Skip to main content
Erschienen in: Current Cardiology Reports 7/2023

30.05.2023 | Regenerative Medicine (SM Wu, Section Editor)

The Role of Innate Immune Cells in Cardiac Injury and Repair: A Metabolic Perspective

verfasst von: Durba Banerjee, Rong Tian, Shanshan Cai

Erschienen in: Current Cardiology Reports | Ausgabe 7/2023

Einloggen, um Zugang zu erhalten

Abstract

Purpose of Review

Recent technological advances have identified distinct subpopulations and roles of the cardiac innate immune cells, specifically macrophages and neutrophils. Studies on distinct metabolic pathways of macrophage and neutrophil in cardiac injury are expanding. Here, we elaborate on the roles of cardiac macrophages and neutrophils in concomitance with their metabolism in normal and diseased hearts.

Recent Findings

Single-cell techniques combined with fate mapping have identified the clusters of innate immune cell subpopulations present in the resting and diseased hearts. We are beginning to know about the presence of cardiac resident macrophages and their functions.

Summary

Resident macrophages perform cardiac homeostatic roles, whereas infiltrating neutrophils and macrophages contribute to tissue damage during cardiac injury with eventual role in repair. Prior studies show that metabolic pathways regulate the phenotypes of the macrophages and neutrophils during cardiac injury. Profiling the metabolism of the innate immune cells, especially of resident macrophages during chronic and acute cardiac diseases, can further the understanding of cardiac immunometabolism.
Literatur
1.
Zurück zum Zitat Tallquist MD. Revisiting cardiac cellular composition. Circulation Research, CIRCRESAHA. 2015;115. Tallquist MD. Revisiting cardiac cellular composition. Circulation Research, CIRCRESAHA. 2015;115.
2.
Zurück zum Zitat Swirski FK, Nahrendorf M. Cardioimmunology: the immune system in cardiac homeostasis and disease. Nat Rev Immunol. 2018;18(12):733–44.PubMedCrossRef Swirski FK, Nahrendorf M. Cardioimmunology: the immune system in cardiac homeostasis and disease. Nat Rev Immunol. 2018;18(12):733–44.PubMedCrossRef
3.
Zurück zum Zitat • Nicolás-Ávila JA, Lechuga-Vieco AV, Esteban-Martínez L, Sánchez-Díaz M, Díaz-García E, Santiago DJ, Rubio-Ponce A, Li JL, Balachander A, Quintana JA, Martínez-de-Mena R. A network of macrophages supports mitochondrial homeostasis in the heart. Cell. 2020;183(1):94–109. This study showed that cardiac resident macrophages perform homeostatic functions by clearing damaged mitochondria ejected by cardiomyocytes. • Nicolás-Ávila JA, Lechuga-Vieco AV, Esteban-Martínez L, Sánchez-Díaz M, Díaz-García E, Santiago DJ, Rubio-Ponce A, Li JL, Balachander A, Quintana JA, Martínez-de-Mena R. A network of macrophages supports mitochondrial homeostasis in the heart. Cell. 2020;183(1):94–109. This study showed that cardiac resident macrophages perform homeostatic functions by clearing damaged mitochondria ejected by cardiomyocytes.
4.
Zurück zum Zitat Lavine KJ, Epelman S, Uchida K, Weber KJ, Nichols CG, Schilling JD, Ornitz DM, Randolph GJ, Mann DL. Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and remodeling in the neonatal and adult heart. Proc Natl Acad Sci. 2014;111(45):16029–34.PubMedPubMedCentralCrossRef Lavine KJ, Epelman S, Uchida K, Weber KJ, Nichols CG, Schilling JD, Ornitz DM, Randolph GJ, Mann DL. Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and remodeling in the neonatal and adult heart. Proc Natl Acad Sci. 2014;111(45):16029–34.PubMedPubMedCentralCrossRef
5.
Zurück zum Zitat Schiattarella GG, Alcaide P, Condorelli G, Gillette TG, Heymans S, Jones EA, Kallikourdis M, Lichtman A, Marelli-Berg F, Shah SJ, Thorp EB. Immunometabolic mechanisms of heart failure with preserved ejection fraction. Nature cardiovascular research. 2022;1(3):211–22.PubMedPubMedCentralCrossRef Schiattarella GG, Alcaide P, Condorelli G, Gillette TG, Heymans S, Jones EA, Kallikourdis M, Lichtman A, Marelli-Berg F, Shah SJ, Thorp EB. Immunometabolic mechanisms of heart failure with preserved ejection fraction. Nature cardiovascular research. 2022;1(3):211–22.PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Steffens S, Nahrendorf M, Madonna R. Immune cells in cardiac homeostasis and disease: emerging insights from novel technologies. Eur Heart J. 2022;43(16):1533–41.PubMedCrossRef Steffens S, Nahrendorf M, Madonna R. Immune cells in cardiac homeostasis and disease: emerging insights from novel technologies. Eur Heart J. 2022;43(16):1533–41.PubMedCrossRef
7.
Zurück zum Zitat • Ren Z, Yu P, Li D, Li Z, Liao Y, Wang Y, Zhou B, Wang L. Single-cell reconstruction of progression trajectory reveals intervention principles in pathological cardiac hypertrophy. Circulation. 2020;141(21):1704–19. This study showed time- and stage-specific change in macrophage subtype during the progression of pathological hypertrophy and its therapeutic importance. • Ren Z, Yu P, Li D, Li Z, Liao Y, Wang Y, Zhou B, Wang L. Single-cell reconstruction of progression trajectory reveals intervention principles in pathological cardiac hypertrophy. Circulation. 2020;141(21):1704–19. This study showed time- and stage-specific change in macrophage subtype during the progression of pathological hypertrophy and its therapeutic importance.
8.
Zurück zum Zitat Blanton RM, Carrillo-Salinas FJ, Alcaide P. T-cell recruitment to the heart: friendly guests or unwelcome visitors? Am J Physiol-Heart Circ Physiol. 2019;317(1):H124–40.PubMedPubMedCentralCrossRef Blanton RM, Carrillo-Salinas FJ, Alcaide P. T-cell recruitment to the heart: friendly guests or unwelcome visitors? Am J Physiol-Heart Circ Physiol. 2019;317(1):H124–40.PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Strassheim D, Dempsey EC, Gerasimovskaya E, Stenmark K, Karoor V. Role of inflammatory cell subtypes in heart failure. J Immunol Res. 2019;2:2019. Strassheim D, Dempsey EC, Gerasimovskaya E, Stenmark K, Karoor V. Role of inflammatory cell subtypes in heart failure. J Immunol Res. 2019;2:2019.
10.
Zurück zum Zitat Epelman S, Lavine KJ, Beaudin AE, Sojka DK, Carrero JA, Calderon B, Brija T, Gautier EL, Ivanov S, Satpathy AT, Schilling JD. Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity. 2014;40(1):91–104.PubMedPubMedCentralCrossRef Epelman S, Lavine KJ, Beaudin AE, Sojka DK, Carrero JA, Calderon B, Brija T, Gautier EL, Ivanov S, Satpathy AT, Schilling JD. Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity. 2014;40(1):91–104.PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Wong NR, Mohan J, Kopecky BJ, Guo S, Du L, Leid J, Feng G, Lokshina I, Dmytrenko O, Luehmann H, Bajpai G. Resident cardiac macrophages mediate adaptive myocardial remodeling. Immunity. 2021;54(9):2072–88.PubMedPubMedCentralCrossRef Wong NR, Mohan J, Kopecky BJ, Guo S, Du L, Leid J, Feng G, Lokshina I, Dmytrenko O, Luehmann H, Bajpai G. Resident cardiac macrophages mediate adaptive myocardial remodeling. Immunity. 2021;54(9):2072–88.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Bajpai G, Bredemeyer A, Li W, Zaitsev K, Koenig AL, Lokshina I, Mohan J, Ivey B, Hsiao HM, Weinheimer C, Kovacs A. Tissue resident CCR2− and CCR2+ cardiac macrophages differentially orchestrate monocyte recruitment and fate specification following myocardial injury. Circ Res. 2019;124(2):263–78.PubMedPubMedCentralCrossRef Bajpai G, Bredemeyer A, Li W, Zaitsev K, Koenig AL, Lokshina I, Mohan J, Ivey B, Hsiao HM, Weinheimer C, Kovacs A. Tissue resident CCR2− and CCR2+ cardiac macrophages differentially orchestrate monocyte recruitment and fate specification following myocardial injury. Circ Res. 2019;124(2):263–78.PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Liao X, Shen Y, Zhang R, Sugi K, Vasudevan NT, Alaiti MA, Sweet DR, Zhou L, Qing Y, Gerson SL, Fu C. Distinct roles of resident and nonresident macrophages in nonischemic cardiomyopathy. Proc Natl Acad Sci. 2018;115(20):E4661–9.PubMedPubMedCentralCrossRef Liao X, Shen Y, Zhang R, Sugi K, Vasudevan NT, Alaiti MA, Sweet DR, Zhou L, Qing Y, Gerson SL, Fu C. Distinct roles of resident and nonresident macrophages in nonischemic cardiomyopathy. Proc Natl Acad Sci. 2018;115(20):E4661–9.PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Hashimoto D, Chow A, Noizat C, Teo P, Beasley MB, Leboeuf M, Becker CD, See P, Price J, Lucas D, Greter M. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity. 2013;38(4):792–804.PubMedCrossRef Hashimoto D, Chow A, Noizat C, Teo P, Beasley MB, Leboeuf M, Becker CD, See P, Price J, Lucas D, Greter M. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity. 2013;38(4):792–804.PubMedCrossRef
15.
Zurück zum Zitat Hoeffel G, Wang Y, Greter M, See P, Teo P, Malleret B, Leboeuf M, Low D, Oller G, Almeida F, Choy SH. Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac–derived macrophages. J Exp Med. 2012;209(6):1167–81.PubMedPubMedCentralCrossRef Hoeffel G, Wang Y, Greter M, See P, Teo P, Malleret B, Leboeuf M, Low D, Oller G, Almeida F, Choy SH. Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac–derived macrophages. J Exp Med. 2012;209(6):1167–81.PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, Mehler MF, Conway SJ, Ng LG, Stanley ER, Samokhvalov IM. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science. 2010;330(6005):841–5.PubMedPubMedCentralCrossRef Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, Mehler MF, Conway SJ, Ng LG, Stanley ER, Samokhvalov IM. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science. 2010;330(6005):841–5.PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat Cottam DR, Schaefer PA, Fahmy D, Shaftan GW, Angus LD. The effect of obesity on neutrophil Fc receptors and adhesion molecules (CD16, CD11b, CD62L). Obes Surg. 2002;12(2):230–5.PubMedCrossRef Cottam DR, Schaefer PA, Fahmy D, Shaftan GW, Angus LD. The effect of obesity on neutrophil Fc receptors and adhesion molecules (CD16, CD11b, CD62L). Obes Surg. 2002;12(2):230–5.PubMedCrossRef
18.
Zurück zum Zitat Parackova Z, Zentsova I, Horvath R, Malcova H, Cebecauerova D, Sediva A, Klocperk A. Immunomodulation of neutrophils and platelets by TNF blockage in patients with juvenile idiopathic arthritis. Clin Immunol. 2022;1(245): 109170.CrossRef Parackova Z, Zentsova I, Horvath R, Malcova H, Cebecauerova D, Sediva A, Klocperk A. Immunomodulation of neutrophils and platelets by TNF blockage in patients with juvenile idiopathic arthritis. Clin Immunol. 2022;1(245): 109170.CrossRef
19.
Zurück zum Zitat Kologrivova I, Shtatolkina M, Suslova T, Ryabov V. Cells of the immune system in cardiac remodeling: main players in resolution of inflammation and repair after myocardial infarction. Front Immunol. 2021;2(12): 664457.CrossRef Kologrivova I, Shtatolkina M, Suslova T, Ryabov V. Cells of the immune system in cardiac remodeling: main players in resolution of inflammation and repair after myocardial infarction. Front Immunol. 2021;2(12): 664457.CrossRef
20.
Zurück zum Zitat Pillay J, Kamp VM, Van Hoffen E, Visser T, Tak T, Lammers JW, Ulfman LH, Leenen LP, Pickkers P, Koenderman L. A subset of neutrophils in human systemic inflammation inhibits T cell responses through Mac-1. J Clin Investig. 2012;122(1):327–36.PubMedCrossRef Pillay J, Kamp VM, Van Hoffen E, Visser T, Tak T, Lammers JW, Ulfman LH, Leenen LP, Pickkers P, Koenderman L. A subset of neutrophils in human systemic inflammation inhibits T cell responses through Mac-1. J Clin Investig. 2012;122(1):327–36.PubMedCrossRef
21.
Zurück zum Zitat Casanova-Acebes M, Nicolas-Avila JA, Li JL, García-Silva S, Balachander A, Rubio-Ponce A, Weiss LA, Adrover JM, Burrows K, A-González N, Ballesteros I. Neutrophils instruct homeostatic and pathological states in naive tissues. J Exp Med. 2018;215(11):2778–95. Casanova-Acebes M, Nicolas-Avila JA, Li JL, García-Silva S, Balachander A, Rubio-Ponce A, Weiss LA, Adrover JM, Burrows K, A-González N, Ballesteros I. Neutrophils instruct homeostatic and pathological states in naive tissues. J Exp Med. 2018;215(11):2778–95.
22.
Zurück zum Zitat Hulsmans M, Sam F, Nahrendorf M. Monocyte and macrophage contributions to cardiac remodeling. J Mol Cell Cardiol. 2016;1(93):149–55.CrossRef Hulsmans M, Sam F, Nahrendorf M. Monocyte and macrophage contributions to cardiac remodeling. J Mol Cell Cardiol. 2016;1(93):149–55.CrossRef
23.
Zurück zum Zitat Hart DN, Fabre JW. Demonstration and characterization of Ia-positive dendritic cells in the interstitial connective tissues of rat heart and other tissues, but not brain. J Exp Med. 1981;154(2):347–61.PubMedCrossRef Hart DN, Fabre JW. Demonstration and characterization of Ia-positive dendritic cells in the interstitial connective tissues of rat heart and other tissues, but not brain. J Exp Med. 1981;154(2):347–61.PubMedCrossRef
24.
Zurück zum Zitat Christ A, Temmerman L, Legein B, Daemen MJ, Biessen EA. Dendritic cells in cardiovascular diseases: epiphenomenon, contributor, or therapeutic opportunity. Circulation. 2013;128(24):2603–13.PubMedCrossRef Christ A, Temmerman L, Legein B, Daemen MJ, Biessen EA. Dendritic cells in cardiovascular diseases: epiphenomenon, contributor, or therapeutic opportunity. Circulation. 2013;128(24):2603–13.PubMedCrossRef
25.
Zurück zum Zitat Daseke MJ II, Chalise U, Becirovic-Agic M, Salomon JD, Cook LM, Case AJ, Lindsey ML. Neutrophil signaling during myocardial infarction wound repair. Cell Signal. 2021;1(77): 109816.CrossRef Daseke MJ II, Chalise U, Becirovic-Agic M, Salomon JD, Cook LM, Case AJ, Lindsey ML. Neutrophil signaling during myocardial infarction wound repair. Cell Signal. 2021;1(77): 109816.CrossRef
26.
Zurück zum Zitat Mihaila AC, Ciortan L, Macarie RD, Vadana M, Cecoltan S, Preda MB, Hudita A, Gan AM, Jakobsson G, Tucureanu MM, Barbu E. Transcriptional profiling and functional analysis of N1/N2 neutrophils reveal an immunomodulatory effect of S100A9-blockade on the pro-inflammatory N1 subpopulation. Front Immunol. 2021;10(12): 708770.CrossRef Mihaila AC, Ciortan L, Macarie RD, Vadana M, Cecoltan S, Preda MB, Hudita A, Gan AM, Jakobsson G, Tucureanu MM, Barbu E. Transcriptional profiling and functional analysis of N1/N2 neutrophils reveal an immunomodulatory effect of S100A9-blockade on the pro-inflammatory N1 subpopulation. Front Immunol. 2021;10(12): 708770.CrossRef
28.
Zurück zum Zitat Caligiuri G, Norata GD. Fuel for thought: immunometabolism is a paradigm shift in understanding immunity in cardiovascular disease. Cardiovasc Res. 2019;115(9):1383–4.PubMedCrossRef Caligiuri G, Norata GD. Fuel for thought: immunometabolism is a paradigm shift in understanding immunity in cardiovascular disease. Cardiovasc Res. 2019;115(9):1383–4.PubMedCrossRef
29.
Zurück zum Zitat Kolwicz SC Jr, Purohit S, Tian R. Cardiac metabolism and its interactions with contraction, growth, and survival of cardiomyocytes. Circ Res. 2013;113(5):603–16.PubMedCrossRef Kolwicz SC Jr, Purohit S, Tian R. Cardiac metabolism and its interactions with contraction, growth, and survival of cardiomyocytes. Circ Res. 2013;113(5):603–16.PubMedCrossRef
30.
Zurück zum Zitat Mouton AJ, Hall JE. Novel roles of immunometabolism and nonmyocyte metabolism in cardiac remodeling and injury. Am J Physiol-Regul Integr Comp Physiol. 2020;319(4):R476–84.PubMedPubMedCentralCrossRef Mouton AJ, Hall JE. Novel roles of immunometabolism and nonmyocyte metabolism in cardiac remodeling and injury. Am J Physiol-Regul Integr Comp Physiol. 2020;319(4):R476–84.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Zhang S, Bories G, Lantz C, Emmons R, Becker A, Liu E, Abecassis MM, Yvan-Charvet L, Thorp EB. Immunometabolism of phagocytes and relationships to cardiac repair. Frontiers in Cardiovascular Medicine. 2019;11(6):42.CrossRef Zhang S, Bories G, Lantz C, Emmons R, Becker A, Liu E, Abecassis MM, Yvan-Charvet L, Thorp EB. Immunometabolism of phagocytes and relationships to cardiac repair. Frontiers in Cardiovascular Medicine. 2019;11(6):42.CrossRef
33.
Zurück zum Zitat Hulsmans M, Clauss S, Xiao L, Aguirre AD, King KR, Hanley A, Hucker WJ, Wülfers EM, Seemann G, Courties G, Iwamoto Y. Macrophages facilitate electrical conduction in the heart. Cell. 2017;169(3):510–22.PubMedPubMedCentralCrossRef Hulsmans M, Clauss S, Xiao L, Aguirre AD, King KR, Hanley A, Hucker WJ, Wülfers EM, Seemann G, Courties G, Iwamoto Y. Macrophages facilitate electrical conduction in the heart. Cell. 2017;169(3):510–22.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Gula G, Rumiński S, Niderla-Bielińska J, Jasińska A, Kiernozek E, Jankowska-Steifer E, Flaht-Zabost A, Ratajska A. Potential functions of embryonic cardiac macrophages in angiogenesis, lymphangiogenesis and extracellular matrix remodeling. Histochem Cell Biol. 2021;155(1):117–32.PubMedCrossRef Gula G, Rumiński S, Niderla-Bielińska J, Jasińska A, Kiernozek E, Jankowska-Steifer E, Flaht-Zabost A, Ratajska A. Potential functions of embryonic cardiac macrophages in angiogenesis, lymphangiogenesis and extracellular matrix remodeling. Histochem Cell Biol. 2021;155(1):117–32.PubMedCrossRef
35.
Zurück zum Zitat Leid J, Carrelha J, Boukarabila H, Epelman S, Jacobsen SE, Lavine KJ. Primitive embryonic macrophages are required for coronary development and maturation. Circ Res. 2016;118(10):1498–511.PubMedPubMedCentralCrossRef Leid J, Carrelha J, Boukarabila H, Epelman S, Jacobsen SE, Lavine KJ. Primitive embryonic macrophages are required for coronary development and maturation. Circ Res. 2016;118(10):1498–511.PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Bajpai G, Schneider C, Wong N, Bredemeyer A, Hulsmans M, Nahrendorf M, Epelman S, Kreisel D, Liu Y, Itoh A, Shankar TS. The human heart contains distinct macrophage subsets with divergent origins and functions. Nat Med. 2018;24(8):1234–45.PubMedPubMedCentralCrossRef Bajpai G, Schneider C, Wong N, Bredemeyer A, Hulsmans M, Nahrendorf M, Epelman S, Kreisel D, Liu Y, Itoh A, Shankar TS. The human heart contains distinct macrophage subsets with divergent origins and functions. Nat Med. 2018;24(8):1234–45.PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Peet C, Ivetic A, Bromage DI, Shah AM. Cardiac monocytes and macrophages after myocardial infarction. Cardiovasc Res. 2020;116(6):1101–12.PubMedCrossRef Peet C, Ivetic A, Bromage DI, Shah AM. Cardiac monocytes and macrophages after myocardial infarction. Cardiovasc Res. 2020;116(6):1101–12.PubMedCrossRef
38.
Zurück zum Zitat Sugita J, Fujiu K, Nakayama Y, Matsubara T, Matsuda J, Oshima T, Liu Y, Maru Y, Hasumi E, Kojima T, Seno H. Cardiac macrophages prevent sudden death during heart stress. Nat Commun. 2021;12(1):1910.PubMedPubMedCentralCrossRef Sugita J, Fujiu K, Nakayama Y, Matsubara T, Matsuda J, Oshima T, Liu Y, Maru Y, Hasumi E, Kojima T, Seno H. Cardiac macrophages prevent sudden death during heart stress. Nat Commun. 2021;12(1):1910.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Kumar S, Dikshit M. Metabolic insight of neutrophils in health and disease. Front Immunol. 2019;20(10):2099.CrossRef Kumar S, Dikshit M. Metabolic insight of neutrophils in health and disease. Front Immunol. 2019;20(10):2099.CrossRef
40.
Zurück zum Zitat Viola A, Munari F, Sánchez-Rodríguez R, Scolaro T, Castegna A. The metabolic signature of macrophage responses. Front Immunol. 2019;3(10):1462.CrossRef Viola A, Munari F, Sánchez-Rodríguez R, Scolaro T, Castegna A. The metabolic signature of macrophage responses. Front Immunol. 2019;3(10):1462.CrossRef
41.
Zurück zum Zitat Sun L, Yang X, Yuan Z, Wang H. Metabolic reprogramming in immune response and tissue inflammation. Arterioscler Thromb Vasc Biol. 2020;40(9):1990–2001.PubMedCentralCrossRef Sun L, Yang X, Yuan Z, Wang H. Metabolic reprogramming in immune response and tissue inflammation. Arterioscler Thromb Vasc Biol. 2020;40(9):1990–2001.PubMedCentralCrossRef
42.
Zurück zum Zitat Silvestre-Roig C, Braster Q, Ortega-Gomez A, Soehnlein O. Neutrophils as regulators of cardiovascular inflammation. Nat Rev Cardiol. 2020;17(6):327–40.PubMedCrossRef Silvestre-Roig C, Braster Q, Ortega-Gomez A, Soehnlein O. Neutrophils as regulators of cardiovascular inflammation. Nat Rev Cardiol. 2020;17(6):327–40.PubMedCrossRef
43.
Zurück zum Zitat Vafadarnejad E, Rizzo G, Krampert L, Arampatzi P, Arias-Loza AP, Nazzal Y, Rizakou A, Knochenhauer T, Bandi SR, Nugroho VA, Schulz DJ. Dynamics of cardiac neutrophil diversity in murine myocardial infarction. Circ Res. 2020;127(9):e232–49.PubMedCrossRef Vafadarnejad E, Rizzo G, Krampert L, Arampatzi P, Arias-Loza AP, Nazzal Y, Rizakou A, Knochenhauer T, Bandi SR, Nugroho VA, Schulz DJ. Dynamics of cardiac neutrophil diversity in murine myocardial infarction. Circ Res. 2020;127(9):e232–49.PubMedCrossRef
44.
Zurück zum Zitat Fine N, Tasevski N, McCulloch CA, Tenenbaum HC, Glogauer M. The neutrophil: constant defender and first responder. Front Immunol. 2020;24(11): 571085.CrossRef Fine N, Tasevski N, McCulloch CA, Tenenbaum HC, Glogauer M. The neutrophil: constant defender and first responder. Front Immunol. 2020;24(11): 571085.CrossRef
45.
Zurück zum Zitat Akasaka Y, Morimoto N, Ishikawa Y, Fujita K, Ito K, Kimura-Matsumoto M, Ishiguro S, Morita H, Kobayashi Y, Ishii T. Myocardial apoptosis associated with the expression of proinflammatory cytokines during the course of myocardial infarction. Mod Pathol. 2006;19(4):588–98.PubMedCrossRef Akasaka Y, Morimoto N, Ishikawa Y, Fujita K, Ito K, Kimura-Matsumoto M, Ishiguro S, Morita H, Kobayashi Y, Ishii T. Myocardial apoptosis associated with the expression of proinflammatory cytokines during the course of myocardial infarction. Mod Pathol. 2006;19(4):588–98.PubMedCrossRef
46.
Zurück zum Zitat Koudela B, Vitovec J, Štěrba J. Concurrent infection of enterocytes with Eimeria scabra and other enteropathogens in swine. Vet Parasitol. 1990;35(1–2):71–7.PubMedCrossRef Koudela B, Vitovec J, Štěrba J. Concurrent infection of enterocytes with Eimeria scabra and other enteropathogens in swine. Vet Parasitol. 1990;35(1–2):71–7.PubMedCrossRef
47.
Zurück zum Zitat Puhl SL, Steffens S. Neutrophils in post-myocardial infarction inflammation: damage vs. resolution? Front Cardiovasc Med. 2019;6:25. Puhl SL, Steffens S. Neutrophils in post-myocardial infarction inflammation: damage vs. resolution? Front Cardiovasc Med. 2019;6:25.
49.
Zurück zum Zitat Sreejit G, Abdel-Latif A, Athmanathan B, Annabathula R, Dhyani A, Noothi SK, Quaife-Ryan GA, Al-Sharea A, Pernes G, Dragoljevic D, Lal H. Neutrophil-derived S100A8/A9 amplify granulopoiesis after myocardial infarction. Circulation. 2020;141(13):1080–94.PubMedCrossRef Sreejit G, Abdel-Latif A, Athmanathan B, Annabathula R, Dhyani A, Noothi SK, Quaife-Ryan GA, Al-Sharea A, Pernes G, Dragoljevic D, Lal H. Neutrophil-derived S100A8/A9 amplify granulopoiesis after myocardial infarction. Circulation. 2020;141(13):1080–94.PubMedCrossRef
50.
Zurück zum Zitat Marinković G, Koenis DS, de Camp L, Jablonowski R, Graber N, de Waard V, de Vries CJ, Goncalves I, Nilsson J, Jovinge S, Schiopu A. S100A9 links inflammation and repair in myocardial infarction. Circ Res. 2020;127(5):664–76.PubMedCrossRef Marinković G, Koenis DS, de Camp L, Jablonowski R, Graber N, de Waard V, de Vries CJ, Goncalves I, Nilsson J, Jovinge S, Schiopu A. S100A9 links inflammation and repair in myocardial infarction. Circ Res. 2020;127(5):664–76.PubMedCrossRef
51.
Zurück zum Zitat Modur V, Li Y, Zimmerman GA, Prescott SM, McIntyre TM. Retrograde inflammatory signaling from neutrophils to endothelial cells by soluble interleukin-6 receptor alpha. J Clin Investig. 1997;100(11):2752–6.PubMedPubMedCentralCrossRef Modur V, Li Y, Zimmerman GA, Prescott SM, McIntyre TM. Retrograde inflammatory signaling from neutrophils to endothelial cells by soluble interleukin-6 receptor alpha. J Clin Investig. 1997;100(11):2752–6.PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Nagareddy PR, Sreejit G, Abo-Aly M, Jaggers RM, Chelvarajan L, Johnson J, Pernes G, Athmanathan B, Abdel-Latif A, Murphy AJ. NETosis is required for S100A8/A9-induced granulopoiesis after myocardial infarction. Arterioscler Thromb Vasc Biol. 2020;40(11):2805–7.PubMedPubMedCentralCrossRef Nagareddy PR, Sreejit G, Abo-Aly M, Jaggers RM, Chelvarajan L, Johnson J, Pernes G, Athmanathan B, Abdel-Latif A, Murphy AJ. NETosis is required for S100A8/A9-induced granulopoiesis after myocardial infarction. Arterioscler Thromb Vasc Biol. 2020;40(11):2805–7.PubMedPubMedCentralCrossRef
53.
Zurück zum Zitat Döring Y, Libby P, Soehnlein O. Neutrophil extracellular traps participate in cardiovascular diseases: recent experimental and clinical insights. Circ Res. 2020;126(9):1228–41.PubMedPubMedCentralCrossRef Döring Y, Libby P, Soehnlein O. Neutrophil extracellular traps participate in cardiovascular diseases: recent experimental and clinical insights. Circ Res. 2020;126(9):1228–41.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Horckmans M, Ring L, Duchene J, Santovito D, Schloss MJ, Drechsler M, Weber C, Soehnlein O, Steffens S. Neutrophils orchestrate post-myocardial infarction healing by polarizing macrophages towards a reparative phenotype. Eur Heart J. 2017;38(3):187–97.PubMed Horckmans M, Ring L, Duchene J, Santovito D, Schloss MJ, Drechsler M, Weber C, Soehnlein O, Steffens S. Neutrophils orchestrate post-myocardial infarction healing by polarizing macrophages towards a reparative phenotype. Eur Heart J. 2017;38(3):187–97.PubMed
55.
Zurück zum Zitat Wei X, Zou S, Xie Z, Wang Z, Huang N, Cen Z, Hao Y, Zhang C, Chen Z, Zhao F, Hu Z. EDIL3 deficiency ameliorates adverse cardiac remodelling by neutrophil extracellular traps (NET)-mediated macrophage polarization. Cardiovasc Res. 2022;118(9):2179–95.PubMedCrossRef Wei X, Zou S, Xie Z, Wang Z, Huang N, Cen Z, Hao Y, Zhang C, Chen Z, Zhao F, Hu Z. EDIL3 deficiency ameliorates adverse cardiac remodelling by neutrophil extracellular traps (NET)-mediated macrophage polarization. Cardiovasc Res. 2022;118(9):2179–95.PubMedCrossRef
56.
Zurück zum Zitat Daseke MJ II, Tenkorang-Impraim MA, Ma Y, Chalise U, Konfrst SR, Garrett MR, DeLeon-Pennell KY, Lindsey ML. Exogenous IL-4 shuts off pro-inflammation in neutrophils while stimulating anti-inflammation in macrophages to induce neutrophil phagocytosis following myocardial infarction. J Mol Cell Cardiol. 2020;1(145):112–21.CrossRef Daseke MJ II, Tenkorang-Impraim MA, Ma Y, Chalise U, Konfrst SR, Garrett MR, DeLeon-Pennell KY, Lindsey ML. Exogenous IL-4 shuts off pro-inflammation in neutrophils while stimulating anti-inflammation in macrophages to induce neutrophil phagocytosis following myocardial infarction. J Mol Cell Cardiol. 2020;1(145):112–21.CrossRef
57.
Zurück zum Zitat Farrera C, Fadeel B. Macrophage clearance of neutrophil extracellular traps is a silent process. J Immunol. 2013;191(5):2647–56.PubMedCrossRef Farrera C, Fadeel B. Macrophage clearance of neutrophil extracellular traps is a silent process. J Immunol. 2013;191(5):2647–56.PubMedCrossRef
58.
Zurück zum Zitat Bainton DF, Ullyot JL, Farquhar MG. The development of neutrophilic polymorphonuclear leukocytes in human bone marrow: origin and content of azurophil and specific granules. J Exp Med. 1971;134(4):907–34.PubMedPubMedCentralCrossRef Bainton DF, Ullyot JL, Farquhar MG. The development of neutrophilic polymorphonuclear leukocytes in human bone marrow: origin and content of azurophil and specific granules. J Exp Med. 1971;134(4):907–34.PubMedPubMedCentralCrossRef
59.
Zurück zum Zitat Rice CM, Davies LC, Subleski JJ, Maio N, Gonzalez-Cotto M, Andrews C, Patel NL, Palmieri EM, Weiss JM, Lee JM, Annunziata CM. Tumour-elicited neutrophils engage mitochondrial metabolism to circumvent nutrient limitations and maintain immune suppression. Nat Commun. 2018;9(1):5099.PubMedPubMedCentralCrossRef Rice CM, Davies LC, Subleski JJ, Maio N, Gonzalez-Cotto M, Andrews C, Patel NL, Palmieri EM, Weiss JM, Lee JM, Annunziata CM. Tumour-elicited neutrophils engage mitochondrial metabolism to circumvent nutrient limitations and maintain immune suppression. Nat Commun. 2018;9(1):5099.PubMedPubMedCentralCrossRef
60.
Zurück zum Zitat Riffelmacher T, Clarke A, Richter FC, Stranks A, Pandey S, Danielli S, Hublitz P, Yu Z, Johnson E, Schwerd T, McCullagh J. Autophagy-dependent generation of free fatty acids is critical for normal neutrophil differentiation. Immunity. 2017;47(3):466–80.PubMedPubMedCentralCrossRef Riffelmacher T, Clarke A, Richter FC, Stranks A, Pandey S, Danielli S, Hublitz P, Yu Z, Johnson E, Schwerd T, McCullagh J. Autophagy-dependent generation of free fatty acids is critical for normal neutrophil differentiation. Immunity. 2017;47(3):466–80.PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat Jeon JH, Hong CW, Kim EY, Lee JM. Current understanding on the metabolism of neutrophils. Immune Network. 2020;20(6). Jeon JH, Hong CW, Kim EY, Lee JM. Current understanding on the metabolism of neutrophils. Immune Network. 2020;20(6).
62.
Zurück zum Zitat Maianski NA, Geissler J, Srinivasula SM, Alnemri ES, Roos D, Kuijpers TW. Functional characterization of mitochondria in neutrophils: a role restricted to apoptosis. Cell Death Differ. 2004;11(2):143–53.PubMedCrossRef Maianski NA, Geissler J, Srinivasula SM, Alnemri ES, Roos D, Kuijpers TW. Functional characterization of mitochondria in neutrophils: a role restricted to apoptosis. Cell Death Differ. 2004;11(2):143–53.PubMedCrossRef
63.
Zurück zum Zitat Maianski NA, Mul FP, van Buul JD, Roos D, Kuijpers TW. Granulocyte colony-stimulating factor inhibits the mitochondria-dependent activation of caspase-3 in neutrophils. Blood J Am Soc Hematol. 2002;99(2):672–9. Maianski NA, Mul FP, van Buul JD, Roos D, Kuijpers TW. Granulocyte colony-stimulating factor inhibits the mitochondria-dependent activation of caspase-3 in neutrophils. Blood J Am Soc Hematol. 2002;99(2):672–9.
64.
Zurück zum Zitat Willson JA, Arienti S, Sadiku P, Reyes L, Coelho P, Morrison T, Rinaldi G, Dockrell DH, Whyte MK, Walmsley SR. Neutrophil HIF-1α stabilization is augmented by mitochondrial ROS produced via the glycerol 3-phosphate shuttle. Blood. 2022;139(2):281–6.PubMedPubMedCentralCrossRef Willson JA, Arienti S, Sadiku P, Reyes L, Coelho P, Morrison T, Rinaldi G, Dockrell DH, Whyte MK, Walmsley SR. Neutrophil HIF-1α stabilization is augmented by mitochondrial ROS produced via the glycerol 3-phosphate shuttle. Blood. 2022;139(2):281–6.PubMedPubMedCentralCrossRef
65.
Zurück zum Zitat Fossati G, Moulding DA, Spiller DG, Moots RJ, White MR, Edwards SW. The mitochondrial network of human neutrophils: role in chemotaxis, phagocytosis, respiratory burst activation, and commitment to apoptosis. J Immunol. 2003;170(4):1964–72.PubMedCrossRef Fossati G, Moulding DA, Spiller DG, Moots RJ, White MR, Edwards SW. The mitochondrial network of human neutrophils: role in chemotaxis, phagocytosis, respiratory burst activation, and commitment to apoptosis. J Immunol. 2003;170(4):1964–72.PubMedCrossRef
66.
Zurück zum Zitat Piccolo EB, Thorp EB, Sumagin R. Functional implications of neutrophil metabolism during ischemic tissue repair. Curr Opin Pharmacol. 2022;1(63): 102191.CrossRef Piccolo EB, Thorp EB, Sumagin R. Functional implications of neutrophil metabolism during ischemic tissue repair. Curr Opin Pharmacol. 2022;1(63): 102191.CrossRef
67.
Zurück zum Zitat Chen Y, Yao Y, Sumi Y, Li A, To UK, Elkhal A, Inoue Y, Woehrle T, Zhang Q, Hauser C, Junger WG. Purinergic signaling: a fundamental mechanism in neutrophil activation. Sci Signal. 2010;3(125):ra45-. Chen Y, Yao Y, Sumi Y, Li A, To UK, Elkhal A, Inoue Y, Woehrle T, Zhang Q, Hauser C, Junger WG. Purinergic signaling: a fundamental mechanism in neutrophil activation. Sci Signal. 2010;3(125):ra45-.
68.
Zurück zum Zitat Bao Y, Ledderose C, Graf AF, Brix B, Birsak T, Lee A, Zhang J, Junger WG. mTOR and differential activation of mitochondria orchestrate neutrophil chemotaxis. J Cell Biol. 2015;210(7):1153–64.PubMedPubMedCentralCrossRef Bao Y, Ledderose C, Graf AF, Brix B, Birsak T, Lee A, Zhang J, Junger WG. mTOR and differential activation of mitochondria orchestrate neutrophil chemotaxis. J Cell Biol. 2015;210(7):1153–64.PubMedPubMedCentralCrossRef
69.
Zurück zum Zitat Lorne E, Zhao X, Zmijewski JW, Liu G, Park YJ, Tsuruta Y, Abraham E. Participation of mammalian target of rapamycin complex 1 in toll-like receptor 2–and 4–induced neutrophil activation and acute lung injury. Am J Respir Cell Mol Biol. 2009;41(2):237–45.PubMedPubMedCentralCrossRef Lorne E, Zhao X, Zmijewski JW, Liu G, Park YJ, Tsuruta Y, Abraham E. Participation of mammalian target of rapamycin complex 1 in toll-like receptor 2–and 4–induced neutrophil activation and acute lung injury. Am J Respir Cell Mol Biol. 2009;41(2):237–45.PubMedPubMedCentralCrossRef
70.
Zurück zum Zitat Cramer T, Yamanishi Y, Clausen BE, Förster I, Pawlinski R, Mackman N, Haase VH, Jaenisch R, Corr M, Nizet V, Firestein GS. HIF-1α is essential for myeloid cell-mediated inflammation. Cell. 2003;112(5):645–57.PubMedPubMedCentralCrossRef Cramer T, Yamanishi Y, Clausen BE, Förster I, Pawlinski R, Mackman N, Haase VH, Jaenisch R, Corr M, Nizet V, Firestein GS. HIF-1α is essential for myeloid cell-mediated inflammation. Cell. 2003;112(5):645–57.PubMedPubMedCentralCrossRef
71.
Zurück zum Zitat V Lerman Y, Kim M. Neutrophil migration under normal and sepsis conditions. Cardiovascular & Haematological Disorders-Drug Targets (Formerly Current Drug Targets-Cardiovascular & Hematological Disorders). 2015;15(1):19–28. V Lerman Y, Kim M. Neutrophil migration under normal and sepsis conditions. Cardiovascular & Haematological Disorders-Drug Targets (Formerly Current Drug Targets-Cardiovascular & Hematological Disorders). 2015;15(1):19–28.
72.
Zurück zum Zitat Reddy RC, Narala VR, Keshamouni VG, Milam JE, Newstead MW, Standiford TJ. Sepsis-induced inhibition of neutrophil chemotaxis is mediated by activation of peroxisome proliferator-activated receptor-γ. Blood J Am Soc Hematol. 2008;112(10):4250–8. Reddy RC, Narala VR, Keshamouni VG, Milam JE, Newstead MW, Standiford TJ. Sepsis-induced inhibition of neutrophil chemotaxis is mediated by activation of peroxisome proliferator-activated receptor-γ. Blood J Am Soc Hematol. 2008;112(10):4250–8.
73.
Zurück zum Zitat Zheng Z, Ma H, Zhang X, Tu F, Wang X, Ha T, Fan M, Liu L, Xu J, Yu K, Wang R. Enhanced glycolytic metabolism contributes to cardiac dysfunction in polymicrobial sepsis. J Infect Dis. 2017;215(9):1396–406.PubMedPubMedCentralCrossRef Zheng Z, Ma H, Zhang X, Tu F, Wang X, Ha T, Fan M, Liu L, Xu J, Yu K, Wang R. Enhanced glycolytic metabolism contributes to cardiac dysfunction in polymicrobial sepsis. J Infect Dis. 2017;215(9):1396–406.PubMedPubMedCentralCrossRef
74.
Zurück zum Zitat Jung K, Kim P, Leuschner F, Gorbatov R, Kim JK, Ueno T, Nahrendorf M, Yun SH. Endoscopic time-lapse imaging of immune cells in infarcted mouse hearts. Circ Res. 2013;112(6):891–9.PubMedCrossRef Jung K, Kim P, Leuschner F, Gorbatov R, Kim JK, Ueno T, Nahrendorf M, Yun SH. Endoscopic time-lapse imaging of immune cells in infarcted mouse hearts. Circ Res. 2013;112(6):891–9.PubMedCrossRef
76.
Zurück zum Zitat Glinton KE, Ma W, Lantz C, Grigoryeva LS, DeBerge M, Liu X, Febbraio M, Kahn M, Oliver G, Thorp EB. Macrophage-produced VEGFC is induced by efferocytosis to ameliorate cardiac injury and inflammation. J Clin Investig. 2022;132(9). Glinton KE, Ma W, Lantz C, Grigoryeva LS, DeBerge M, Liu X, Febbraio M, Kahn M, Oliver G, Thorp EB. Macrophage-produced VEGFC is induced by efferocytosis to ameliorate cardiac injury and inflammation. J Clin Investig. 2022;132(9).
77.
Zurück zum Zitat Zhao M, Wang DD, Liu X, Tian R. Metabolic modulation of macrophage function post myocardial infarction. Front Physiol. 2020;30(11):674.CrossRef Zhao M, Wang DD, Liu X, Tian R. Metabolic modulation of macrophage function post myocardial infarction. Front Physiol. 2020;30(11):674.CrossRef
78.
Zurück zum Zitat Leblond AL, Klinkert K, Martin K, Turner EC, Kumar AH, Browne T, Caplice NM. Systemic and cardiac depletion of M2 macrophage through CSF-1R signaling inhibition alters cardiac function post myocardial infarction. PLoS ONE. 2015;10(9): e0137515.PubMedPubMedCentralCrossRef Leblond AL, Klinkert K, Martin K, Turner EC, Kumar AH, Browne T, Caplice NM. Systemic and cardiac depletion of M2 macrophage through CSF-1R signaling inhibition alters cardiac function post myocardial infarction. PLoS ONE. 2015;10(9): e0137515.PubMedPubMedCentralCrossRef
80.
Zurück zum Zitat Falkenham A, de Antueno R, Rosin N, Betsch D, Lee TD, Duncan R, Légaré JF. Nonclassical resident macrophages are important determinants in the development of myocardial fibrosis. Am J Pathol. 2015;185(4):927–42.PubMedCrossRef Falkenham A, de Antueno R, Rosin N, Betsch D, Lee TD, Duncan R, Légaré JF. Nonclassical resident macrophages are important determinants in the development of myocardial fibrosis. Am J Pathol. 2015;185(4):927–42.PubMedCrossRef
81.
Zurück zum Zitat Dick SA, Macklin JA, Nejat S, Momen A, Clemente-Casares X, Althagafi MG, Chen J, Kantores C, Hosseinzadeh S, Aronoff L, Wong A. Self-renewing resident cardiac macrophages limit adverse remodeling following myocardial infarction. Nat Immunol. 2019;20(1):29–39.PubMedCrossRef Dick SA, Macklin JA, Nejat S, Momen A, Clemente-Casares X, Althagafi MG, Chen J, Kantores C, Hosseinzadeh S, Aronoff L, Wong A. Self-renewing resident cardiac macrophages limit adverse remodeling following myocardial infarction. Nat Immunol. 2019;20(1):29–39.PubMedCrossRef
82.
Zurück zum Zitat Heidt T, Courties G, Dutta P, Sager HB, Sebas M, Iwamoto Y, Sun Y, Da Silva N, Panizzi P, van der Laan AM, Swirski FK. Differential contribution of monocytes to heart macrophages in steady-state and after myocardial infarction. Circ Res. 2014;115(2):284–95.PubMedPubMedCentralCrossRef Heidt T, Courties G, Dutta P, Sager HB, Sebas M, Iwamoto Y, Sun Y, Da Silva N, Panizzi P, van der Laan AM, Swirski FK. Differential contribution of monocytes to heart macrophages in steady-state and after myocardial infarction. Circ Res. 2014;115(2):284–95.PubMedPubMedCentralCrossRef
83.
Zurück zum Zitat Luo Y, Zhang H, Yu J, Wei L, Li M, Xu W. Stem cell factor/mast cell/CCL2/monocyte/macrophage axis promotes Coxsackievirus B3 myocarditis and cardiac fibrosis by increasing Ly6Chigh monocyte influx and fibrogenic mediators production. Immunology. 2022;167(4):590–605.PubMedCrossRef Luo Y, Zhang H, Yu J, Wei L, Li M, Xu W. Stem cell factor/mast cell/CCL2/monocyte/macrophage axis promotes Coxsackievirus B3 myocarditis and cardiac fibrosis by increasing Ly6Chigh monocyte influx and fibrogenic mediators production. Immunology. 2022;167(4):590–605.PubMedCrossRef
84.
Zurück zum Zitat Jahandideh A, Uotila S, Ståhle M, Virta J, Li XG, Kytö V, Marjamäki P, Liljenbäck H, Taimen P, Oikonen V, Lehtonen J. Folate receptor β–targeted PET imaging of macrophages in autoimmune myocarditis. J Nucl Med. 2020;61(11):1643–9.PubMedCrossRef Jahandideh A, Uotila S, Ståhle M, Virta J, Li XG, Kytö V, Marjamäki P, Liljenbäck H, Taimen P, Oikonen V, Lehtonen J. Folate receptor β–targeted PET imaging of macrophages in autoimmune myocarditis. J Nucl Med. 2020;61(11):1643–9.PubMedCrossRef
85.
Zurück zum Zitat McCartney SA, Vermi W, Lonardi S, Rossini C, Otero K, Calderon B, Gilfillan S, Diamond MS, Unanue ER, Colonna M. RNA sensor–induced type I IFN prevents diabetes caused by a β cell–tropic virus in mice. J Clin Investig. 2011;121(4):1497–507.PubMedPubMedCentralCrossRef McCartney SA, Vermi W, Lonardi S, Rossini C, Otero K, Calderon B, Gilfillan S, Diamond MS, Unanue ER, Colonna M. RNA sensor–induced type I IFN prevents diabetes caused by a β cell–tropic virus in mice. J Clin Investig. 2011;121(4):1497–507.PubMedPubMedCentralCrossRef
86.
Zurück zum Zitat De Giusti CJ, Ure AE, Rivadeneyra L, Schattner M, Gomez RM. Macrophages and galectin 3 play critical roles in CVB3-induced murine acute myocarditis and chronic fibrosis. J Mol Cell Cardiol. 2015;1(85):58–70.CrossRef De Giusti CJ, Ure AE, Rivadeneyra L, Schattner M, Gomez RM. Macrophages and galectin 3 play critical roles in CVB3-induced murine acute myocarditis and chronic fibrosis. J Mol Cell Cardiol. 2015;1(85):58–70.CrossRef
87.
Zurück zum Zitat Wu L, Ong S, Talor MV, Barin JG, Baldeviano GC, Kass DA, Bedja D, Zhang H, Sheikh A, Margolick JB, Iwakura Y. Cardiac fibroblasts mediate IL-17A–driven inflammatory dilated cardiomyopathy. J Exp Med. 2014;211(7):1449–64.PubMedPubMedCentralCrossRef Wu L, Ong S, Talor MV, Barin JG, Baldeviano GC, Kass DA, Bedja D, Zhang H, Sheikh A, Margolick JB, Iwakura Y. Cardiac fibroblasts mediate IL-17A–driven inflammatory dilated cardiomyopathy. J Exp Med. 2014;211(7):1449–64.PubMedPubMedCentralCrossRef
88.
Zurück zum Zitat Yang L, Han Y, Jaffre F, Nilsson-Payant BE, Bram Y, Wang P, Zhu J, Zhang T, Redmond D, Houghton S, Uhl S. An immuno-cardiac model for macrophage-mediated inflammation in COVID-19 hearts. Circ Res. 2021;129(1):33–46.PubMedPubMedCentralCrossRef Yang L, Han Y, Jaffre F, Nilsson-Payant BE, Bram Y, Wang P, Zhu J, Zhang T, Redmond D, Houghton S, Uhl S. An immuno-cardiac model for macrophage-mediated inflammation in COVID-19 hearts. Circ Res. 2021;129(1):33–46.PubMedPubMedCentralCrossRef
89.
Zurück zum Zitat • Zhang K, Wang Y, Chen S, Mao J, Jin Y, Ye H, Zhang Y, Liu X, Gong C, Cheng X, Huang X. TREM2hi resident macrophages protect the septic heart by maintaining cardiomyocyte homeostasis. Nat Metab. 2023:1–8. This study showed the role of cardiac-resident macrophages in septic heart in clearing vesicle bound damaged mitochondria ejected by cardiomyocytes. • Zhang K, Wang Y, Chen S, Mao J, Jin Y, Ye H, Zhang Y, Liu X, Gong C, Cheng X, Huang X. TREM2hi resident macrophages protect the septic heart by maintaining cardiomyocyte homeostasis. Nat Metab. 2023:1–8. This study showed the role of cardiac-resident macrophages in septic heart in clearing vesicle bound damaged mitochondria ejected by cardiomyocytes.
90.
Zurück zum Zitat Mouton AJ, Li X, Hall ME, Hall JE. Obesity, hypertension, and cardiac dysfunction: novel roles of immunometabolism in macrophage activation and inflammation. Circ Res. 2020;126(6):789–806.PubMedPubMedCentralCrossRef Mouton AJ, Li X, Hall ME, Hall JE. Obesity, hypertension, and cardiac dysfunction: novel roles of immunometabolism in macrophage activation and inflammation. Circ Res. 2020;126(6):789–806.PubMedPubMedCentralCrossRef
92.
Zurück zum Zitat Mouton AJ, DeLeon-Pennell KY, Rivera Gonzalez OJ, Flynn ER, Freeman TC, Saucerman JJ, Garrett MR, Ma Y, Harmancey R, Lindsey ML. Mapping macrophage polarization over the myocardial infarction time continuum. Basic Res Cardiol. 2018;113:1–8.CrossRef Mouton AJ, DeLeon-Pennell KY, Rivera Gonzalez OJ, Flynn ER, Freeman TC, Saucerman JJ, Garrett MR, Ma Y, Harmancey R, Lindsey ML. Mapping macrophage polarization over the myocardial infarction time continuum. Basic Res Cardiol. 2018;113:1–8.CrossRef
93.
Zurück zum Zitat Mills EL, Kelly B, O’Neill LA. Mitochondria are the powerhouses of immunity. Nat Immunol. 2017;18(5):488–98.PubMedCrossRef Mills EL, Kelly B, O’Neill LA. Mitochondria are the powerhouses of immunity. Nat Immunol. 2017;18(5):488–98.PubMedCrossRef
94.
Zurück zum Zitat Erlich JR, To EE, Luong R, Liong F, Liong S, Oseghale O, Miles MA, Bozinovski S, Brooks RD, Vlahos R, Chan S. Glycolysis and the pentose phosphate pathway promote LPS-induced NOX2 oxidase-and IFN-β-Dependent inflammation in macrophages. Antioxidants. 2022;11(8):1488.PubMedPubMedCentralCrossRef Erlich JR, To EE, Luong R, Liong F, Liong S, Oseghale O, Miles MA, Bozinovski S, Brooks RD, Vlahos R, Chan S. Glycolysis and the pentose phosphate pathway promote LPS-induced NOX2 oxidase-and IFN-β-Dependent inflammation in macrophages. Antioxidants. 2022;11(8):1488.PubMedPubMedCentralCrossRef
95.
Zurück zum Zitat Rodríguez-Prados JC, Través PG, Cuenca J, Rico D, Aragonés J, Martín-Sanz P, Cascante M, Boscá L. Substrate fate in activated macrophages: a comparison between innate, classic, and alternative activation. J Immunol. 2010;185(1):605–14.PubMedCrossRef Rodríguez-Prados JC, Través PG, Cuenca J, Rico D, Aragonés J, Martín-Sanz P, Cascante M, Boscá L. Substrate fate in activated macrophages: a comparison between innate, classic, and alternative activation. J Immunol. 2010;185(1):605–14.PubMedCrossRef
96.
Zurück zum Zitat Semba H, Takeda N, Isagawa T, Sugiura Y, Honda K, Wake M, Miyazawa H, Yamaguchi Y, Miura M, Jenkins DM, Choi H. HIF-1α-PDK1 axis-induced active glycolysis plays an essential role in macrophage migratory capacity. Nat Commun. 2016;7(1):11635.PubMedPubMedCentralCrossRef Semba H, Takeda N, Isagawa T, Sugiura Y, Honda K, Wake M, Miyazawa H, Yamaguchi Y, Miura M, Jenkins DM, Choi H. HIF-1α-PDK1 axis-induced active glycolysis plays an essential role in macrophage migratory capacity. Nat Commun. 2016;7(1):11635.PubMedPubMedCentralCrossRef
97.
Zurück zum Zitat Cai S, Zhao M, Zhou B, Yoshii A, Bugg D, Villet O, Sahu A, Olson GS, Davis J, Tian R. Mitochondrial dysfunction in macrophages promotes inflammation and suppresses repair after myocardial infarction. J Clinical Investig. 202315;133(4). Cai S, Zhao M, Zhou B, Yoshii A, Bugg D, Villet O, Sahu A, Olson GS, Davis J, Tian R. Mitochondrial dysfunction in macrophages promotes inflammation and suppresses repair after myocardial infarction. J Clinical Investig. 202315;133(4).
98.
Zurück zum Zitat Freemerman AJ, Zhao L, Pingili AK, Teng B, Cozzo AJ, Fuller AM, Johnson AR, Milner JJ, Lim MF, Galanko JA, Beck MA. Myeloid Slc2a1-deficient murine model revealed macrophage activation and metabolic phenotype are fueled by GLUT1. J Immunol. 2019;202(4):1265–86.PubMedPubMedCentralCrossRef Freemerman AJ, Zhao L, Pingili AK, Teng B, Cozzo AJ, Fuller AM, Johnson AR, Milner JJ, Lim MF, Galanko JA, Beck MA. Myeloid Slc2a1-deficient murine model revealed macrophage activation and metabolic phenotype are fueled by GLUT1. J Immunol. 2019;202(4):1265–86.PubMedPubMedCentralCrossRef
99.
Zurück zum Zitat Tan Z, Xie N, Cui H, Moellering DR, Abraham E, Thannickal VJ, Liu G. Pyruvate dehydrogenase kinase 1 participates in macrophage polarization via regulating glucose metabolism. J Immunol. 2015;194(12):6082–9.PubMedCrossRef Tan Z, Xie N, Cui H, Moellering DR, Abraham E, Thannickal VJ, Liu G. Pyruvate dehydrogenase kinase 1 participates in macrophage polarization via regulating glucose metabolism. J Immunol. 2015;194(12):6082–9.PubMedCrossRef
100.
Zurück zum Zitat Lewis AJ, Miller JJ, Lau AZ, Curtis MK, Rider OJ, Choudhury RP, Neubauer S, Cunningham CH, Carr CA, Tyler DJ. Noninvasive immunometabolic cardiac inflammation imaging using hyperpolarized magnetic resonance. Circ Res. 2018;122(8):1084–93.PubMedPubMedCentralCrossRef Lewis AJ, Miller JJ, Lau AZ, Curtis MK, Rider OJ, Choudhury RP, Neubauer S, Cunningham CH, Carr CA, Tyler DJ. Noninvasive immunometabolic cardiac inflammation imaging using hyperpolarized magnetic resonance. Circ Res. 2018;122(8):1084–93.PubMedPubMedCentralCrossRef
101.
Zurück zum Zitat Doran AC, Yurdagul A Jr, Tabas I. Efferocytosis in health and disease. Nat Rev Immunol. 2020;20(4):254–67.PubMedCrossRef Doran AC, Yurdagul A Jr, Tabas I. Efferocytosis in health and disease. Nat Rev Immunol. 2020;20(4):254–67.PubMedCrossRef
102.
Zurück zum Zitat Trzeciak A, Wang YT, Perry JS. First we eat, then we do everything else: The dynamic metabolic regulation of efferocytosis. Cell Metab. 2021;33(11):2126–41.PubMedPubMedCentralCrossRef Trzeciak A, Wang YT, Perry JS. First we eat, then we do everything else: The dynamic metabolic regulation of efferocytosis. Cell Metab. 2021;33(11):2126–41.PubMedPubMedCentralCrossRef
103.
Zurück zum Zitat Zhang S, Weinberg S, DeBerge M, Gainullina A, Schipma M, Kinchen JM, Ben-Sahra I, Gius DR, Yvan-Charvet L, Chandel NS, Schumacker PT. Efferocytosis fuels requirements of fatty acid oxidation and the electron transport chain to polarize macrophages for tissue repair. Cell Metab. 2019;29(2):443–56.PubMedCrossRef Zhang S, Weinberg S, DeBerge M, Gainullina A, Schipma M, Kinchen JM, Ben-Sahra I, Gius DR, Yvan-Charvet L, Chandel NS, Schumacker PT. Efferocytosis fuels requirements of fatty acid oxidation and the electron transport chain to polarize macrophages for tissue repair. Cell Metab. 2019;29(2):443–56.PubMedCrossRef
104.
Zurück zum Zitat Wang Y, Subramanian M, Yurdagul A, Barbosa-Lorenzi VC, Cai B, de Juan-Sanz J, Ryan TA, Nomura M, Maxfield FR, Tabas I. Mitochondrial fission promotes the continued clearance of apoptotic cells by macrophages. cell. 2017;171(2):331–45. Wang Y, Subramanian M, Yurdagul A, Barbosa-Lorenzi VC, Cai B, de Juan-Sanz J, Ryan TA, Nomura M, Maxfield FR, Tabas I. Mitochondrial fission promotes the continued clearance of apoptotic cells by macrophages. cell. 2017;171(2):331–45.
105.
Zurück zum Zitat DeBerge M, Lantz C, Dehn S, Sullivan DP, van der Laan AM, Niessen HW, Flanagan ME, Brat DJ, Feinstein MJ, Kaushal S, Wilsbacher LD. Hypoxia-inducible factors individually facilitate inflammatory myeloid metabolism and inefficient cardiac repair. J Exp Med. 2021;218(9): e20200667.PubMedPubMedCentralCrossRef DeBerge M, Lantz C, Dehn S, Sullivan DP, van der Laan AM, Niessen HW, Flanagan ME, Brat DJ, Feinstein MJ, Kaushal S, Wilsbacher LD. Hypoxia-inducible factors individually facilitate inflammatory myeloid metabolism and inefficient cardiac repair. J Exp Med. 2021;218(9): e20200667.PubMedPubMedCentralCrossRef
106.
Zurück zum Zitat Ryan DG, O’Neill LA. Krebs cycle rewired for macrophage and dendritic cell effector functions. FEBS Lett. 2017;591(19):2992–3006.PubMedCrossRef Ryan DG, O’Neill LA. Krebs cycle rewired for macrophage and dendritic cell effector functions. FEBS Lett. 2017;591(19):2992–3006.PubMedCrossRef
107.
Zurück zum Zitat Mills EL, Kelly B, Logan A, Costa AS, Varma M, Bryant CE, Tourlomousis P, Däbritz JH, Gottlieb E, Latorre I, Corr SC. Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell. 2016;167(2):457–70.PubMedPubMedCentralCrossRef Mills EL, Kelly B, Logan A, Costa AS, Varma M, Bryant CE, Tourlomousis P, Däbritz JH, Gottlieb E, Latorre I, Corr SC. Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell. 2016;167(2):457–70.PubMedPubMedCentralCrossRef
108.
Zurück zum Zitat Jha AK, Huang SC, Sergushichev A, Lampropoulou V, Ivanova Y, Loginicheva E, Chmielewski K, Stewart KM, Ashall J, Everts B, Pearce EJ. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity. 2015;42(3):419–30.PubMedCrossRef Jha AK, Huang SC, Sergushichev A, Lampropoulou V, Ivanova Y, Loginicheva E, Chmielewski K, Stewart KM, Ashall J, Everts B, Pearce EJ. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity. 2015;42(3):419–30.PubMedCrossRef
109.
Zurück zum Zitat Forman HJ, Torres M. Redox signaling in macrophages. Mol Aspects Med. 2001;22(4–5):189–216.PubMedCrossRef Forman HJ, Torres M. Redox signaling in macrophages. Mol Aspects Med. 2001;22(4–5):189–216.PubMedCrossRef
110.
Zurück zum Zitat Aurora AB, Porrello ER, Tan W, Mahmoud AI, Hill JA, Bassel-Duby R, Sadek HA, Olson EN. Macrophages are required for neonatal heart regeneration. J Clin Investig. 2014;124(3):1382–92.PubMedPubMedCentralCrossRef Aurora AB, Porrello ER, Tan W, Mahmoud AI, Hill JA, Bassel-Duby R, Sadek HA, Olson EN. Macrophages are required for neonatal heart regeneration. J Clin Investig. 2014;124(3):1382–92.PubMedPubMedCentralCrossRef
111.
Zurück zum Zitat Lai SL, Marín-Juez R, Moura PL, Kuenne C, Lai JK, Tsedeke AT, Guenther S, Looso M, Stainier DY. Reciprocal analyses in zebrafish and medaka reveal that harnessing the immune response promotes cardiac regeneration. Elife. 2017;20(6): e25605.CrossRef Lai SL, Marín-Juez R, Moura PL, Kuenne C, Lai JK, Tsedeke AT, Guenther S, Looso M, Stainier DY. Reciprocal analyses in zebrafish and medaka reveal that harnessing the immune response promotes cardiac regeneration. Elife. 2017;20(6): e25605.CrossRef
112.
Zurück zum Zitat Li Y, Li H, Pei J, Hu S, Nie Y. Transplantation of murine neonatal cardiac macrophage improves adult cardiac repair. Cell Mol Immunol. 2021;18(2):492–4.PubMedCrossRef Li Y, Li H, Pei J, Hu S, Nie Y. Transplantation of murine neonatal cardiac macrophage improves adult cardiac repair. Cell Mol Immunol. 2021;18(2):492–4.PubMedCrossRef
113.
Zurück zum Zitat Lantz C, Becker A, Thorp EB. Can polarization of macrophage metabolism enhance cardiac regeneration? J Mol Cell Cardiol. 2021;1(160):87–96.CrossRef Lantz C, Becker A, Thorp EB. Can polarization of macrophage metabolism enhance cardiac regeneration? J Mol Cell Cardiol. 2021;1(160):87–96.CrossRef
114.
Zurück zum Zitat • Revelo XS, Parthiban P, Chen C, Barrow F, Fredrickson G, Wang H, Yücel D, Herman A, van Berlo JH. Cardiac resident macrophages prevent fibrosis and stimulate angiogenesis. Circ Res. 2021;129(12):1086–101. This study reported that the cardiac resident macrophages prevent fibrosis and cardiac dysfunction during pathological hypertrophy. • Revelo XS, Parthiban P, Chen C, Barrow F, Fredrickson G, Wang H, Yücel D, Herman A, van Berlo JH. Cardiac resident macrophages prevent fibrosis and stimulate angiogenesis. Circ Res. 2021;129(12):1086–101. This study reported that the cardiac resident macrophages prevent fibrosis and cardiac dysfunction during pathological hypertrophy.
115.
Zurück zum Zitat Zaman R, Hamidzada H, Kantores C, Wong A, Dick SA, Wang Y, Momen A, Aronoff L, Lin J, Razani B, Mital S. Selective loss of resident macrophage-derived insulin-like growth factor-1 abolishes adaptive cardiac growth to stress. Immunity. 2021;54(9):2057–71.PubMedCrossRef Zaman R, Hamidzada H, Kantores C, Wong A, Dick SA, Wang Y, Momen A, Aronoff L, Lin J, Razani B, Mital S. Selective loss of resident macrophage-derived insulin-like growth factor-1 abolishes adaptive cardiac growth to stress. Immunity. 2021;54(9):2057–71.PubMedCrossRef
116.
Zurück zum Zitat Weisheit C, Zhang Y, Faron A, Köpke O, Weisheit G, Steinsträsser A, Frede S, Meyer R, Boehm O, Hoeft A, Kurts C. Ly6Clow and not Ly6Chigh macrophages accumulate first in the heart in a model of murine pressure-overload. PLoS ONE. 2014;9(11): e112710.PubMedPubMedCentralCrossRef Weisheit C, Zhang Y, Faron A, Köpke O, Weisheit G, Steinsträsser A, Frede S, Meyer R, Boehm O, Hoeft A, Kurts C. Ly6Clow and not Ly6Chigh macrophages accumulate first in the heart in a model of murine pressure-overload. PLoS ONE. 2014;9(11): e112710.PubMedPubMedCentralCrossRef
117.
Zurück zum Zitat Zhang H, Xu A, Sun X, Yang Y, Zhang L, Bai H, Ben J, Zhu X, Li X, Yang Q, Wang Z. Self-maintenance of cardiac resident reparative macrophages attenuates doxorubicin-induced cardiomyopathy through the SR-A1-c-Myc axis. Circ Res. 2020;127(5):610–27.PubMedCrossRef Zhang H, Xu A, Sun X, Yang Y, Zhang L, Bai H, Ben J, Zhu X, Li X, Yang Q, Wang Z. Self-maintenance of cardiac resident reparative macrophages attenuates doxorubicin-induced cardiomyopathy through the SR-A1-c-Myc axis. Circ Res. 2020;127(5):610–27.PubMedCrossRef
118.
Zurück zum Zitat Patel B, Bansal SS, Ismahil MA, Hamid T, Rokosh G, Mack M, Prabhu SD. CCR2+ monocyte-derived infiltrating macrophages are required for adverse cardiac remodeling during pressure overload. JACC: Basic Transl Sci. 2018;3(2):230–44. Patel B, Bansal SS, Ismahil MA, Hamid T, Rokosh G, Mack M, Prabhu SD. CCR2+ monocyte-derived infiltrating macrophages are required for adverse cardiac remodeling during pressure overload. JACC: Basic Transl Sci. 2018;3(2):230–44.
119.
Zurück zum Zitat Jia D, Chen S, Bai P, Luo C, Liu J, Sun A, Ge J. Cardiac resident macrophage-derived legumain improves cardiac repair by promoting clearance and degradation of apoptotic cardiomyocytes after myocardial infarction. Circulation. 2022;145(20):1542–56.PubMedCrossRef Jia D, Chen S, Bai P, Luo C, Liu J, Sun A, Ge J. Cardiac resident macrophage-derived legumain improves cardiac repair by promoting clearance and degradation of apoptotic cardiomyocytes after myocardial infarction. Circulation. 2022;145(20):1542–56.PubMedCrossRef
120.
Zurück zum Zitat Tang X, Wang P, Zhang R, Watanabe I, Chang E, Vinayachandran V, Nayak L, Lapping S, Liao S, Madera A, Sweet DR. KLF2 regulates neutrophil activation and thrombosis in cardiac hypertrophy and heart failure progression. J Clin Investig. 2022;132(3). Tang X, Wang P, Zhang R, Watanabe I, Chang E, Vinayachandran V, Nayak L, Lapping S, Liao S, Madera A, Sweet DR. KLF2 regulates neutrophil activation and thrombosis in cardiac hypertrophy and heart failure progression. J Clin Investig. 2022;132(3).
121.
Zurück zum Zitat Bai B, Yang W, Fu Y, Foon HL, Tay WT, Yang K, Luo C, Gunaratne J, Lee P, Zile MR, Xu A. Seipin knockout mice develop heart failure with preserved ejection fraction. JACC: Basic Transl Sci. 2019;4(8):924–37. Bai B, Yang W, Fu Y, Foon HL, Tay WT, Yang K, Luo C, Gunaratne J, Lee P, Zile MR, Xu A. Seipin knockout mice develop heart failure with preserved ejection fraction. JACC: Basic Transl Sci. 2019;4(8):924–37.
122.
Zurück zum Zitat Wang Y, Sano S, Oshima K, Sano M, Watanabe Y, Katanasaka Y, Yura Y, Jung C, Anzai A, Swirski FK, Gokce N. Wnt5a-mediated neutrophil recruitment has an obligatory role in pressure overload–induced cardiac dysfunction. Circulation. 2019;140(6):487–99.PubMedPubMedCentralCrossRef Wang Y, Sano S, Oshima K, Sano M, Watanabe Y, Katanasaka Y, Yura Y, Jung C, Anzai A, Swirski FK, Gokce N. Wnt5a-mediated neutrophil recruitment has an obligatory role in pressure overload–induced cardiac dysfunction. Circulation. 2019;140(6):487–99.PubMedPubMedCentralCrossRef
123.
Zurück zum Zitat Alarcón P, Manosalva C, Conejeros I, Carretta MD, Muñoz-Caro T, Silva LM, Taubert A, Hermosilla C, Hidalgo MA, Burgos RA. d (−) lactic acid-induced adhesion of bovine neutrophils onto endothelial cells is dependent on neutrophils extracellular traps formation and CD11b expression. Front Immunol. 2017;15(8):975.CrossRef Alarcón P, Manosalva C, Conejeros I, Carretta MD, Muñoz-Caro T, Silva LM, Taubert A, Hermosilla C, Hidalgo MA, Burgos RA. d (−) lactic acid-induced adhesion of bovine neutrophils onto endothelial cells is dependent on neutrophils extracellular traps formation and CD11b expression. Front Immunol. 2017;15(8):975.CrossRef
124.
Zurück zum Zitat Rodríguez-Espinosa O, Rojas-Espinosa O, Moreno-Altamirano MM, López-Villegas EO, Sánchez-García FJ. Metabolic requirements for neutrophil extracellular traps formation. Immunology. 2015;145(2):213–24.PubMedPubMedCentralCrossRef Rodríguez-Espinosa O, Rojas-Espinosa O, Moreno-Altamirano MM, López-Villegas EO, Sánchez-García FJ. Metabolic requirements for neutrophil extracellular traps formation. Immunology. 2015;145(2):213–24.PubMedPubMedCentralCrossRef
125.
Zurück zum Zitat Azevedo EP, Rochael NC, Guimarães-Costa AB, de Souza-Vieira TS, Ganilho J, Saraiva EM, Palhano FL, Foguel D. A metabolic shift toward pentose phosphate pathway is necessary for amyloid fibril-and phorbol 12-myristate 13-acetate-induced neutrophil extracellular trap (NET) formation. J Biol Chem. 2015;290(36):22174–83.PubMedPubMedCentralCrossRef Azevedo EP, Rochael NC, Guimarães-Costa AB, de Souza-Vieira TS, Ganilho J, Saraiva EM, Palhano FL, Foguel D. A metabolic shift toward pentose phosphate pathway is necessary for amyloid fibril-and phorbol 12-myristate 13-acetate-induced neutrophil extracellular trap (NET) formation. J Biol Chem. 2015;290(36):22174–83.PubMedPubMedCentralCrossRef
Metadaten
Titel
The Role of Innate Immune Cells in Cardiac Injury and Repair: A Metabolic Perspective
verfasst von
Durba Banerjee
Rong Tian
Shanshan Cai
Publikationsdatum
30.05.2023
Verlag
Springer US
Erschienen in
Current Cardiology Reports / Ausgabe 7/2023
Print ISSN: 1523-3782
Elektronische ISSN: 1534-3170
DOI
https://doi.org/10.1007/s11886-023-01897-4

Weitere Artikel der Ausgabe 7/2023

Current Cardiology Reports 7/2023 Zur Ausgabe

Interventional Cardiology (SR Bailey and T Helmy, Section Editors)

Percutaneous Cardiac Chambers and Pulmonary Artery Aspiration

Regenerative Medicine (SM Wu, Section Editor)

Emerging Signaling Regulation of Sinoatrial Node Dysfunction

Regenerative Medicine (SM Wu, Section Editor)

Regulation of Cardiomyocyte Division During Cardiac Regeneration

Nach Herzinfarkt mit Typ-1-Diabetes schlechtere Karten als mit Typ 2?

29.05.2024 Herzinfarkt Nachrichten

Bei Menschen mit Typ-2-Diabetes sind die Chancen, einen Myokardinfarkt zu überleben, in den letzten 15 Jahren deutlich gestiegen – nicht jedoch bei Betroffenen mit Typ 1.

Erhöhtes Risiko fürs Herz unter Checkpointhemmer-Therapie

28.05.2024 Nebenwirkungen der Krebstherapie Nachrichten

Kardiotoxische Nebenwirkungen einer Therapie mit Immuncheckpointhemmern mögen selten sein – wenn sie aber auftreten, wird es für Patienten oft lebensgefährlich. Voruntersuchung und Monitoring sind daher obligat.

GLP-1-Agonisten können Fortschreiten diabetischer Retinopathie begünstigen

24.05.2024 Diabetische Retinopathie Nachrichten

Möglicherweise hängt es von der Art der Diabetesmedikamente ab, wie hoch das Risiko der Betroffenen ist, dass sich sehkraftgefährdende Komplikationen verschlimmern.

TAVI versus Klappenchirurgie: Neue Vergleichsstudie sorgt für Erstaunen

21.05.2024 TAVI Nachrichten

Bei schwerer Aortenstenose und obstruktiver KHK empfehlen die Leitlinien derzeit eine chirurgische Kombi-Behandlung aus Klappenersatz plus Bypass-OP. Diese Empfehlung wird allerdings jetzt durch eine aktuelle Studie infrage gestellt – mit überraschender Deutlichkeit.

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.