Skip to main content
Erschienen in: Inflammation 3/2023

06.01.2023 | ORIGINAL ARTICLE

Hypoxia and TNF-α Synergistically Induce Expression of IL-6 and IL-8 in Human Fibroblast-like Synoviocytes via Enhancing TAK1/NF-κB/HIF-1α Signaling

verfasst von: Guofen Wang, Junsong Wang, Xian Li, Qiyang Wu, Ruifeng Yao, Xinjing Luo

Erschienen in: Inflammation | Ausgabe 3/2023

Einloggen, um Zugang zu erhalten

Abstract

Hypoxia and increased levels of inflammatory cytokines in the joints are characteristics of rheumatoid arthritis (RA). However, the effects of hypoxia and tumor necrosis factor-α (TNF-α) on interleukin (IL)-6 and IL-8 production on fibroblast-like synoviocytes (FLSs) remain to be clarified. This study aimed to explore how hypoxia and TNF-α affect the expression of IL-6 and IL-8 in human FLSs isolated from RA patients. Hypoxia or TNF-α treatment alone significantly increased the expression and promoter activity of IL-6, IL-8, and hypoxia-inducible factor-1α (HIF-1α). Treatment of hypoxic FLSs with TNF-α further significantly elevated the expression of these cytokines and enhanced promoter activity of HIF-1α, which was abrogated by treatment with the HIF-1α inhibitor YC-1. Similarly, TNF-α alone elevated the phosphorylation and promoter activity of nuclear factor-κBp65 (NF-κBp65) in the FLSs. These effects were further enhanced by the combined treatment of hypoxia and TNFα but were attenuated by the NF-κB inhibitor BAY11-7082. NF-κB-p65 inhibition decreased the effect of TNF-α on HIF-1α upregulation in the FLSs in response to hypoxia. The combination of hypoxia and TNF-α also significantly upregulated transforming growth factor-β-activated kinase 1 (TAK1) expression, and silencing TAK1 dramatically decreased NF-κB-p65, HIF-1α, IL-6, and IL-8 expression under the same conditions. Our results indicate that hypoxia and TNF-α synergistically increase IL-6 and IL-8 expression in human FLSs via enhancing TAK1/NF-κB/HIF-1α signaling.
Literatur
1.
Zurück zum Zitat Korb-Pap, A., J. Bertrand, J. Sherwood, and T. Pap. 2016. Stable activation of fibroblasts in rheumatic arthritis - causes and consequences. Rheumatology 55: 64–67.CrossRef Korb-Pap, A., J. Bertrand, J. Sherwood, and T. Pap. 2016. Stable activation of fibroblasts in rheumatic arthritis - causes and consequences. Rheumatology 55: 64–67.CrossRef
2.
Zurück zum Zitat Huber, L.C., O. Distler, I. Tarner, R.E. Gay, S. Gay, and T. Pap. 2006. Synovial fibroblasts: Key players in rheumatoid arthritis. Rheumatology (Oxford) 45: 669–675.PubMedCrossRef Huber, L.C., O. Distler, I. Tarner, R.E. Gay, S. Gay, and T. Pap. 2006. Synovial fibroblasts: Key players in rheumatoid arthritis. Rheumatology (Oxford) 45: 669–675.PubMedCrossRef
3.
Zurück zum Zitat Yokota, K., T. Miyazaki, M. Hirano, Y. Akiyama, and T. Mimura. 2006. Simvastatin inhibits production of interleukin 6 (IL-6) and IL-8 and cell proliferation induced by tumor necrosis factor-alpha in fibroblast-like synoviocytes from patients with rheumatoid arthritis. Journal of Rheumatology 33: 463–471.PubMed Yokota, K., T. Miyazaki, M. Hirano, Y. Akiyama, and T. Mimura. 2006. Simvastatin inhibits production of interleukin 6 (IL-6) and IL-8 and cell proliferation induced by tumor necrosis factor-alpha in fibroblast-like synoviocytes from patients with rheumatoid arthritis. Journal of Rheumatology 33: 463–471.PubMed
4.
Zurück zum Zitat Luo, X.J., X.R. Mo, and L.L. Zhou. 2012. The effect of Hsp72 on IL-6, IL-8 expression and activation of NF-kappaB in synoviocytes of rheumatoid arthritis. Zhongguo Ying Yong Sheng Li Xue Za Zhi 28: 336–339.PubMed Luo, X.J., X.R. Mo, and L.L. Zhou. 2012. The effect of Hsp72 on IL-6, IL-8 expression and activation of NF-kappaB in synoviocytes of rheumatoid arthritis. Zhongguo Ying Yong Sheng Li Xue Za Zhi 28: 336–339.PubMed
5.
Zurück zum Zitat Li, Y., and W. Zhang. 2017. IL-6: The next key target for rheumatoid arthritis after TNF-alpha. Sheng Wu Gong Cheng Xue Bao 33: 36–43.PubMed Li, Y., and W. Zhang. 2017. IL-6: The next key target for rheumatoid arthritis after TNF-alpha. Sheng Wu Gong Cheng Xue Bao 33: 36–43.PubMed
6.
Zurück zum Zitat Quinonez-Flores, C.M., S.A. Gonzalez-Chavez, and C. Pacheco-Tena. 2016. Hypoxia and its implications in rheumatoid arthritis. Journal of Biomedical Science 23: 62.PubMedPubMedCentralCrossRef Quinonez-Flores, C.M., S.A. Gonzalez-Chavez, and C. Pacheco-Tena. 2016. Hypoxia and its implications in rheumatoid arthritis. Journal of Biomedical Science 23: 62.PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Fearon, U., M. Canavan, M. Biniecka, and D.J. Veale. 2016. Hypoxia, mitochondrial dysfunction and synovial invasiveness in rheumatoid arthritis. Nature Reviews Rheumatology 12: 385–397.PubMedCrossRef Fearon, U., M. Canavan, M. Biniecka, and D.J. Veale. 2016. Hypoxia, mitochondrial dysfunction and synovial invasiveness in rheumatoid arthritis. Nature Reviews Rheumatology 12: 385–397.PubMedCrossRef
8.
Zurück zum Zitat Muz, B., M.N. Khan, S. Kiriakidis, and E.M. Paleolog. 2009. Hypoxia The role of hypoxia and HIF-dependent signalling events in rheumatoid arthritis. Arthritis Research & Therapy 11: 201.CrossRef Muz, B., M.N. Khan, S. Kiriakidis, and E.M. Paleolog. 2009. Hypoxia The role of hypoxia and HIF-dependent signalling events in rheumatoid arthritis. Arthritis Research & Therapy 11: 201.CrossRef
9.
Zurück zum Zitat Niu, X., Y. Chen, L. Qi, G. Liang, Y. Wang, L. Zhang, Y. Qu, and W. Wang. 2019. Hypoxia regulates angeogenic-osteogenic coupling process via up-regulating IL-6 and IL-8 in human osteoblastic cells through hypoxia-inducible factor-1alpha pathway. Cytokine 113: 117–127.PubMedCrossRef Niu, X., Y. Chen, L. Qi, G. Liang, Y. Wang, L. Zhang, Y. Qu, and W. Wang. 2019. Hypoxia regulates angeogenic-osteogenic coupling process via up-regulating IL-6 and IL-8 in human osteoblastic cells through hypoxia-inducible factor-1alpha pathway. Cytokine 113: 117–127.PubMedCrossRef
10.
Zurück zum Zitat D’Ignazio, L., and S. Rocha. 2016. Hypoxia induced NF-kappaB. Cells 5: 10.PubMed D’Ignazio, L., and S. Rocha. 2016. Hypoxia induced NF-kappaB. Cells 5: 10.PubMed
11.
Zurück zum Zitat Deng, W., X. Feng, X. Li, D. Wang, and L. Sun. 2016. Hypoxia-inducible factor 1 in autoimmune diseases. Cellular Immunology 303: 7–15.PubMedCrossRef Deng, W., X. Feng, X. Li, D. Wang, and L. Sun. 2016. Hypoxia-inducible factor 1 in autoimmune diseases. Cellular Immunology 303: 7–15.PubMedCrossRef
12.
Zurück zum Zitat Guan, S.Y., R.X. Leng, J.H. Tao, X.P. Li, D.Q. Ye, N. Olsen, S.G. Zheng, and H.F. Pan. 2017. Hypoxia-inducible factor-1alpha: A promising therapeutic target for autoimmune diseases. Expert Opinion on Therapeutic Targets 21: 715–723.PubMedCrossRef Guan, S.Y., R.X. Leng, J.H. Tao, X.P. Li, D.Q. Ye, N. Olsen, S.G. Zheng, and H.F. Pan. 2017. Hypoxia-inducible factor-1alpha: A promising therapeutic target for autoimmune diseases. Expert Opinion on Therapeutic Targets 21: 715–723.PubMedCrossRef
13.
Zurück zum Zitat Guo, X., and G. Chen. 2020. Hypoxia-inducible factor is critical for pathogenesis and regulation of immune cell functions in rheumatoid arthritis. Frontiers in Immunology 11: 1668.PubMedPubMedCentralCrossRef Guo, X., and G. Chen. 2020. Hypoxia-inducible factor is critical for pathogenesis and regulation of immune cell functions in rheumatoid arthritis. Frontiers in Immunology 11: 1668.PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Ryu, J.H., C.S. Chae, J.S. Kwak, H. Oh, Y. Shin, Y.H. Huh, C.G. Lee, Y.W. Park, C.H. Chun, Y.M. Kim, S.H. Im, and J.S. Chun. 2014. Hypoxia-inducible factor-2alpha is an essential catabolic regulator of inflammatory rheumatoid arthritis. PLoS Biology 12: e1001881.PubMedPubMedCentralCrossRef Ryu, J.H., C.S. Chae, J.S. Kwak, H. Oh, Y. Shin, Y.H. Huh, C.G. Lee, Y.W. Park, C.H. Chun, Y.M. Kim, S.H. Im, and J.S. Chun. 2014. Hypoxia-inducible factor-2alpha is an essential catabolic regulator of inflammatory rheumatoid arthritis. PLoS Biology 12: e1001881.PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Nonomura, Y., F. Mizoguchi, A. Suzuki, T. Nanki, H. Kato, N. Miyasaka, and H. Kohsaka. 2009. Hypoxia-induced abrogation of contact-dependent inhibition of rheumatoid arthritis synovial fibroblast proliferation. Journal of Rheumatology 36: 698–705.PubMedCrossRef Nonomura, Y., F. Mizoguchi, A. Suzuki, T. Nanki, H. Kato, N. Miyasaka, and H. Kohsaka. 2009. Hypoxia-induced abrogation of contact-dependent inhibition of rheumatoid arthritis synovial fibroblast proliferation. Journal of Rheumatology 36: 698–705.PubMedCrossRef
16.
Zurück zum Zitat Sabi, E.M., A. Singh, Z.M. Althafar, T. Behl, A. Sehgal, S. Singh, N. Sharma, S. Bhatia, A. Al-Harrasi, H.M. Alqahtani, and S. Bungau. 2022. Elucidating the role of hypoxia-inducible factor in rheumatoid arthritis. Inflammopharmacology 30: 737–748.PubMedCrossRef Sabi, E.M., A. Singh, Z.M. Althafar, T. Behl, A. Sehgal, S. Singh, N. Sharma, S. Bhatia, A. Al-Harrasi, H.M. Alqahtani, and S. Bungau. 2022. Elucidating the role of hypoxia-inducible factor in rheumatoid arthritis. Inflammopharmacology 30: 737–748.PubMedCrossRef
17.
18.
Zurück zum Zitat Thornton, R.D., P. Lane, R.C. Borghaei, E.A. Pease, J. Caro, and E. Mochan. 2000. Interleukin 1 induces hypoxia-inducible factor 1 in human gingival and synovial fibroblasts. The Biochemical Journal 350 (Pt 1): 307–312.PubMedPubMedCentralCrossRef Thornton, R.D., P. Lane, R.C. Borghaei, E.A. Pease, J. Caro, and E. Mochan. 2000. Interleukin 1 induces hypoxia-inducible factor 1 in human gingival and synovial fibroblasts. The Biochemical Journal 350 (Pt 1): 307–312.PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Hellwig-Burgel, T., K. Rutkowski, E. Metzen, J. Fandrey, and W. Jelkmann. 1999. Interleukin-1beta and tumor necrosis factor-alpha stimulate DNA binding of hypoxia-inducible factor-1. Blood 94: 1561–1567.PubMedCrossRef Hellwig-Burgel, T., K. Rutkowski, E. Metzen, J. Fandrey, and W. Jelkmann. 1999. Interleukin-1beta and tumor necrosis factor-alpha stimulate DNA binding of hypoxia-inducible factor-1. Blood 94: 1561–1567.PubMedCrossRef
20.
Zurück zum Zitat Westra, J., E. Brouwer, R. Bos, M.D. Posthumus, B. Doornbos-van der Meer, C.G. Kallenberg, and P.C. Limburg. 2007. Regulation of cytokine-induced HIF-1alpha expression in rheumatoid synovial fibroblasts. Annals of the New York Academy of Sciences 1108: 340–348.PubMedCrossRef Westra, J., E. Brouwer, R. Bos, M.D. Posthumus, B. Doornbos-van der Meer, C.G. Kallenberg, and P.C. Limburg. 2007. Regulation of cytokine-induced HIF-1alpha expression in rheumatoid synovial fibroblasts. Annals of the New York Academy of Sciences 1108: 340–348.PubMedCrossRef
21.
Zurück zum Zitat Georganas, C., H. Liu, H. Perlman, A. Hoffmann, B. Thimmapaya, and R.M. Pope. 2000. Regulation of IL-6 and IL-8 expression in rheumatoid arthritis synovial fibroblasts: The dominant role for NF-kappa B but not C/EBP beta or c-Jun. The Journal of Immunology 165: 7199–7206.PubMedCrossRef Georganas, C., H. Liu, H. Perlman, A. Hoffmann, B. Thimmapaya, and R.M. Pope. 2000. Regulation of IL-6 and IL-8 expression in rheumatoid arthritis synovial fibroblasts: The dominant role for NF-kappa B but not C/EBP beta or c-Jun. The Journal of Immunology 165: 7199–7206.PubMedCrossRef
22.
Zurück zum Zitat Luo, X., X. Zuo, Y. Zhou, B. Zhang, Y. Shi, M. Liu, K. Wang, D.R. McMillian, and X. Xiao. 2008. Extracellular heat shock protein 70 inhibits tumour necrosis factor-alpha induced proinflammatory mediator production in fibroblast-like synoviocytes. Arthritis Research & Therapy 10: R41.CrossRef Luo, X., X. Zuo, Y. Zhou, B. Zhang, Y. Shi, M. Liu, K. Wang, D.R. McMillian, and X. Xiao. 2008. Extracellular heat shock protein 70 inhibits tumour necrosis factor-alpha induced proinflammatory mediator production in fibroblast-like synoviocytes. Arthritis Research & Therapy 10: R41.CrossRef
23.
Zurück zum Zitat Mo, X.R., J.W. Xie, G.J. Lv, Y.P. Ke, and X.J. Luo. 2017. Effects of TAK gene silencing on the expressions of IL-6 and IL-8 induced by TNF-alpha in fibroblast-like synoviocytes. Zhongguo Ying Yong Sheng Li Xue Za Zhi 33: 471–475.PubMed Mo, X.R., J.W. Xie, G.J. Lv, Y.P. Ke, and X.J. Luo. 2017. Effects of TAK gene silencing on the expressions of IL-6 and IL-8 induced by TNF-alpha in fibroblast-like synoviocytes. Zhongguo Ying Yong Sheng Li Xue Za Zhi 33: 471–475.PubMed
24.
Zurück zum Zitat Zhang, J., F.F. Gao, and J. Xie. 2021. LncRNA linc00152/NF-kappaB feedback loop promotes fibroblast-like synovial cells inflammation in rheumatoid arthritis via regulating miR-103a/TAK1 axis and YY1 expression. Immun Inflamm Dis 9: 681–693.PubMedPubMedCentralCrossRef Zhang, J., F.F. Gao, and J. Xie. 2021. LncRNA linc00152/NF-kappaB feedback loop promotes fibroblast-like synovial cells inflammation in rheumatoid arthritis via regulating miR-103a/TAK1 axis and YY1 expression. Immun Inflamm Dis 9: 681–693.PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Li, G., Y. Zhang, Y. Qian, H. Zhang, S. Guo, M. Sunagawa, T. Hisamitsu, and Y. Liu. 2013. Interleukin-17A promotes rheumatoid arthritis synoviocytes migration and invasion under hypoxia by increasing MMP2 and MMP9 expression through NF-kappaB/HIF-1alpha pathway. Molecular Immunology 53: 227–236.PubMedCrossRef Li, G., Y. Zhang, Y. Qian, H. Zhang, S. Guo, M. Sunagawa, T. Hisamitsu, and Y. Liu. 2013. Interleukin-17A promotes rheumatoid arthritis synoviocytes migration and invasion under hypoxia by increasing MMP2 and MMP9 expression through NF-kappaB/HIF-1alpha pathway. Molecular Immunology 53: 227–236.PubMedCrossRef
26.
Zurück zum Zitat Hui, W., C. Zhao, and S.G. Bourgoin. 2017. Differential effects of inhibitor combinations on lysophosphatidic acid-mediated chemokine secretion in unprimed and tumor necrosis factor-alpha-primed synovial fibroblasts. Frontiers in Pharmacology 8: 848.PubMedPubMedCentralCrossRef Hui, W., C. Zhao, and S.G. Bourgoin. 2017. Differential effects of inhibitor combinations on lysophosphatidic acid-mediated chemokine secretion in unprimed and tumor necrosis factor-alpha-primed synovial fibroblasts. Frontiers in Pharmacology 8: 848.PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Fabre, C., G. Carvalho, E. Tasdemir, T. Braun, L. Ades, J. Grosjean, S. Boehrer, D. Metivier, S. Souquere, G. Pierron, P. Fenaux, and G. Kroemer. 2007. NF-kappaB inhibition sensitizes to starvation-induced cell death in high-risk myelodysplastic syndrome and acute myeloid leukemia. Oncogene 26: 4071–4083.PubMedCrossRef Fabre, C., G. Carvalho, E. Tasdemir, T. Braun, L. Ades, J. Grosjean, S. Boehrer, D. Metivier, S. Souquere, G. Pierron, P. Fenaux, and G. Kroemer. 2007. NF-kappaB inhibition sensitizes to starvation-induced cell death in high-risk myelodysplastic syndrome and acute myeloid leukemia. Oncogene 26: 4071–4083.PubMedCrossRef
28.
Zurück zum Zitat Taylor, C.T., and E.P. Cummins. 2009. The role of NF-kappaB in hypoxia-induced gene expression. Annals of the New York Academy of Sciences 1177: 178–184.PubMedCrossRef Taylor, C.T., and E.P. Cummins. 2009. The role of NF-kappaB in hypoxia-induced gene expression. Annals of the New York Academy of Sciences 1177: 178–184.PubMedCrossRef
29.
Zurück zum Zitat Maxwell, P.J., R. Gallagher, A. Seaton, C. Wilson, P. Scullin, J. Pettigrew, I.J. Stratford, K.J. Williams, P.G. Johnston, and D.J. Waugh. 2007. HIF-1 and NF-kappaB-mediated upregulation of CXCR1 and CXCR2 expression promotes cell survival in hypoxic prostate cancer cells. Oncogene 26: 7333–7345.PubMedCrossRef Maxwell, P.J., R. Gallagher, A. Seaton, C. Wilson, P. Scullin, J. Pettigrew, I.J. Stratford, K.J. Williams, P.G. Johnston, and D.J. Waugh. 2007. HIF-1 and NF-kappaB-mediated upregulation of CXCR1 and CXCR2 expression promotes cell survival in hypoxic prostate cancer cells. Oncogene 26: 7333–7345.PubMedCrossRef
30.
Zurück zum Zitat Akimoto, R., T. Tanaka, T. Nakano, Y. Hozumi, K. Kawamae, and K. Goto. 2020. DGKzeta depletion attenuates HIF-1alpha induction and SIRT1 expression, but enhances TAK1-mediated AMPKalpha phosphorylation under hypoxia. Cellular Signalling 71: 109618.PubMedCrossRef Akimoto, R., T. Tanaka, T. Nakano, Y. Hozumi, K. Kawamae, and K. Goto. 2020. DGKzeta depletion attenuates HIF-1alpha induction and SIRT1 expression, but enhances TAK1-mediated AMPKalpha phosphorylation under hypoxia. Cellular Signalling 71: 109618.PubMedCrossRef
31.
Zurück zum Zitat Lee, Y.A., H.M. Choi, S.H. Lee, S.J. Hong, H.I. Yang, M.C. Yoo, and K.S. Kim. 2012. Hypoxia differentially affects IL-1beta-stimulated MMP-1 and MMP-13 expression of fibroblast-like synoviocytes in an HIF-1alpha-dependent manner. Rheumatology (Oxford) 51: 443–450.PubMedCrossRef Lee, Y.A., H.M. Choi, S.H. Lee, S.J. Hong, H.I. Yang, M.C. Yoo, and K.S. Kim. 2012. Hypoxia differentially affects IL-1beta-stimulated MMP-1 and MMP-13 expression of fibroblast-like synoviocytes in an HIF-1alpha-dependent manner. Rheumatology (Oxford) 51: 443–450.PubMedCrossRef
32.
Zurück zum Zitat Ahn, J.K., E.M. Koh, H.S. Cha, Y.S. Lee, J. Kim, E.K. Bae, and K.S. Ahn. 2008. Role of hypoxia-inducible factor-1alpha in hypoxia-induced expressions of IL-8, MMP-1 and MMP-3 in rheumatoid fibroblast-like synoviocytes. Rheumatology (Oxford) 47: 834–839.PubMedCrossRef Ahn, J.K., E.M. Koh, H.S. Cha, Y.S. Lee, J. Kim, E.K. Bae, and K.S. Ahn. 2008. Role of hypoxia-inducible factor-1alpha in hypoxia-induced expressions of IL-8, MMP-1 and MMP-3 in rheumatoid fibroblast-like synoviocytes. Rheumatology (Oxford) 47: 834–839.PubMedCrossRef
33.
Zurück zum Zitat Charbonneau, M., K. Harper, F. Grondin, M. Pelmus, P.P. McDonald, and C.M. Dubois. 2007. Hypoxia-inducible factor mediates hypoxic and tumor necrosis factor alpha-induced increases in tumor necrosis factor-alpha converting enzyme/ADAM17 expression by synovial cells. Journal of Biological Chemistry 282: 33714–33724.PubMedCrossRef Charbonneau, M., K. Harper, F. Grondin, M. Pelmus, P.P. McDonald, and C.M. Dubois. 2007. Hypoxia-inducible factor mediates hypoxic and tumor necrosis factor alpha-induced increases in tumor necrosis factor-alpha converting enzyme/ADAM17 expression by synovial cells. Journal of Biological Chemistry 282: 33714–33724.PubMedCrossRef
34.
Zurück zum Zitat Islam, S.M.T., J. Won, M. Khan, M.D. Mannie, and I. Singh. 2021. Hypoxia-inducible factor-1 drives divergent immunomodulatory functions in the pathogenesis of autoimmune diseases. Immunology 164: 31–42.PubMedPubMedCentralCrossRef Islam, S.M.T., J. Won, M. Khan, M.D. Mannie, and I. Singh. 2021. Hypoxia-inducible factor-1 drives divergent immunomodulatory functions in the pathogenesis of autoimmune diseases. Immunology 164: 31–42.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Taylor, C.T., G. Doherty, P.G. Fallon, and E.P. Cummins. 2016. Hypoxia-dependent regulation of inflammatory pathways in immune cells. The Journal of Clinical Investigation 126: 3716–3724.PubMedPubMedCentralCrossRef Taylor, C.T., G. Doherty, P.G. Fallon, and E.P. Cummins. 2016. Hypoxia-dependent regulation of inflammatory pathways in immune cells. The Journal of Clinical Investigation 126: 3716–3724.PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Li, X., H. Kimura, K. Hirota, K. Kasuno, K. Torii, T. Okada, H. Kurooka, Y. Yokota, and H. Yoshida. 2005. Synergistic effect of hypoxia and TNF-alpha on production of PAI-1 in human proximal renal tubular cells. Kidney International 68: 569–583.PubMedCrossRef Li, X., H. Kimura, K. Hirota, K. Kasuno, K. Torii, T. Okada, H. Kurooka, Y. Yokota, and H. Yoshida. 2005. Synergistic effect of hypoxia and TNF-alpha on production of PAI-1 in human proximal renal tubular cells. Kidney International 68: 569–583.PubMedCrossRef
37.
Zurück zum Zitat Lee, S.H., Y.J. Lee, and H.J. Han. 2010. Effect of arachidonic acid on hypoxia-induced IL-6 production in mouse ES cells: Involvement of MAPKs, NF-kappaB, and HIF-1alpha. Journal of Cellular Physiology 222: 574–585.PubMed Lee, S.H., Y.J. Lee, and H.J. Han. 2010. Effect of arachidonic acid on hypoxia-induced IL-6 production in mouse ES cells: Involvement of MAPKs, NF-kappaB, and HIF-1alpha. Journal of Cellular Physiology 222: 574–585.PubMed
38.
Zurück zum Zitat Cetin, A., T. Kaya, N. Demirkoprulu, B. Karadas, B. Duran, and M. Cetin. 2004. YC-1, a nitric oxide-independent activator of soluble guanylate cyclase, inhibits the spontaneous contractions of isolated pregnant rat myometrium. Journal of Pharmacological Sciences 94: 19–24.PubMedCrossRef Cetin, A., T. Kaya, N. Demirkoprulu, B. Karadas, B. Duran, and M. Cetin. 2004. YC-1, a nitric oxide-independent activator of soluble guanylate cyclase, inhibits the spontaneous contractions of isolated pregnant rat myometrium. Journal of Pharmacological Sciences 94: 19–24.PubMedCrossRef
39.
Zurück zum Zitat Flores-Costa, R., J. Alcaraz-Quiles, E. Titos, C. Lopez-Vicario, M. Casulleras, M. Duran-Guell, B. Rius, A. Diaz, K. Hall, C. Shea, R. Sarno, M. Currie, J.L. Masferrer, and J. Claria. 2018. The soluble guanylate cyclase stimulator IW-1973 prevents inflammation and fibrosis in experimental non-alcoholic steatohepatitis. British Journal of Pharmacology 175: 953–967.PubMedPubMedCentralCrossRef Flores-Costa, R., J. Alcaraz-Quiles, E. Titos, C. Lopez-Vicario, M. Casulleras, M. Duran-Guell, B. Rius, A. Diaz, K. Hall, C. Shea, R. Sarno, M. Currie, J.L. Masferrer, and J. Claria. 2018. The soluble guanylate cyclase stimulator IW-1973 prevents inflammation and fibrosis in experimental non-alcoholic steatohepatitis. British Journal of Pharmacology 175: 953–967.PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Rius, J., M. Guma, C. Schachtrup, K. Akassoglou, A.S. Zinkernagel, V. Nizet, R.S. Johnson, G.G. Haddad, and M. Karin. 2008. NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha. Nature 453: 807–811.PubMedPubMedCentralCrossRef Rius, J., M. Guma, C. Schachtrup, K. Akassoglou, A.S. Zinkernagel, V. Nizet, R.S. Johnson, G.G. Haddad, and M. Karin. 2008. NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha. Nature 453: 807–811.PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Culver, C., A. Sundqvist, S. Mudie, A. Melvin, D. Xirodimas, and S. Rocha. 2010. Mechanism of hypoxia-induced NF-kappaB. Molecular and Cellular Biology 30: 4901–4921.PubMedPubMedCentralCrossRef Culver, C., A. Sundqvist, S. Mudie, A. Melvin, D. Xirodimas, and S. Rocha. 2010. Mechanism of hypoxia-induced NF-kappaB. Molecular and Cellular Biology 30: 4901–4921.PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Lian, L.H., Q. Jin, S.Z. Song, Y.L. Wu, T. Bai, S. Jiang, Q. Li, N. Yang, and J.X. Nan. 2013. Ginsenoside Rh2 downregulates LPS-induced NF- kappa B activation through inhibition of TAK1 phosphorylation in RAW 264.7 murine macrophage. Evidence-Based Complementary and Alternative Medicine 2013: 646728.PubMedPubMedCentralCrossRef Lian, L.H., Q. Jin, S.Z. Song, Y.L. Wu, T. Bai, S. Jiang, Q. Li, N. Yang, and J.X. Nan. 2013. Ginsenoside Rh2 downregulates LPS-induced NF- kappa B activation through inhibition of TAK1 phosphorylation in RAW 264.7 murine macrophage. Evidence-Based Complementary and Alternative Medicine 2013: 646728.PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Zhou, Y., T. Tao, G. Liu, X. Gao, Y. Gao, Z. Zhuang, Y. Lu, H. Wang, W. Li, L. Wu, D. Zhang, and C. Hang. 2021. TRAF3 mediates neuronal apoptosis in early brain injury following subarachnoid hemorrhage via targeting TAK1-dependent MAPKs and NF-kappaB pathways. Cell Death & Disease 12: 10.CrossRef Zhou, Y., T. Tao, G. Liu, X. Gao, Y. Gao, Z. Zhuang, Y. Lu, H. Wang, W. Li, L. Wu, D. Zhang, and C. Hang. 2021. TRAF3 mediates neuronal apoptosis in early brain injury following subarachnoid hemorrhage via targeting TAK1-dependent MAPKs and NF-kappaB pathways. Cell Death & Disease 12: 10.CrossRef
44.
Zurück zum Zitat Hammaker, D.R., D.L. Boyle, M. Chabaud-Riou, and G.S. Firestein. 2004. Regulation of c-Jun N-terminal kinase by MEKK-2 and mitogen-activated protein kinase kinase kinases in rheumatoid arthritis. The Journal of Immunology 172: 1612–1618.PubMedCrossRef Hammaker, D.R., D.L. Boyle, M. Chabaud-Riou, and G.S. Firestein. 2004. Regulation of c-Jun N-terminal kinase by MEKK-2 and mitogen-activated protein kinase kinase kinases in rheumatoid arthritis. The Journal of Immunology 172: 1612–1618.PubMedCrossRef
45.
Zurück zum Zitat Luo, X., Y. Chen, G. Lv, Z. Zhou, J. Chen, X. Mo, and J. Xie. 2017. Adenovirus-mediated small interfering RNA targeting TAK1 ameliorates joint inflammation with collagen-induced arthritis in mice. Inflammation 40: 894–903.PubMedCrossRef Luo, X., Y. Chen, G. Lv, Z. Zhou, J. Chen, X. Mo, and J. Xie. 2017. Adenovirus-mediated small interfering RNA targeting TAK1 ameliorates joint inflammation with collagen-induced arthritis in mice. Inflammation 40: 894–903.PubMedCrossRef
Metadaten
Titel
Hypoxia and TNF-α Synergistically Induce Expression of IL-6 and IL-8 in Human Fibroblast-like Synoviocytes via Enhancing TAK1/NF-κB/HIF-1α Signaling
verfasst von
Guofen Wang
Junsong Wang
Xian Li
Qiyang Wu
Ruifeng Yao
Xinjing Luo
Publikationsdatum
06.01.2023
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 3/2023
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-022-01779-x

Weitere Artikel der Ausgabe 3/2023

Inflammation 3/2023 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

Nach Herzinfarkt mit Typ-1-Diabetes schlechtere Karten als mit Typ 2?

29.05.2024 Herzinfarkt Nachrichten

Bei Menschen mit Typ-2-Diabetes sind die Chancen, einen Myokardinfarkt zu überleben, in den letzten 15 Jahren deutlich gestiegen – nicht jedoch bei Betroffenen mit Typ 1.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.