Skip to main content
Erschienen in: Cancer and Metastasis Reviews 3/2023

22.12.2022

Hypoxia signaling in hepatocellular carcinoma: Challenges and therapeutic opportunities

verfasst von: Shant Qinxiang Sin, Chakrabhavi Dhananjaya Mohan, Robby Miguel Wen-Jing Goh, Mingliang You, Siddaiah Chandra Nayak, Lu Chen, Gautam Sethi, Kanchugarakoppal Subbegowda Rangappa, Lingzhi Wang

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 3/2023

Einloggen, um Zugang zu erhalten

Abstract

Hepatocellular carcinoma (HCC) is one of the most common cancers with a relatively high cancer-related mortality. The uncontrolled proliferation of HCC consumes a significant amount of oxygen, causing the development of a hypoxic tumor microenvironment (TME). Hypoxia-inducible factors (HIFs), crucial regulators in the TME, activate several cancer hallmarks leading to the hepatocarcinogenesis of HCC and resistance to current therapeutics. As such, HIFs and their signaling pathways have been explored as potential therapeutic targets for the future management of HCC. This review discusses the current understanding of the structure and function of HIFs and their complex relationship with the various cancer hallmarks. To address tumor hypoxia, this review provides an insight into the various potential novel therapeutic agents for managing HCC, such as hypoxia-activated prodrugs, HIF inhibitors, nanomaterials, antisense oligonucleotides, and natural compounds, that target HIFs/hypoxic signaling pathways in HCC. Because of HCC’s relatively high incidence and mortality rates in the past decades, greater efforts should be put in place to explore novel therapeutic approaches to improve the outcome for HCC patients.
Literatur
1.
Zurück zum Zitat World Cancer Research Fund/American Institute for Cancer Research. Continuous Update Project Expert Report 2018. Diet, n., physical activity and liver cancer. Available at dietandcancerreport.org. Accessed 02/23/2022 World Cancer Research Fund/American Institute for Cancer Research. Continuous Update Project Expert Report 2018. Diet, n., physical activity and liver cancer. Available at dietandcancerreport.org. Accessed 02/23/2022 
2.
Zurück zum Zitat Arora, L., Mohan, C. D., Yang, M. H., Rangappa, S., Deivasigamani, A., Kumar, A. P., et al. (2021). Tris(dibenzylideneacetone)dipalladium(0) (Tris DBA) abrogates tumor progression in hepatocellular carcinoma and multiple myeloma preclinical models by regulating the STAT3 signaling pathway. Cancers (Basel), 13(21). https://doi.org/10.3390/cancers13215479. Arora, L., Mohan, C. D., Yang, M. H., Rangappa, S., Deivasigamani, A., Kumar, A. P., et al. (2021). Tris(dibenzylideneacetone)dipalladium(0) (Tris DBA) abrogates tumor progression in hepatocellular carcinoma and multiple myeloma preclinical models by regulating the STAT3 signaling pathway. Cancers (Basel), 13(21). https://​doi.​org/​10.​3390/​cancers13215479.​
3.
Zurück zum Zitat Mohan, C. D., Yang, M. H., Rangappa, S., Chinnathambi, A., Alharbi, S. A., Alahmadi, T. A., et al. (2022). 3-Formylchromone counteracts STAT3 signaling pathway by elevating SHP-2 expression in hepatocellular carcinoma. Biology, 11(1). https://doi.org/10.3390/biology11010029. Mohan, C. D., Yang, M. H., Rangappa, S., Chinnathambi, A., Alharbi, S. A., Alahmadi, T. A., et al. (2022). 3-Formylchromone counteracts STAT3 signaling pathway by elevating SHP-2 expression in hepatocellular carcinoma. Biology, 11(1). https://​doi.​org/​10.​3390/​biology11010029.
4.
Zurück zum Zitat Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A cancer journal for clinicians, 71(3), 209–249.PubMed Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A cancer journal for clinicians, 71(3), 209–249.PubMed
5.
Zurück zum Zitat McGlynn, K. A., Petrick, J. L., & El-Serag, H. B. (2021). Epidemiology of hepatocellular carcinoma. Hepatology, 73, 4–13.PubMedCrossRef McGlynn, K. A., Petrick, J. L., & El-Serag, H. B. (2021). Epidemiology of hepatocellular carcinoma. Hepatology, 73, 4–13.PubMedCrossRef
7.
Zurück zum Zitat Raghunath, A., Sundarraj, K., Arfuso, F., Sethi, G., & Perumal, E. (2018). Dysregulation of Nrf2 in hepatocellular carcinoma: Role in cancer progression and chemoresistance. Cancers (Basel), 10(12), 481.PubMedCrossRef Raghunath, A., Sundarraj, K., Arfuso, F., Sethi, G., & Perumal, E. (2018). Dysregulation of Nrf2 in hepatocellular carcinoma: Role in cancer progression and chemoresistance. Cancers (Basel), 10(12), 481.PubMedCrossRef
10.
Zurück zum Zitat Sajith, A. M., Narasimhamurthy, K. H., Shanmugam, M. K., Rangappa, S., Chandra Nayak, S., Chinnathambi, A., et al. (2021). Pyrimidine-2,4-dione targets STAT3 signaling pathway to induce cytotoxicity in hepatocellular carcinoma cells. Bioorganic & Medicinal Chemistry Letters, 50, 128332. https://doi.org/10.1016/j.bmcl.2021.128332CrossRef Sajith, A. M., Narasimhamurthy, K. H., Shanmugam, M. K., Rangappa, S., Chandra Nayak, S., Chinnathambi, A., et al. (2021). Pyrimidine-2,4-dione targets STAT3 signaling pathway to induce cytotoxicity in hepatocellular carcinoma cells. Bioorganic & Medicinal Chemistry Letters, 50, 128332. https://​doi.​org/​10.​1016/​j.​bmcl.​2021.​128332CrossRef
12.
Zurück zum Zitat Colagrande, S., Inghilesi, A. L., Aburas, S., Taliani, G. G., Nardi, C., & Marra, F. (2016). Challenges of advanced hepatocellular carcinoma. World Journal of Gastroenterology, 22(34), 7645.PubMedPubMedCentralCrossRef Colagrande, S., Inghilesi, A. L., Aburas, S., Taliani, G. G., Nardi, C., & Marra, F. (2016). Challenges of advanced hepatocellular carcinoma. World Journal of Gastroenterology, 22(34), 7645.PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Chen, X., Tang, F.-R., Arfuso, F., Cai, W.-Q., Ma, Z., Yang, J., et al. (2020). The emerging role of long non-coding RNAs in the metastasis of hepatocellular carcinoma. Biomolecules, 10(1), 66.CrossRef Chen, X., Tang, F.-R., Arfuso, F., Cai, W.-Q., Ma, Z., Yang, J., et al. (2020). The emerging role of long non-coding RNAs in the metastasis of hepatocellular carcinoma. Biomolecules, 10(1), 66.CrossRef
18.
Zurück zum Zitat Paskeh, M. D. A., Mirzaei, S., Ashrafizadeh, M., Zarrabi, A., & Sethi, G. (2021). Wnt/β-catenin signaling as a driver of hepatocellular carcinoma progression: An emphasis on molecular pathways. Journal of Hepatocellular Carcinoma, 8, 1415.CrossRef Paskeh, M. D. A., Mirzaei, S., Ashrafizadeh, M., Zarrabi, A., & Sethi, G. (2021). Wnt/β-catenin signaling as a driver of hepatocellular carcinoma progression: An emphasis on molecular pathways. Journal of Hepatocellular Carcinoma, 8, 1415.CrossRef
22.
25.
Zurück zum Zitat Stock-Martineau, S., Laurie, K., McKinnon, M., Zhang, T., & Wheatley-Price, P. (2021). Evolution of systemic treatment uptake and survival in advanced non-small cell lung cancer. Current Oncology, 28(1), 60–68.CrossRef Stock-Martineau, S., Laurie, K., McKinnon, M., Zhang, T., & Wheatley-Price, P. (2021). Evolution of systemic treatment uptake and survival in advanced non-small cell lung cancer. Current Oncology, 28(1), 60–68.CrossRef
26.
28.
Zurück zum Zitat Guo, Y., Xiao, Z., Yang, L., Gao, Y., Zhu, Q., Hu, L., et al. (2020). Hypoxia-inducible factors in hepatocellular carcinoma. Oncology Reports, 43(1), 3–15.PubMed Guo, Y., Xiao, Z., Yang, L., Gao, Y., Zhu, Q., Hu, L., et al. (2020). Hypoxia-inducible factors in hepatocellular carcinoma. Oncology Reports, 43(1), 3–15.PubMed
30.
Zurück zum Zitat Bowyer, C., Lewis, A. L., Lloyd, A. W., Phillips, G. J., & Macfarlane, W. M. (2017). Hypoxia as a target for drug combination therapy of liver cancer. Anti-Cancer Drugs, 28(7), 771.PubMedPubMedCentralCrossRef Bowyer, C., Lewis, A. L., Lloyd, A. W., Phillips, G. J., & Macfarlane, W. M. (2017). Hypoxia as a target for drug combination therapy of liver cancer. Anti-Cancer Drugs, 28(7), 771.PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Manoochehri Khoshinani, H., Afshar, S., & Najafi, R. (2016). Hypoxia: A double-edged sword in cancer therapy. Cancer Investigation, 34(10), 536–545.PubMedCrossRef Manoochehri Khoshinani, H., Afshar, S., & Najafi, R. (2016). Hypoxia: A double-edged sword in cancer therapy. Cancer Investigation, 34(10), 536–545.PubMedCrossRef
32.
Zurück zum Zitat Kabakov, A. E., & Yakimova, A. O. (2021). Hypoxia-induced cancer cell responses driving radioresistance of hypoxic tumors: Approaches to targeting and radiosensitizing. Cancers (Basel), 13(5), 1102.PubMedCrossRef Kabakov, A. E., & Yakimova, A. O. (2021). Hypoxia-induced cancer cell responses driving radioresistance of hypoxic tumors: Approaches to targeting and radiosensitizing. Cancers (Basel), 13(5), 1102.PubMedCrossRef
33.
Zurück zum Zitat Harada, H. (2016). Hypoxia-inducible factor 1–mediated characteristic features of cancer cells for tumor radioresistance. Journal of Radiation Research, 57(S1), i99–i105.PubMedPubMedCentralCrossRef Harada, H. (2016). Hypoxia-inducible factor 1–mediated characteristic features of cancer cells for tumor radioresistance. Journal of Radiation Research, 57(S1), i99–i105.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Doktorova, H., Hrabeta, J., Khalil, M. A., & Eckschlager, T. (2015). Hypoxia-induced chemoresistance in cancer cells: The role of not only HIF-1. Biomedical papers of the Medical Faculty of the University Palacky Olomouc Czech Republic, 159(2), 166–77. Doktorova, H., Hrabeta, J., Khalil, M. A., & Eckschlager, T. (2015). Hypoxia-induced chemoresistance in cancer cells: The role of not only HIF-1. Biomedical papers of the Medical Faculty of the University Palacky Olomouc Czech Republic, 159(2), 166–77.
35.
Zurück zum Zitat Roy, S., Kumaravel, S., Sharma, A., Duran, C. L., Bayless, K. J., & Chakraborty, S. (2020). Hypoxic tumor microenvironment: Implications for cancer therapy. Experimental Biology and Medicine, 245(13), 1073–1086.PubMedPubMedCentralCrossRef Roy, S., Kumaravel, S., Sharma, A., Duran, C. L., Bayless, K. J., & Chakraborty, S. (2020). Hypoxic tumor microenvironment: Implications for cancer therapy. Experimental Biology and Medicine, 245(13), 1073–1086.PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Lin, C.-A., Chang, L.-L., Zhu, H., He, Q.-J., & Yang, B. (2018). Hypoxic microenvironment and hepatocellular carcinoma treatment. Hepatoma Research, 4, 26.CrossRef Lin, C.-A., Chang, L.-L., Zhu, H., He, Q.-J., & Yang, B. (2018). Hypoxic microenvironment and hepatocellular carcinoma treatment. Hepatoma Research, 4, 26.CrossRef
41.
Zurück zum Zitat Santhakumar, C., Gane, E. J., Liu, K., & McCaughan, G. W. (2020). Current perspectives on the tumor microenvironment in hepatocellular carcinoma. Hepatology International, 14(6), 947–957.PubMedCrossRef Santhakumar, C., Gane, E. J., Liu, K., & McCaughan, G. W. (2020). Current perspectives on the tumor microenvironment in hepatocellular carcinoma. Hepatology International, 14(6), 947–957.PubMedCrossRef
42.
Zurück zum Zitat Xiong, X. X., Qiu, X. Y., Hu, D. X., & Chen, X. Q. (2017). Advances in hypoxia-mediated mechanisms in hepatocellular carcinoma. Molecular Pharmacology, 92(3), 246–255.PubMedCrossRef Xiong, X. X., Qiu, X. Y., Hu, D. X., & Chen, X. Q. (2017). Advances in hypoxia-mediated mechanisms in hepatocellular carcinoma. Molecular Pharmacology, 92(3), 246–255.PubMedCrossRef
43.
Zurück zum Zitat Han, D., Yang, P., Qin, B., Ji, G., Wu, Y., Yu, L., et al. (2021). Upregulation of Nogo-B by hypoxia inducible factor-1 and activator protein-1 in hepatocellular carcinoma. Cancer Science, 112(7), 2728.PubMedPubMedCentralCrossRef Han, D., Yang, P., Qin, B., Ji, G., Wu, Y., Yu, L., et al. (2021). Upregulation of Nogo-B by hypoxia inducible factor-1 and activator protein-1 in hepatocellular carcinoma. Cancer Science, 112(7), 2728.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Chiu, D. K. C., Xu, I. M. J., Lai, R. K. H., Tse, A. P. W., Wei, L. L., Koh, H. Y., et al. (2016). Hypoxia induces myeloid-derived suppressor cell recruitment to hepatocellular carcinoma through chemokine (C-C motif) ligand 26. Hepatology, 64(3), 797–813.PubMedCrossRef Chiu, D. K. C., Xu, I. M. J., Lai, R. K. H., Tse, A. P. W., Wei, L. L., Koh, H. Y., et al. (2016). Hypoxia induces myeloid-derived suppressor cell recruitment to hepatocellular carcinoma through chemokine (C-C motif) ligand 26. Hepatology, 64(3), 797–813.PubMedCrossRef
45.
Zurück zum Zitat Pascut, D., Pratama, M. Y., Vo, N. V., Masadah, R., & Tiribelli, C. (2020). The crosstalk between tumor cells and the microenvironment in hepatocellular carcinoma: The role of exosomal microRNAs and their clinical implications. Cancers (Basel), 12(4), 823.PubMedCrossRef Pascut, D., Pratama, M. Y., Vo, N. V., Masadah, R., & Tiribelli, C. (2020). The crosstalk between tumor cells and the microenvironment in hepatocellular carcinoma: The role of exosomal microRNAs and their clinical implications. Cancers (Basel), 12(4), 823.PubMedCrossRef
46.
Zurück zum Zitat Yang, D., Wang, J., Xiao, M., Zhou, T., & Shi, X. (2016). Role of Mir-155 in controlling HIF-1α level and promoting endothelial cell maturation. Science and Reports, 6(1), 1–10. Yang, D., Wang, J., Xiao, M., Zhou, T., & Shi, X. (2016). Role of Mir-155 in controlling HIF-1α level and promoting endothelial cell maturation. Science and Reports, 6(1), 1–10.
47.
Zurück zum Zitat Chen, J. (2018). The prognostic analysis of different metastatic patterns in advanced liver cancer patients: A population based analysis. PLoS ONE, 13(8), e0200909.PubMedPubMedCentralCrossRef Chen, J. (2018). The prognostic analysis of different metastatic patterns in advanced liver cancer patients: A population based analysis. PLoS ONE, 13(8), e0200909.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Barth, D. A., Prinz, F., Teppan, J., Jonas, K., Klec, C., & Pichler, M. (2020). Long-noncoding RNA (lncRNA) in the regulation of hypoxia-inducible factor (HIF) in cancer. Non-Coding RNA, 6(3), 27.PubMedPubMedCentralCrossRef Barth, D. A., Prinz, F., Teppan, J., Jonas, K., Klec, C., & Pichler, M. (2020). Long-noncoding RNA (lncRNA) in the regulation of hypoxia-inducible factor (HIF) in cancer. Non-Coding RNA, 6(3), 27.PubMedPubMedCentralCrossRef
56.
Zurück zum Zitat Zhao, Z.-B., Chen, F., & Bai, X.-F. (2019). Long noncoding RNA MALAT1 regulates hepatocellular carcinoma growth under hypoxia via sponging microRNA-200a. Yonsei Medical Journal, 60(8), 727–734.PubMedPubMedCentralCrossRef Zhao, Z.-B., Chen, F., & Bai, X.-F. (2019). Long noncoding RNA MALAT1 regulates hepatocellular carcinoma growth under hypoxia via sponging microRNA-200a. Yonsei Medical Journal, 60(8), 727–734.PubMedPubMedCentralCrossRef
60.
Zurück zum Zitat Wu, Q., Zhou, W., Yin, S., Zhou, Y., Chen, T., Qian, J., et al. (2019). Blocking triggering receptor expressed on myeloid cells-1-positive tumor-associated macrophages induced by hypoxia reverses immunosuppression and anti-programmed cell death ligand 1 resistance in liver cancer. Hepatology, 70(1), 198–214.PubMedCrossRef Wu, Q., Zhou, W., Yin, S., Zhou, Y., Chen, T., Qian, J., et al. (2019). Blocking triggering receptor expressed on myeloid cells-1-positive tumor-associated macrophages induced by hypoxia reverses immunosuppression and anti-programmed cell death ligand 1 resistance in liver cancer. Hepatology, 70(1), 198–214.PubMedCrossRef
61.
Zurück zum Zitat Zhang, J., Zhang, Q., Lou, Y., Fu, Q., Chen, Q., Wei, T., et al. (2018). Hypoxia-inducible factor-1α/interleukin-1β signaling enhances hepatoma epithelial–mesenchymal transition through macrophages in a hypoxic-inflammatory microenvironment. Hepatology, 67(5), 1872–1889.PubMedCrossRef Zhang, J., Zhang, Q., Lou, Y., Fu, Q., Chen, Q., Wei, T., et al. (2018). Hypoxia-inducible factor-1α/interleukin-1β signaling enhances hepatoma epithelial–mesenchymal transition through macrophages in a hypoxic-inflammatory microenvironment. Hepatology, 67(5), 1872–1889.PubMedCrossRef
62.
Zurück zum Zitat Chiu, D.K.-C., Tse, A.P.-W., Xu, I.M.-J., Di Cui, J., Lai, R.K.-H., Li, L. L., et al. (2017). Hypoxia inducible factor HIF-1 promotes myeloid-derived suppressor cells accumulation through ENTPD2/CD39L1 in hepatocellular carcinoma. Nature communications, 8(1), 1–12.CrossRef Chiu, D.K.-C., Tse, A.P.-W., Xu, I.M.-J., Di Cui, J., Lai, R.K.-H., Li, L. L., et al. (2017). Hypoxia inducible factor HIF-1 promotes myeloid-derived suppressor cells accumulation through ENTPD2/CD39L1 in hepatocellular carcinoma. Nature communications, 8(1), 1–12.CrossRef
63.
Zurück zum Zitat Niu, Y., Lin, Z., Wan, A., Sun, L., Yan, S., Liang, H., et al. (2021). Loss-of-function genetic screening identifies aldolase A as an essential driver for liver cancer cell growth under hypoxia. Hepatology, 74(3), 1461–1479.PubMedCrossRef Niu, Y., Lin, Z., Wan, A., Sun, L., Yan, S., Liang, H., et al. (2021). Loss-of-function genetic screening identifies aldolase A as an essential driver for liver cancer cell growth under hypoxia. Hepatology, 74(3), 1461–1479.PubMedCrossRef
64.
Zurück zum Zitat Dong, F., Li, R., Wang, J., Zhang, Y., Yao, J., Jiang, S.-H., et al. (2021). Hypoxia-dependent expression of MAP17 coordinates the Warburg effect to tumor growth in hepatocellular carcinoma. Journal of Experimental & Clinical Cancer Research, 40(1), 1–15.CrossRef Dong, F., Li, R., Wang, J., Zhang, Y., Yao, J., Jiang, S.-H., et al. (2021). Hypoxia-dependent expression of MAP17 coordinates the Warburg effect to tumor growth in hepatocellular carcinoma. Journal of Experimental & Clinical Cancer Research, 40(1), 1–15.CrossRef
65.
Zurück zum Zitat Miao, B., Wei, C., Qiao, Z., Han, W., Chai, X., Lu, J., et al. (2019). eIF3a mediates HIF1α-dependent glycolytic metabolism in hepatocellular carcinoma cells through translational regulation. American Journal of Cancer Research, 9(5), 1079.PubMedPubMedCentral Miao, B., Wei, C., Qiao, Z., Han, W., Chai, X., Lu, J., et al. (2019). eIF3a mediates HIF1α-dependent glycolytic metabolism in hepatocellular carcinoma cells through translational regulation. American Journal of Cancer Research, 9(5), 1079.PubMedPubMedCentral
66.
Zurück zum Zitat Yang, N., Wang, T., Li, Q., Han, F., Wang, Z., Zhu, R., et al. (2021). HBXIP drives metabolic reprogramming in hepatocellular carcinoma cells via METTL3-mediated m6A modification of HIF-1α. Journal of Cellular Physiology, 236(5), 3863–3880.PubMedCrossRef Yang, N., Wang, T., Li, Q., Han, F., Wang, Z., Zhu, R., et al. (2021). HBXIP drives metabolic reprogramming in hepatocellular carcinoma cells via METTL3-mediated m6A modification of HIF-1α. Journal of Cellular Physiology, 236(5), 3863–3880.PubMedCrossRef
67.
Zurück zum Zitat Zhou, Y., Huang, Y., Hu, K., Zhang, Z., Yang, J., & Wang, Z. (2020). HIF1A activates the transcription of lncRNA RAET1K to modulate hypoxia-induced glycolysis in hepatocellular carcinoma cells via miR-100-5p. Cell Death & Disease, 11(3), 1–14.CrossRef Zhou, Y., Huang, Y., Hu, K., Zhang, Z., Yang, J., & Wang, Z. (2020). HIF1A activates the transcription of lncRNA RAET1K to modulate hypoxia-induced glycolysis in hepatocellular carcinoma cells via miR-100-5p. Cell Death & Disease, 11(3), 1–14.CrossRef
68.
Zurück zum Zitat Chang, W. H., & Lai, A. G. (2020). The hypoxic tumour microenvironment: A safe haven for immunosuppressive cells and a therapeutic barrier to overcome. Cancer Letters, 487, 34–44.PubMedCrossRef Chang, W. H., & Lai, A. G. (2020). The hypoxic tumour microenvironment: A safe haven for immunosuppressive cells and a therapeutic barrier to overcome. Cancer Letters, 487, 34–44.PubMedCrossRef
69.
Zurück zum Zitat Befani, C., & Liakos, P. (2018). The role of hypoxia-inducible factor-2 alpha in angiogenesis. Journal of Cellular Physiology, 233(12), 9087–9098.PubMedCrossRef Befani, C., & Liakos, P. (2018). The role of hypoxia-inducible factor-2 alpha in angiogenesis. Journal of Cellular Physiology, 233(12), 9087–9098.PubMedCrossRef
70.
Zurück zum Zitat Wang, S., Lu, J., You, Q., Huang, H., Chen, Y., & Liu, K. (2016). The mTOR/AP-1/VEGF signaling pathway regulates vascular endothelial cell growth. Oncotarget, 7(33), 53269.PubMedPubMedCentralCrossRef Wang, S., Lu, J., You, Q., Huang, H., Chen, Y., & Liu, K. (2016). The mTOR/AP-1/VEGF signaling pathway regulates vascular endothelial cell growth. Oncotarget, 7(33), 53269.PubMedPubMedCentralCrossRef
71.
Zurück zum Zitat Feng, W., Xue, T., Huang, S., Shi, Q., Tang, C., Cui, G., et al. (2018). HIF-1α promotes the migration and invasion of hepatocellular carcinoma cells via the IL-8–NF-κB axis. Cellular & Molecular Biology Letters, 23(1), 1–8.CrossRef Feng, W., Xue, T., Huang, S., Shi, Q., Tang, C., Cui, G., et al. (2018). HIF-1α promotes the migration and invasion of hepatocellular carcinoma cells via the IL-8–NF-κB axis. Cellular & Molecular Biology Letters, 23(1), 1–8.CrossRef
72.
Zurück zum Zitat Zhu, B., Chen, S., Hu, X., Jin, X., Le, Y., Cao, L., et al. (2017). Knockout of the Nogo-B gene attenuates tumor growth and metastasis in hepatocellular carcinoma. Neoplasia, 19(7), 583–593.PubMedPubMedCentralCrossRef Zhu, B., Chen, S., Hu, X., Jin, X., Le, Y., Cao, L., et al. (2017). Knockout of the Nogo-B gene attenuates tumor growth and metastasis in hepatocellular carcinoma. Neoplasia, 19(7), 583–593.PubMedPubMedCentralCrossRef
73.
Zurück zum Zitat Cai, H., Saiyin, H., Liu, X., Han, D., Ji, G., Qin, B., et al. (2018). Nogo-B promotes tumor angiogenesis and provides a potential therapeutic target in hepatocellular carcinoma. Molecular Oncology, 12(12), 2042–2054.PubMedPubMedCentralCrossRef Cai, H., Saiyin, H., Liu, X., Han, D., Ji, G., Qin, B., et al. (2018). Nogo-B promotes tumor angiogenesis and provides a potential therapeutic target in hepatocellular carcinoma. Molecular Oncology, 12(12), 2042–2054.PubMedPubMedCentralCrossRef
74.
Zurück zum Zitat Korf-Klingebiel, M., Reboll, M. R., Klede, S., Brod, T., Pich, A., Polten, F., et al. (2015). Myeloid-derived growth factor (C19orf10) mediates cardiac repair following myocardial infarction. Nature Medicine, 21(2), 140–149.PubMedCrossRef Korf-Klingebiel, M., Reboll, M. R., Klede, S., Brod, T., Pich, A., Polten, F., et al. (2015). Myeloid-derived growth factor (C19orf10) mediates cardiac repair following myocardial infarction. Nature Medicine, 21(2), 140–149.PubMedCrossRef
75.
Zurück zum Zitat Wang, X., Mao, J., Zhou, T., Chen, X., Tu, H., Ma, J., et al. (2021). Hypoxia-induced myeloid derived growth factor promotes hepatocellular carcinoma progression through remodeling tumor microenvironment. Theranostics, 11(1), 209.PubMedPubMedCentralCrossRef Wang, X., Mao, J., Zhou, T., Chen, X., Tu, H., Ma, J., et al. (2021). Hypoxia-induced myeloid derived growth factor promotes hepatocellular carcinoma progression through remodeling tumor microenvironment. Theranostics, 11(1), 209.PubMedPubMedCentralCrossRef
76.
Zurück zum Zitat Lin, X.-J., Fang, J.-H., Yang, X.-J., Zhang, C., Yuan, Y., Zheng, L., et al. (2018). Hepatocellular carcinoma cell-secreted exosomal microRNA-210 promotes angiogenesis in vitro and in vivo. Molecular Therapy-Nucleic Acids, 11, 243–252.PubMedPubMedCentralCrossRef Lin, X.-J., Fang, J.-H., Yang, X.-J., Zhang, C., Yuan, Y., Zheng, L., et al. (2018). Hepatocellular carcinoma cell-secreted exosomal microRNA-210 promotes angiogenesis in vitro and in vivo. Molecular Therapy-Nucleic Acids, 11, 243–252.PubMedPubMedCentralCrossRef
77.
Zurück zum Zitat Li, X., Li, X., Lv, X., Xiao, J., Liu, B., & Zhang, Y. (2017). Smad4 inhibits VEGF-A and VEGF-C expressions via enhancing Smad3 phosphorylation in colon cancer. The Anatomical Record, 300(9), 1560–1569.PubMedCrossRef Li, X., Li, X., Lv, X., Xiao, J., Liu, B., & Zhang, Y. (2017). Smad4 inhibits VEGF-A and VEGF-C expressions via enhancing Smad3 phosphorylation in colon cancer. The Anatomical Record, 300(9), 1560–1569.PubMedCrossRef
78.
Zurück zum Zitat Matsuura, Y., Wada, H., Eguchi, H., Gotoh, K., Kobayashi, S., Kinoshita, M., et al. (2019). Exosomal miR-155 derived from hepatocellular carcinoma cells under hypoxia promotes angiogenesis in endothelial cells. Digestive Diseases and Sciences, 64(3), 792–802.PubMedCrossRef Matsuura, Y., Wada, H., Eguchi, H., Gotoh, K., Kobayashi, S., Kinoshita, M., et al. (2019). Exosomal miR-155 derived from hepatocellular carcinoma cells under hypoxia promotes angiogenesis in endothelial cells. Digestive Diseases and Sciences, 64(3), 792–802.PubMedCrossRef
79.
Zurück zum Zitat Wu, W., He, X., Andayani, D., Yang, L., Ye, J., Li, Y., et al. (2017). Pattern of distant extrahepatic metastases in primary liver cancer: A SEER based study. Journal of Cancer, 8(12), 2312.PubMedPubMedCentralCrossRef Wu, W., He, X., Andayani, D., Yang, L., Ye, J., Li, Y., et al. (2017). Pattern of distant extrahepatic metastases in primary liver cancer: A SEER based study. Journal of Cancer, 8(12), 2312.PubMedPubMedCentralCrossRef
82.
Zurück zum Zitat Yang, M. H., Mohan, C. D., Deivasigamani, A., Chinnathambi, A., Alharbi, S. A., Rangappa, K. S., et al. (2022). Procaine abrogates the epithelial-mesenchymal transition process through modulating c-Met phosphorylation in hepatocellular carcinoma. Cancers (Basel), 14(20), 4978.PubMedCrossRef Yang, M. H., Mohan, C. D., Deivasigamani, A., Chinnathambi, A., Alharbi, S. A., Rangappa, K. S., et al. (2022). Procaine abrogates the epithelial-mesenchymal transition process through modulating c-Met phosphorylation in hepatocellular carcinoma. Cancers (Basel), 14(20), 4978.PubMedCrossRef
83.
Zurück zum Zitat Jung, Y. Y., Mohan, C. D., Eng, H., Narula, A. S., Namjoshi, O. A., Blough, B. E., et al. (2022). 2,3,5,6-Tetramethylpyrazine targets epithelial-mesenchymal transition by abrogating manganese superoxide dismutase expression and TGFβ-driven signaling cascades in colon cancer cells. Biomolecules, 12(7), 891.PubMedPubMedCentralCrossRef Jung, Y. Y., Mohan, C. D., Eng, H., Narula, A. S., Namjoshi, O. A., Blough, B. E., et al. (2022). 2,3,5,6-Tetramethylpyrazine targets epithelial-mesenchymal transition by abrogating manganese superoxide dismutase expression and TGFβ-driven signaling cascades in colon cancer cells. Biomolecules, 12(7), 891.PubMedPubMedCentralCrossRef
88.
Zurück zum Zitat Chen, X., Zhang, S., Wang, Z., Wang, F., Cao, X., Wu, Q., et al. (2018). Supervillin promotes epithelial-mesenchymal transition and metastasis of hepatocellular carcinoma in hypoxia via activation of the RhoA/ROCK-ERK/p38 pathway. Journal of Experimental & Clinical Cancer Research, 37(1), 128. https://doi.org/10.1186/s13046-018-0787-2CrossRef Chen, X., Zhang, S., Wang, Z., Wang, F., Cao, X., Wu, Q., et al. (2018). Supervillin promotes epithelial-mesenchymal transition and metastasis of hepatocellular carcinoma in hypoxia via activation of the RhoA/ROCK-ERK/p38 pathway. Journal of Experimental & Clinical Cancer Research, 37(1), 128. https://​doi.​org/​10.​1186/​s13046-018-0787-2CrossRef
91.
Zurück zum Zitat Barreca, M. M., Zichittella, C., Alessandro, R., & Conigliaro, A. (2021). Hypoxia-induced non-coding RNAs controlling cell viability in cancer. International Journal of Molecular Sciences, 22(4), 1857.PubMedPubMedCentralCrossRef Barreca, M. M., Zichittella, C., Alessandro, R., & Conigliaro, A. (2021). Hypoxia-induced non-coding RNAs controlling cell viability in cancer. International Journal of Molecular Sciences, 22(4), 1857.PubMedPubMedCentralCrossRef
97.
Zurück zum Zitat Qin, W., Cao, Z.-Y., Liu, S.-Y., & Xu, X.-D. (2020). Recent advances regarding tumor microenvironment and immunotherapy in hepatocellular carcinoma. Hepatoma Research, 6, 24. Qin, W., Cao, Z.-Y., Liu, S.-Y., & Xu, X.-D. (2020). Recent advances regarding tumor microenvironment and immunotherapy in hepatocellular carcinoma. Hepatoma Research, 6, 24.
98.
Zurück zum Zitat Li, L., Yu, R., Cai, T., Chen, Z., Lan, M., Zou, T., et al. (2020). Effects of immune cells and cytokines on inflammation and immunosuppression in the tumor microenvironment. International Immunopharmacology, 88, 106939.PubMedCrossRef Li, L., Yu, R., Cai, T., Chen, Z., Lan, M., Zou, T., et al. (2020). Effects of immune cells and cytokines on inflammation and immunosuppression in the tumor microenvironment. International Immunopharmacology, 88, 106939.PubMedCrossRef
99.
Zurück zum Zitat Khandia, R., & Munjal, A. (2020). Interplay between inflammation and cancer. Advances in Protein Chemistry and Structural Biology, 119, 199–245.PubMedCrossRef Khandia, R., & Munjal, A. (2020). Interplay between inflammation and cancer. Advances in Protein Chemistry and Structural Biology, 119, 199–245.PubMedCrossRef
104.
Zurück zum Zitat Tcyganov, E., Mastio, J., Chen, E., & Gabrilovich, D. I. (2018). Plasticity of myeloid-derived suppressor cells in cancer. Current Opinion in Immunology, 51, 76–82.PubMedPubMedCentralCrossRef Tcyganov, E., Mastio, J., Chen, E., & Gabrilovich, D. I. (2018). Plasticity of myeloid-derived suppressor cells in cancer. Current Opinion in Immunology, 51, 76–82.PubMedPubMedCentralCrossRef
105.
Zurück zum Zitat Noman, M. Z., Desantis, G., Janji, B., Hasmim, M., Karray, S., Dessen, P., et al. (2014). PD-L1 is a novel direct target of HIF-1α, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. Journal of Experimental Medicine, 211(5), 781–790.PubMedPubMedCentralCrossRef Noman, M. Z., Desantis, G., Janji, B., Hasmim, M., Karray, S., Dessen, P., et al. (2014). PD-L1 is a novel direct target of HIF-1α, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. Journal of Experimental Medicine, 211(5), 781–790.PubMedPubMedCentralCrossRef
106.
Zurück zum Zitat Xia, H., Chen, J., Gao, H., Kong, S. N., Deivasigamani, A., Shi, M., et al. (2020). Hypoxia-induced modulation of glucose transporter expression impacts 18F-fluorodeoxyglucose PET-CT imaging in hepatocellular carcinoma. European Journal of Nuclear Medicine and Molecular Imaging, 47(4), 787–797.PubMedCrossRef Xia, H., Chen, J., Gao, H., Kong, S. N., Deivasigamani, A., Shi, M., et al. (2020). Hypoxia-induced modulation of glucose transporter expression impacts 18F-fluorodeoxyglucose PET-CT imaging in hepatocellular carcinoma. European Journal of Nuclear Medicine and Molecular Imaging, 47(4), 787–797.PubMedCrossRef
107.
Zurück zum Zitat Lei, Y., Hu, Q., & Gu, J. (2020). Expressions of carbohydrate response element binding protein and glucose transporters in liver cancer and clinical significance. Pathology & Oncology Research, 26(2), 1331–1340.CrossRef Lei, Y., Hu, Q., & Gu, J. (2020). Expressions of carbohydrate response element binding protein and glucose transporters in liver cancer and clinical significance. Pathology & Oncology Research, 26(2), 1331–1340.CrossRef
108.
Zurück zum Zitat Zhang, X., Guo, J., Kaboli, P. J., Zhao, Q., Xiang, S., Shen, J., et al. (2020). Analysis of key genes regulating the warburg effect in patients with gastrointestinal cancers and selective inhibition of this metabolic pathway in liver cancer cells. OncoTargets and therapy, 13, 7295.PubMedPubMedCentralCrossRef Zhang, X., Guo, J., Kaboli, P. J., Zhao, Q., Xiang, S., Shen, J., et al. (2020). Analysis of key genes regulating the warburg effect in patients with gastrointestinal cancers and selective inhibition of this metabolic pathway in liver cancer cells. OncoTargets and therapy, 13, 7295.PubMedPubMedCentralCrossRef
109.
Zurück zum Zitat Yu, H., He, J., Liu, W., Feng, S., Gao, L., Xu, Y., et al. (2021). The Transcriptional Coactivator, ALL1-Fused Gene From Chromosome 9, Simultaneously Sustains Hypoxia Tolerance and Metabolic Advantages in Liver Cancer . Hepatology, 74(4), 1952–1970. Yu, H., He, J., Liu, W., Feng, S., Gao, L., Xu, Y., et al. (2021). The Transcriptional Coactivator, ALL1-Fused Gene From Chromosome 9, Simultaneously Sustains Hypoxia Tolerance and Metabolic Advantages in Liver Cancer . Hepatology, 74(4), 1952–1970.
110.
Zurück zum Zitat Hu, M., Fu, Q., Jing, C., Zhang, X., Qin, T., & Pan, Y. (2020). LncRNA HOTAIR knockdown inhibits glycolysis by regulating miR-130a-3p/HIF1A in hepatocellular carcinoma under hypoxia. Biomedicine & Pharmacotherapy, 125, 109703.CrossRef Hu, M., Fu, Q., Jing, C., Zhang, X., Qin, T., & Pan, Y. (2020). LncRNA HOTAIR knockdown inhibits glycolysis by regulating miR-130a-3p/HIF1A in hepatocellular carcinoma under hypoxia. Biomedicine & Pharmacotherapy, 125, 109703.CrossRef
111.
Zurück zum Zitat Shao, S., Duan, W., Xu, Q., Li, X., Han, L., Li, W., et al. (2019). Curcumin suppresses hepatic stellate cell-induced hepatocarcinoma angiogenesis and invasion through downregulating CTGF. Oxidative Medicine and Cellular Longevity, 2019, 8148510. Shao, S., Duan, W., Xu, Q., Li, X., Han, L., Li, W., et al. (2019). Curcumin suppresses hepatic stellate cell-induced hepatocarcinoma angiogenesis and invasion through downregulating CTGF. Oxidative Medicine and Cellular Longevity, 2019, 8148510.
112.
Zurück zum Zitat Zuo, H. X., Jin, Y., Wang, Z., Li, M. Y., Zhang, Z. H., Wang, J. Y., et al. (2020). Curcumol inhibits the expression of programmed cell death-ligand 1 through crosstalk between hypoxia-inducible factor-1α and STAT3 (T705) signaling pathways in hepatic cancer. Journal of Ethnopharmacology, 257, 112835.PubMedCrossRef Zuo, H. X., Jin, Y., Wang, Z., Li, M. Y., Zhang, Z. H., Wang, J. Y., et al. (2020). Curcumol inhibits the expression of programmed cell death-ligand 1 through crosstalk between hypoxia-inducible factor-1α and STAT3 (T705) signaling pathways in hepatic cancer. Journal of Ethnopharmacology, 257, 112835.PubMedCrossRef
113.
Zurück zum Zitat Li, J., Wei, H., Liu, Y., Li, Q., Guo, H., Guo, Y., et al. (2020). Curcumin inhibits hepatocellular carcinoma via regulating miR-21/TIMP3 axis. Evidence-Based Complementary and Alternative Medicine, 2020, 2892917. Li, J., Wei, H., Liu, Y., Li, Q., Guo, H., Guo, Y., et al. (2020). Curcumin inhibits hepatocellular carcinoma via regulating miR-21/TIMP3 axis. Evidence-Based Complementary and Alternative Medicine, 2020, 2892917.
114.
Zurück zum Zitat Izzo, C., Annunziata, M., Melara, G., Sciorio, R., Dallio, M., Masarone, M., et al. (2021). The role of resveratrol in liver disease: A comprehensive review from in vitro to clinical trials. Nutrients, 13(3), 933.PubMedPubMedCentralCrossRef Izzo, C., Annunziata, M., Melara, G., Sciorio, R., Dallio, M., Masarone, M., et al. (2021). The role of resveratrol in liver disease: A comprehensive review from in vitro to clinical trials. Nutrients, 13(3), 933.PubMedPubMedCentralCrossRef
115.
Zurück zum Zitat Lim, H. Y., Ong, P. S., Wang, L., Goel, A., Ding, L., Wong, A.L.-A., et al. (2021). Celastrol in cancer therapy: Recent developments, challenges and prospects. Cancer Letters, 521, 252–267.PubMedCrossRef Lim, H. Y., Ong, P. S., Wang, L., Goel, A., Ding, L., Wong, A.L.-A., et al. (2021). Celastrol in cancer therapy: Recent developments, challenges and prospects. Cancer Letters, 521, 252–267.PubMedCrossRef
116.
Zurück zum Zitat Zhou, B., Yan, Z., Liu, R., Shi, P., Qian, S., Qu, X., et al. (2016). Prospective study of transcatheter arterial chemoembolization (TACE) with ginsenoside Rg3 versus TACE alone for the treatment of patients with advanced hepatocellular carcinoma. Radiology, 280(2), 630–639.PubMedCrossRef Zhou, B., Yan, Z., Liu, R., Shi, P., Qian, S., Qu, X., et al. (2016). Prospective study of transcatheter arterial chemoembolization (TACE) with ginsenoside Rg3 versus TACE alone for the treatment of patients with advanced hepatocellular carcinoma. Radiology, 280(2), 630–639.PubMedCrossRef
117.
Zurück zum Zitat Ma, Z., Xiang, X., Li, S., Xie, P., Gong, Q., Goh, B.-C., et al (2022). Targeting hypoxia-inducible factor-1, for cancer treatment: Recent advances in developing small-molecule inhibitors from natural compounds. Seminars in Cancer Biology, 80, 379–390. Ma, Z., Xiang, X., Li, S., Xie, P., Gong, Q., Goh, B.-C., et al (2022). Targeting hypoxia-inducible factor-1, for cancer treatment: Recent advances in developing small-molecule inhibitors from natural compounds. Seminars in Cancer Biology, 80, 379–390.
118.
Zurück zum Zitat Dai, Q., Yin, Q., Wei, L., Zhou, Y., Qiao, C., Guo, Y., et al. (2016). Oroxylin A regulates glucose metabolism in response to hypoxic stress with the involvement of Hypoxia-inducible factor-1 in human hepatoma HepG2 cells. Molecular Carcinogenesis, 55(8), 1275–1289.PubMedCrossRef Dai, Q., Yin, Q., Wei, L., Zhou, Y., Qiao, C., Guo, Y., et al. (2016). Oroxylin A regulates glucose metabolism in response to hypoxic stress with the involvement of Hypoxia-inducible factor-1 in human hepatoma HepG2 cells. Molecular Carcinogenesis, 55(8), 1275–1289.PubMedCrossRef
119.
Zurück zum Zitat Li, Y., Zhao, L., & Li, X.-F. (2021). Targeting hypoxia: Hypoxia-activated prodrugs in cancer therapy. Frontiers in Oncology, 11, 700407. Li, Y., Zhao, L., & Li, X.-F. (2021). Targeting hypoxia: Hypoxia-activated prodrugs in cancer therapy. Frontiers in Oncology, 11, 700407.
120.
Zurück zum Zitat Tran, N. H., Foster, N. R., Mahipal, A., Byrne, T., Hubbard, J., Silva, A., et al. (2021). Phase IB study of sorafenib and evofosfamide in patients with advanced hepatocellular and renal cell carcinomas (NCCTG N1135, Alliance). Investigational New Drugs, 39(4), 1072–1080.PubMedPubMedCentralCrossRef Tran, N. H., Foster, N. R., Mahipal, A., Byrne, T., Hubbard, J., Silva, A., et al. (2021). Phase IB study of sorafenib and evofosfamide in patients with advanced hepatocellular and renal cell carcinomas (NCCTG N1135, Alliance). Investigational New Drugs, 39(4), 1072–1080.PubMedPubMedCentralCrossRef
121.
Zurück zum Zitat Abi-Jaoudeh, N., Dayyani, F., Chen, P. J., Fernando, D., Fidelman, N., Javan, H., et al. (2021). Phase I trial on arterial embolization with hypoxia activated tirapazamine for unresectable hepatocellular carcinoma. Journal of Hepatocellular Carcinoma, 8, 421.PubMedPubMedCentralCrossRef Abi-Jaoudeh, N., Dayyani, F., Chen, P. J., Fernando, D., Fidelman, N., Javan, H., et al. (2021). Phase I trial on arterial embolization with hypoxia activated tirapazamine for unresectable hepatocellular carcinoma. Journal of Hepatocellular Carcinoma, 8, 421.PubMedPubMedCentralCrossRef
122.
Zurück zum Zitat Schneider, M. A., Linecker, M., Fritsch, R., Muehlematter, U. J., Stocker, D., Pestalozzi, B., et al. (2021). Phase Ib dose-escalation study of the hypoxia-modifier Myo-inositol trispyrophosphate in patients with hepatopancreatobiliary tumors. Nature communications, 12(1), 1–12.CrossRef Schneider, M. A., Linecker, M., Fritsch, R., Muehlematter, U. J., Stocker, D., Pestalozzi, B., et al. (2021). Phase Ib dose-escalation study of the hypoxia-modifier Myo-inositol trispyrophosphate in patients with hepatopancreatobiliary tumors. Nature communications, 12(1), 1–12.CrossRef
123.
Zurück zum Zitat Wu, J., Contratto, M., Shanbhogue, K. P., Manji, G. A., O’Neil, B. H., Noonan, A., et al. (2019). Evaluation of a locked nucleic acid form of antisense oligo targeting HIF-1α in advanced hepatocellular carcinoma. World Journal of Clinical Oncology, 10(3), 149.PubMedPubMedCentralCrossRef Wu, J., Contratto, M., Shanbhogue, K. P., Manji, G. A., O’Neil, B. H., Noonan, A., et al. (2019). Evaluation of a locked nucleic acid form of antisense oligo targeting HIF-1α in advanced hepatocellular carcinoma. World Journal of Clinical Oncology, 10(3), 149.PubMedPubMedCentralCrossRef
124.
Zurück zum Zitat Zhu, H., Wang, D.-D., Yuan, T., Yan, F.-J., Zeng, C.-M., Dai, X.-Y., et al. (2018). Multikinase inhibitor CT-707 targets liver cancer by interrupting the hypoxia-activated IGF-1R–YAP axis. Cancer Research, 78(14), 3995–4006.PubMedCrossRef Zhu, H., Wang, D.-D., Yuan, T., Yan, F.-J., Zeng, C.-M., Dai, X.-Y., et al. (2018). Multikinase inhibitor CT-707 targets liver cancer by interrupting the hypoxia-activated IGF-1R–YAP axis. Cancer Research, 78(14), 3995–4006.PubMedCrossRef
125.
Zurück zum Zitat Xu, J., Zheng, L., Chen, J., Sun, Y., Lin, H., Jin, R.-A., et al. (2017). Increasing AR by HIF-2α inhibitor (PT-2385) overcomes the side-effects of sorafenib by suppressing hepatocellular carcinoma invasion via alteration of pSTAT3, pAKT and pERK signals. Cell Death & Disease, 8(10), e3095–e3095.CrossRef Xu, J., Zheng, L., Chen, J., Sun, Y., Lin, H., Jin, R.-A., et al. (2017). Increasing AR by HIF-2α inhibitor (PT-2385) overcomes the side-effects of sorafenib by suppressing hepatocellular carcinoma invasion via alteration of pSTAT3, pAKT and pERK signals. Cell Death & Disease, 8(10), e3095–e3095.CrossRef
126.
Zurück zum Zitat Zhou, Y., Dong, X., Xiu, P., Wang, X., Yang, J., Li, L., et al. (2020). Meloxicam, a selective COX-2 inhibitor, mediates hypoxia-inducible factor-(HIF-) 1α signaling in hepatocellular carcinoma. Oxidative Medicine and Cellular Longevity, 2020, 7079308. Zhou, Y., Dong, X., Xiu, P., Wang, X., Yang, J., Li, L., et al. (2020). Meloxicam, a selective COX-2 inhibitor, mediates hypoxia-inducible factor-(HIF-) 1α signaling in hepatocellular carcinoma. Oxidative Medicine and Cellular Longevity, 2020, 7079308.
128.
Zurück zum Zitat Zou, M.-Z., Liu, W.-L., Chen, H.-S., Bai, X.-F., Gao, F., Ye, J.-J., et al. (2021). Advances in nanomaterials for treatment of hypoxic tumor. National Science Review, 8(2), nwaa160.PubMedCrossRef Zou, M.-Z., Liu, W.-L., Chen, H.-S., Bai, X.-F., Gao, F., Ye, J.-J., et al. (2021). Advances in nanomaterials for treatment of hypoxic tumor. National Science Review, 8(2), nwaa160.PubMedCrossRef
129.
Zurück zum Zitat Cavalli, R., Soster, M., & Argenziano, M. (2016). Nanobubbles: A promising efficienft tool for therapeutic delivery. Therapeutic delivery, 7(2), 117–138.PubMedCrossRef Cavalli, R., Soster, M., & Argenziano, M. (2016). Nanobubbles: A promising efficienft tool for therapeutic delivery. Therapeutic delivery, 7(2), 117–138.PubMedCrossRef
131.
Zurück zum Zitat Khan, M. S., Hwang, J., Lee, K., Choi, Y., Seo, Y., Jeon, H., et al. (2019). Anti-tumor drug-loaded oxygen nanobubbles for the degradation of HIF-1α and the upregulation of reactive oxygen species in tumor cells. Cancers (Basel), 11(10), 1464.PubMedCrossRef Khan, M. S., Hwang, J., Lee, K., Choi, Y., Seo, Y., Jeon, H., et al. (2019). Anti-tumor drug-loaded oxygen nanobubbles for the degradation of HIF-1α and the upregulation of reactive oxygen species in tumor cells. Cancers (Basel), 11(10), 1464.PubMedCrossRef
132.
Zurück zum Zitat Li, H., Chen, J., Zen, W., Xu, X., Xu, Y., Chen, Q., et al. (2015). Effect of hypoxia inducible factor-1 antisense oligonucleotide on liver cancer. International Journal of Clinical and Experimental Medicine, 8(8), 12650.PubMedPubMedCentral Li, H., Chen, J., Zen, W., Xu, X., Xu, Y., Chen, Q., et al. (2015). Effect of hypoxia inducible factor-1 antisense oligonucleotide on liver cancer. International Journal of Clinical and Experimental Medicine, 8(8), 12650.PubMedPubMedCentral
133.
Zurück zum Zitat Vanderborght, B., De Muynck, K., Lefere, S., Geerts, A., Degroote, H., Verhelst, X., et al. (2020). Effect of isoform-specific HIF-1α and HIF-2α antisense oligonucleotides on tumorigenesis, inflammation and fibrosis in a hepatocellular carcinoma mouse model. Oncotarget, 11(48), 4504.PubMedPubMedCentralCrossRef Vanderborght, B., De Muynck, K., Lefere, S., Geerts, A., Degroote, H., Verhelst, X., et al. (2020). Effect of isoform-specific HIF-1α and HIF-2α antisense oligonucleotides on tumorigenesis, inflammation and fibrosis in a hepatocellular carcinoma mouse model. Oncotarget, 11(48), 4504.PubMedPubMedCentralCrossRef
139.
Zurück zum Zitat Merarchi, M., Sethi, G., Shanmugam, M. K., Fan, L., Arfuso, F., & Ahn, K. S. (2019). Role of natural products in modulating histone deacetylases in cancer. Molecules, 24(6), 1047.PubMedPubMedCentralCrossRef Merarchi, M., Sethi, G., Shanmugam, M. K., Fan, L., Arfuso, F., & Ahn, K. S. (2019). Role of natural products in modulating histone deacetylases in cancer. Molecules, 24(6), 1047.PubMedPubMedCentralCrossRef
142.
Zurück zum Zitat Manu, K. A., Shanmugam, M. K., Ramachandran, L., Li, F., Fong, C. W., Kumar, A. P., et al. (2012). First evidence that γ-tocotrienol inhibits the growth of human gastric cancer and chemosensitizes it to capecitabine in a xenograft mouse model through the modulation of NF-κB pathway. Clinical Cancer Research, 18(8), 2220–2229. https://doi.org/10.1158/1078-0432.ccr-11-2470CrossRefPubMed Manu, K. A., Shanmugam, M. K., Ramachandran, L., Li, F., Fong, C. W., Kumar, A. P., et al. (2012). First evidence that γ-tocotrienol inhibits the growth of human gastric cancer and chemosensitizes it to capecitabine in a xenograft mouse model through the modulation of NF-κB pathway. Clinical Cancer Research, 18(8), 2220–2229. https://​doi.​org/​10.​1158/​1078-0432.​ccr-11-2470CrossRefPubMed
144.
Zurück zum Zitat Lee, J. H., Rangappa, S., Mohan, C. D., Basappa Sethi, G., Lin, Z.-X., et al. (2019). Brusatol, a Nrf2 inhibitor targets STAT3 signaling cascade in head and neck squamous cell carcinoma. Biomolecules, 9(10), 550.PubMedPubMedCentralCrossRef Lee, J. H., Rangappa, S., Mohan, C. D., Basappa Sethi, G., Lin, Z.-X., et al. (2019). Brusatol, a Nrf2 inhibitor targets STAT3 signaling cascade in head and neck squamous cell carcinoma. Biomolecules, 9(10), 550.PubMedPubMedCentralCrossRef
145.
Zurück zum Zitat Lee, J. H., Mohan, C. D., Basappa, S., Rangappa, S., Chinnathambi, A., Alahmadi, T. A., et al. (2019). The IκB kinase inhibitor ACHP targets the STAT3 signaling pathway in human non-small cell lung carcinoma cells. Biomolecules, 9(12), 875.PubMedPubMedCentralCrossRef Lee, J. H., Mohan, C. D., Basappa, S., Rangappa, S., Chinnathambi, A., Alahmadi, T. A., et al. (2019). The IκB kinase inhibitor ACHP targets the STAT3 signaling pathway in human non-small cell lung carcinoma cells. Biomolecules, 9(12), 875.PubMedPubMedCentralCrossRef
148.
Zurück zum Zitat Li, S., Yu, Y., Bian, X., Yao, L., Li, M., Lou, Y.-R., et al. (2021). Prediction of oral hepatotoxic dose of natural products derived from traditional Chinese medicines based on SVM classifier and PBPK modeling. Archives of Toxicology, 95(5), 1683–1701.PubMedCrossRef Li, S., Yu, Y., Bian, X., Yao, L., Li, M., Lou, Y.-R., et al. (2021). Prediction of oral hepatotoxic dose of natural products derived from traditional Chinese medicines based on SVM classifier and PBPK modeling. Archives of Toxicology, 95(5), 1683–1701.PubMedCrossRef
Metadaten
Titel
Hypoxia signaling in hepatocellular carcinoma: Challenges and therapeutic opportunities
verfasst von
Shant Qinxiang Sin
Chakrabhavi Dhananjaya Mohan
Robby Miguel Wen-Jing Goh
Mingliang You
Siddaiah Chandra Nayak
Lu Chen
Gautam Sethi
Kanchugarakoppal Subbegowda Rangappa
Lingzhi Wang
Publikationsdatum
22.12.2022
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 3/2023
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-022-10071-1

Weitere Artikel der Ausgabe 3/2023

Cancer and Metastasis Reviews 3/2023 Zur Ausgabe

Announcement

Biographies

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Erhöhtes Risiko fürs Herz unter Checkpointhemmer-Therapie

28.05.2024 Nebenwirkungen der Krebstherapie Nachrichten

Kardiotoxische Nebenwirkungen einer Therapie mit Immuncheckpointhemmern mögen selten sein – wenn sie aber auftreten, wird es für Patienten oft lebensgefährlich. Voruntersuchung und Monitoring sind daher obligat.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.