanisms of sinoatrial node dysfunction in heart failure with preserved ejection fraction. Circulation. 2022;145(1):45–60. Findings from this study suggest that HFpEF Rats exhibited intrinsic SAN dysfunction accompanied by the limited chronotropic response because both the “membrane clock” (ion channels) and the “CA2+ clock” (spontaneous Ca2+ release events) are altered.
100.
Zurück zum Zitat Yanni J, Tellez JO, Maczewski M, Mackiewicz U, Beresewicz A, Billeter R, Dobrzynski H, Boyett MR. Changes in ion channel gene expression underlying heart failure-induced sinoatrial node dysfunction. Circ Heart Fail. 2011;4(4):496–508.PubMedCrossRef Yanni J, Tellez JO, Maczewski M, Mackiewicz U, Beresewicz A, Billeter R, Dobrzynski H, Boyett MR. Changes in ion channel gene expression underlying heart failure-induced sinoatrial node dysfunction. Circ Heart Fail. 2011;4(4):496–508.PubMedCrossRef
101.
Zurück zum Zitat Luo M, Guan X, Luczak ED, Lang D, Kutschke W, Gao Z, Yang J, Glynn P, Sossalla S, Swaminathan PD, Weiss RM, Yang B, Rokita AG, Maier LS, Efimov IR, Hund TJ, Anderson ME. Diabetes increases mortality after myocardial infarction by oxidizing CaMKII. J Clin Investig. 2013;123(3):1262–74.PubMedCrossRef Luo M, Guan X, Luczak ED, Lang D, Kutschke W, Gao Z, Yang J, Glynn P, Sossalla S, Swaminathan PD, Weiss RM, Yang B, Rokita AG, Maier LS, Efimov IR, Hund TJ, Anderson ME. Diabetes increases mortality after myocardial infarction by oxidizing CaMKII. J Clin Investig. 2013;123(3):1262–74.PubMedCrossRef
102.
Zurück zum Zitat Grundy SM, Benjamin IJ, Burke GL, Chait A, Eckel RH, Howard BV, Mitch W, Smith SC Jr, Sowers JR. Diabetes and cardiovascular disease: a statement for healthcare professionals from the American Heart Association. Circulation. 1999;100(10):1134–46.PubMedCrossRef Grundy SM, Benjamin IJ, Burke GL, Chait A, Eckel RH, Howard BV, Mitch W, Smith SC Jr, Sowers JR. Diabetes and cardiovascular disease: a statement for healthcare professionals from the American Heart Association. Circulation. 1999;100(10):1134–46.PubMedCrossRef
103.
Zurück zum Zitat Assoumou HG, Pichot V, Barthelemy JC, Dauphinot V, Celle S, Gosse P, Kossovsky M, Gaspoz JM, Roche F. Metabolic syndrome and short-term and long-term heart rate variability in elderly free of clinical cardiovascular disease: the PROOF study. Rejuvenation Res. 2010;13(6):653–63.PubMedCrossRef Assoumou HG, Pichot V, Barthelemy JC, Dauphinot V, Celle S, Gosse P, Kossovsky M, Gaspoz JM, Roche F. Metabolic syndrome and short-term and long-term heart rate variability in elderly free of clinical cardiovascular disease: the PROOF study. Rejuvenation Res. 2010;13(6):653–63.PubMedCrossRef
104.
Zurück zum Zitat Lin YK, Chen YJ, Chen SA. Potential atrial arrhythmogenicity of adipocytes: implications for the genesis of atrial fibrillation. Med Hypotheses. 2010;74(6):1026–9.PubMedCrossRef Lin YK, Chen YJ, Chen SA. Potential atrial arrhythmogenicity of adipocytes: implications for the genesis of atrial fibrillation. Med Hypotheses. 2010;74(6):1026–9.PubMedCrossRef
105.
Zurück zum Zitat Vinogradova TM, Bogdanov KY, Lakatta EG. beta-Adrenergic stimulation modulates ryanodine receptor Ca(2+) release during diastolic depolarization to accelerate pacemaker activity in rabbit sinoatrial nodal cells. Circ Res. 2002;90(1):73–9.PubMedCrossRef Vinogradova TM, Bogdanov KY, Lakatta EG. beta-Adrenergic stimulation modulates ryanodine receptor Ca(2+) release during diastolic depolarization to accelerate pacemaker activity in rabbit sinoatrial nodal cells. Circ Res. 2002;90(1):73–9.PubMedCrossRef
106.
Zurück zum Zitat Deng W, Bukiya AN, Rodriguez-Menchaca AA, Zhang Z, Baumgarten CM, Logothetis DE, Levitan I, Rosenhouse-Dantsker A. Hypercholesterolemia induces up-regulation of KACh cardiac currents via a mechanism independent of phosphatidylinositol 4,5-bisphosphate and Gbetagamma. J Biol Chem. 2012;287(7):4925–35.PubMedCrossRef Deng W, Bukiya AN, Rodriguez-Menchaca AA, Zhang Z, Baumgarten CM, Logothetis DE, Levitan I, Rosenhouse-Dantsker A. Hypercholesterolemia induces up-regulation of KACh cardiac currents via a mechanism independent of phosphatidylinositol 4,5-bisphosphate and Gbetagamma. J Biol Chem. 2012;287(7):4925–35.PubMedCrossRef
107.
Zurück zum Zitat Soltysinska E, Speerschneider T, Winther SV, Thomsen MB. Sinoatrial node dysfunction induces cardiac arrhythmias in diabetic mice. Cardiovasc Diabetol. 2014;13:122.PubMedCrossRef Soltysinska E, Speerschneider T, Winther SV, Thomsen MB. Sinoatrial node dysfunction induces cardiac arrhythmias in diabetic mice. Cardiovasc Diabetol. 2014;13:122.PubMedCrossRef
108.
Zurück zum Zitat Ferdous Z, Qureshi MA, Jayaprakash P, Parekh K, John A, Oz M, Raza H, Dobrzynski H, Adrian TE, Howarth FC. Different profile of mRNA expression in sinoatrial node from streptozotocin-induced diabetic rat. PloS one. 2016;11(4):e0153934. Ferdous Z, Qureshi MA, Jayaprakash P, Parekh K, John A, Oz M, Raza H, Dobrzynski H, Adrian TE, Howarth FC. Different profile of mRNA expression in sinoatrial node from streptozotocin-induced diabetic rat. PloS one. 2016;11(4):e0153934.
109.
Zurück zum Zitat Howarth FC, Qureshi MA, Jayaprakash P, Parekh K, Oz M, Dobrzynski H, Adrian TE. The pattern of mRNA expression is changed in sinoatrial node from goto-kakizaki type 2 diabetic rat heart. J Diabetes Res. 2018;2018:8454078.PubMedPubMedCentralCrossRef Howarth FC, Qureshi MA, Jayaprakash P, Parekh K, Oz M, Dobrzynski H, Adrian TE. The pattern of mRNA expression is changed in sinoatrial node from goto-kakizaki type 2 diabetic rat heart. J Diabetes Res. 2018;2018:8454078.PubMedPubMedCentralCrossRef
110.
Zurück zum Zitat Zhang Y, Wang Y, Yanni J, Qureshi MA, Logantha S, Kassab S, Boyett MR, Gardiner NJ, Sun H, Howarth FC, Dobrzynski H. Electrical conduction system remodeling in streptozotocin-induced diabetes mellitus rat heart. Front Physiol. 2019;10:826.PubMedPubMedCentralCrossRef Zhang Y, Wang Y, Yanni J, Qureshi MA, Logantha S, Kassab S, Boyett MR, Gardiner NJ, Sun H, Howarth FC, Dobrzynski H. Electrical conduction system remodeling in streptozotocin-induced diabetes mellitus rat heart. Front Physiol. 2019;10:826.PubMedPubMedCentralCrossRef
111.
Zurück zum Zitat Howarth FC, Nowotny N, Zilahi E, El Haj MA, Lei M. Altered expression of gap junction connexin proteins may partly underlie heart rhythm disturbances in the streptozotocin-induced diabetic rat heart. Mol Cell Biochem. 2007;305(1–2):145–51.PubMedCrossRef Howarth FC, Nowotny N, Zilahi E, El Haj MA, Lei M. Altered expression of gap junction connexin proteins may partly underlie heart rhythm disturbances in the streptozotocin-induced diabetic rat heart. Mol Cell Biochem. 2007;305(1–2):145–51.PubMedCrossRef
112.
Zurück zum Zitat Penumathsa SV, Thirunavukkarasu M, Zhan L, Maulik G, Menon VP, Bagchi D, Maulik N. Resveratrol enhances GLUT-4 translocation to the caveolar lipid raft fractions through AMPK/Akt/eNOS signalling pathway in diabetic myocardium. J Cell Mol Med. 2008;12(6A):2350–61.PubMedPubMedCentralCrossRef Penumathsa SV, Thirunavukkarasu M, Zhan L, Maulik G, Menon VP, Bagchi D, Maulik N. Resveratrol enhances GLUT-4 translocation to the caveolar lipid raft fractions through AMPK/Akt/eNOS signalling pathway in diabetic myocardium. J Cell Mol Med. 2008;12(6A):2350–61.PubMedPubMedCentralCrossRef
113.
Zurück zum Zitat Penumathsa SV, Thirunavukkarasu M, Samuel SM, Zhan L, Maulik G, Bagchi M, Bagchi D, Maulik N. Niacin bound chromium treatment induces myocardial Glut-4 translocation and caveolar interaction via Akt, AMPK and eNOS phosphorylation in streptozotocin induced diabetic rats after ischemia-reperfusion injury. Biochem Biophys Acta. 2009;1792(1):39–48.PubMed Penumathsa SV, Thirunavukkarasu M, Samuel SM, Zhan L, Maulik G, Bagchi M, Bagchi D, Maulik N. Niacin bound chromium treatment induces myocardial Glut-4 translocation and caveolar interaction via Akt, AMPK and eNOS phosphorylation in streptozotocin induced diabetic rats after ischemia-reperfusion injury. Biochem Biophys Acta. 2009;1792(1):39–48.PubMed
114.
Zurück zum Zitat Kondo H, Kira S, Oniki T, Gotoh K, Fukui A, Abe I, Ikebe Y, Kawano K, Saito S, Aoki K, Okada N, Nagano Y, Akioka H, Shinohara T, Akiyoshi K, Masaki T, Teshima Y, Yufu K, Nakagawa M, Takahashi N. Interleukin-10 treatment attenuates sinus node dysfunction caused by streptozotocin-induced hyperglycaemia in mice. Cardiovasc Res. 2019;115(1):57–70.CrossRef Kondo H, Kira S, Oniki T, Gotoh K, Fukui A, Abe I, Ikebe Y, Kawano K, Saito S, Aoki K, Okada N, Nagano Y, Akioka H, Shinohara T, Akiyoshi K, Masaki T, Teshima Y, Yufu K, Nakagawa M, Takahashi N. Interleukin-10 treatment attenuates sinus node dysfunction caused by streptozotocin-induced hyperglycaemia in mice. Cardiovasc Res. 2019;115(1):57–70.CrossRef
Metadaten
Titel
Emerging Signaling Regulation of Sinoatrial Node Dysfunction
verfasst von
Mingjie Zheng
Shannon Erhardt
Yuhan Cao
Jun Wang
Publikationsdatum
25.05.2023
Verlag
Springer US
Erschienen in
Current Cardiology Reports / Ausgabe 7/2023
Print ISSN: 1523-3782
Elektronische ISSN: 1534-3170
DOI
https://doi.org/10.1007/s11886-023-01885-8

Weitere Artikel der Ausgabe 7/2023

Current Cardiology Reports 7/2023 Zur Ausgabe

Regenerative Medicine (SM Wu, Section Editor)

Regulation of Cardiomyocyte Division During Cardiac Regeneration

Myocardial Disease (A Abbate and M Merlo, Section Editors)

Treatment of Iron Deficiency in Heart Failure

Myocardial Disease (A Abbate and M Merlo, Section Editors)

The Role of MicroRNA in the Myocarditis: a Small Actor for a Great Role

Ischemic Heart Disease (D Mukherjee, Section Editor)

Physical Activity and Mortality in Patients with Coronary Artery Disease

Nach Herzinfarkt mit Typ-1-Diabetes schlechtere Karten als mit Typ 2?

29.05.2024 Herzinfarkt Nachrichten

Bei Menschen mit Typ-2-Diabetes sind die Chancen, einen Myokardinfarkt zu überleben, in den letzten 15 Jahren deutlich gestiegen – nicht jedoch bei Betroffenen mit Typ 1.

Erhöhtes Risiko fürs Herz unter Checkpointhemmer-Therapie

28.05.2024 Nebenwirkungen der Krebstherapie Nachrichten

Kardiotoxische Nebenwirkungen einer Therapie mit Immuncheckpointhemmern mögen selten sein – wenn sie aber auftreten, wird es für Patienten oft lebensgefährlich. Voruntersuchung und Monitoring sind daher obligat.

GLP-1-Agonisten können Fortschreiten diabetischer Retinopathie begünstigen

24.05.2024 Diabetische Retinopathie Nachrichten

Möglicherweise hängt es von der Art der Diabetesmedikamente ab, wie hoch das Risiko der Betroffenen ist, dass sich sehkraftgefährdende Komplikationen verschlimmern.

TAVI versus Klappenchirurgie: Neue Vergleichsstudie sorgt für Erstaunen

21.05.2024 TAVI Nachrichten

Bei schwerer Aortenstenose und obstruktiver KHK empfehlen die Leitlinien derzeit eine chirurgische Kombi-Behandlung aus Klappenersatz plus Bypass-OP. Diese Empfehlung wird allerdings jetzt durch eine aktuelle Studie infrage gestellt – mit überraschender Deutlichkeit.

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.