Skip to main content
Erschienen in: Cancer and Metastasis Reviews 3/2023

27.03.2023

Oral delivery of RNAi for cancer therapy

verfasst von: Humayra Afrin, Renu Geetha Bai, Raj Kumar, Sheikh Shafin Ahmad, Sandeep K. Agarwal, Md Nurunnabi

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 3/2023

Einloggen, um Zugang zu erhalten

Abstract

Cancer is a major health concern worldwide and is still in a continuous surge of seeking for effective treatments. Since the discovery of RNAi and their mechanism of action, it has shown promises in targeted therapy for various diseases including cancer. The ability of RNAi to selectively silence the carcinogenic gene makes them ideal as cancer therapeutics. Oral delivery is the ideal route of administration of drug administration because of its patients’ compliance and convenience. However, orally administered RNAi, for instance, siRNA, must cross various extracellular and intracellular biological barriers before it reaches the site of action. It is very challenging and important to keep the siRNA stable until they reach to the targeted site. Harsh pH, thick mucus layer, and nuclease enzyme prevent siRNA to diffuse through the intestinal wall and thereby induce a therapeutic effect. After entering the cell, siRNA is subjected to lysosomal degradation. Over the years, various approaches have been taken into consideration to overcome these challenges for oral RNAi delivery. Therefore, understanding the challenges and recent development is crucial to offer a novel and advanced approach for oral RNAi delivery. Herein, we have summarized the delivery strategies for oral delivery RNAi and recent advancement towards the preclinical stages.
Literatur
5.
Zurück zum Zitat Gavrilov, K., & Saltzman, W. M. (2012). Therapeutic siRNA: Principles, challenges, and strategies. Yale Journal of Biology and Medicine, 85(2), 187–200.PubMedPubMedCentral Gavrilov, K., & Saltzman, W. M. (2012). Therapeutic siRNA: Principles, challenges, and strategies. Yale Journal of Biology and Medicine, 85(2), 187–200.PubMedPubMedCentral
14.
Zurück zum Zitat Huda, M. N., Deaguro, I. G., Borrego, E. A., Kumar, R., Islam, T., Afrin, H., Varela-Ramirez, A., Aguilera, R. J., Tanner, E. E. L., & Nurunnabi, M. (2022). Ionic liquid-mediated delivery of a BCL-2 inhibitor for topical treatment of skin melanoma. Journal of Controlled Release, 349, 783–795.PubMedPubMedCentralCrossRef Huda, M. N., Deaguro, I. G., Borrego, E. A., Kumar, R., Islam, T., Afrin, H., Varela-Ramirez, A., Aguilera, R. J., Tanner, E. E. L., & Nurunnabi, M. (2022). Ionic liquid-mediated delivery of a BCL-2 inhibitor for topical treatment of skin melanoma. Journal of Controlled Release, 349, 783–795.PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Afrin, H., Huda, M. N., Islam, T., Oropeza, B. P., Alvidrez, E., Abir, M. I., Boland, T., Turbay, D., & Nurunnabi, M. (2022). Detection of anticancer drug-induced cardiotoxicity using VCAM1-targeted nanoprobes. ACS Applied Materials & Interfaces, 14(33), 37566–37576. https://doi.org/10.1021/acsami.2c13019CrossRef Afrin, H., Huda, M. N., Islam, T., Oropeza, B. P., Alvidrez, E., Abir, M. I., Boland, T., Turbay, D., & Nurunnabi, M. (2022). Detection of anticancer drug-induced cardiotoxicity using VCAM1-targeted nanoprobes. ACS Applied Materials & Interfaces, 14(33), 37566–37576. https://​doi.​org/​10.​1021/​acsami.​2c13019CrossRef
16.
Zurück zum Zitat de Fougerolles, A., Vornlocher, H.-P., Maraganore, J., & Lieberman, J. (2007). Interfering with disease: A progress report on siRNA-based therapeutics. Nature Reviews Drug Discovery, 6(6), 443–453.PubMedPubMedCentralCrossRef de Fougerolles, A., Vornlocher, H.-P., Maraganore, J., & Lieberman, J. (2007). Interfering with disease: A progress report on siRNA-based therapeutics. Nature Reviews Drug Discovery, 6(6), 443–453.PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat Ye, Q.-F., Zhang, Y.-C., Peng, X.-Q., Long, Z., Ming, Y.-Z., & He, L.-Y. (2012). Silencing Notch-1 induces apoptosis and increases the chemosensitivity of prostate cancer cells to docetaxel through Bcl-2 and Bax. Oncology Letters, 3(4), 879–884.PubMedPubMedCentral Ye, Q.-F., Zhang, Y.-C., Peng, X.-Q., Long, Z., Ming, Y.-Z., & He, L.-Y. (2012). Silencing Notch-1 induces apoptosis and increases the chemosensitivity of prostate cancer cells to docetaxel through Bcl-2 and Bax. Oncology Letters, 3(4), 879–884.PubMedPubMedCentral
18.
Zurück zum Zitat Bai, Z., Zhang, Z., Qu, X., Han, W., & Ma, X. (2012). Sensitization of breast cancer cells to taxol by inhibition of taxol resistance gene 1. Oncology Letters, 3(1), 135–140.CrossRef Bai, Z., Zhang, Z., Qu, X., Han, W., & Ma, X. (2012). Sensitization of breast cancer cells to taxol by inhibition of taxol resistance gene 1. Oncology Letters, 3(1), 135–140.CrossRef
19.
Zurück zum Zitat Naghizadeh, S., Mohammadi, A., Baradaran, B., & Mansoori, B. (2019). Overcoming multiple drug resistance in lung cancer using siRNA targeted therapy. Gene, 714, 143972.PubMedCrossRef Naghizadeh, S., Mohammadi, A., Baradaran, B., & Mansoori, B. (2019). Overcoming multiple drug resistance in lung cancer using siRNA targeted therapy. Gene, 714, 143972.PubMedCrossRef
20.
Zurück zum Zitat Meng, H., Mai, W. X., Zhang, H., Xue, M., Xia, T., Lin, S., Wang, X., Zhao, Y., Ji, Z., Zink, J. I., & Nel, A. E. (2013). Codelivery of an optimal drug/siRNA combination using mesoporous silica nanoparticles to overcome drug resistance in breast cancer in vitro and in vivo. ACS Nano, 7(2), 994–1005.PubMedPubMedCentralCrossRef Meng, H., Mai, W. X., Zhang, H., Xue, M., Xia, T., Lin, S., Wang, X., Zhao, Y., Ji, Z., Zink, J. I., & Nel, A. E. (2013). Codelivery of an optimal drug/siRNA combination using mesoporous silica nanoparticles to overcome drug resistance in breast cancer in vitro and in vivo. ACS Nano, 7(2), 994–1005.PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Schiffelers, R. M., Ansari, A., Xu, J., Zhou, Q., Tang, Q., Storm, G., Molema, G., Lu, P. Y., Scaria, P. V., & Woodle, M. C. (2004). Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucleic Acids Research, 32(19), e149–e149.PubMedPubMedCentralCrossRef Schiffelers, R. M., Ansari, A., Xu, J., Zhou, Q., Tang, Q., Storm, G., Molema, G., Lu, P. Y., Scaria, P. V., & Woodle, M. C. (2004). Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucleic Acids Research, 32(19), e149–e149.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Huang, Y. Y. (2019). Approval of the first-ever RNAi therapeutics and its technological development history. Progress in Biochemistry and Biophysics, 46, 313–322. Huang, Y. Y. (2019). Approval of the first-ever RNAi therapeutics and its technological development history. Progress in Biochemistry and Biophysics, 46, 313–322.
35.
Zurück zum Zitat Weng, Y. (2019). RNAi therapeutic and its innovative biotechnological evolution. Biotechnology Advances, 37, 801–825.PubMedCrossRef Weng, Y. (2019). RNAi therapeutic and its innovative biotechnological evolution. Biotechnology Advances, 37, 801–825.PubMedCrossRef
36.
Zurück zum Zitat Blythe, R. H. (1956). Sympathomimetic preparation. Google Patents. Blythe, R. H. (1956). Sympathomimetic preparation. Google Patents.
37.
Zurück zum Zitat Barenholz, Y. C. (2012). Doxil®—The first FDA-approved nano-drug: Lessons learned. Journal of Controlled Release, 160(2), 117–134.PubMedCrossRef Barenholz, Y. C. (2012). Doxil®—The first FDA-approved nano-drug: Lessons learned. Journal of Controlled Release, 160(2), 117–134.PubMedCrossRef
38.
Zurück zum Zitat Abuchowski, A., McCoy, J. R., Palczuk, N. C., van Es, T., & Davis, F. F. (1977). Effect of covalent attachment of polyethylene glycol on immunogenicity and circulating life of bovine liver catalase. Journal of Biological Chemistry, 252(11), 3582–3586.PubMedCrossRef Abuchowski, A., McCoy, J. R., Palczuk, N. C., van Es, T., & Davis, F. F. (1977). Effect of covalent attachment of polyethylene glycol on immunogenicity and circulating life of bovine liver catalase. Journal of Biological Chemistry, 252(11), 3582–3586.PubMedCrossRef
40.
Zurück zum Zitat Jones, D. H., Corris, S., McDonald, S., Clegg, J. C. S., & Farrar, G. H. (1997). Poly (DL-lactide-co-glycolide)-encapsulated plasmid DNA elicits systemic and mucosal antibody responses to encoded protein after oral administration. Vaccine, 15(8), 814–817.PubMedCrossRef Jones, D. H., Corris, S., McDonald, S., Clegg, J. C. S., & Farrar, G. H. (1997). Poly (DL-lactide-co-glycolide)-encapsulated plasmid DNA elicits systemic and mucosal antibody responses to encoded protein after oral administration. Vaccine, 15(8), 814–817.PubMedCrossRef
44.
Zurück zum Zitat Tahara, K., Samura, S., Tsuji, K., Yamamoto, H., Tsukada, Y., Bando, Y., Tsujimoto, H., Morishita, R., & Kawashima, Y. (2011). Oral nuclear factor-κB decoy oligonucleotides delivery system with chitosan modified poly (D, L-lactide-co-glycolide) nanospheres for inflammatory bowel disease. Biomaterials, 32(3), 870–878.PubMedCrossRef Tahara, K., Samura, S., Tsuji, K., Yamamoto, H., Tsukada, Y., Bando, Y., Tsujimoto, H., Morishita, R., & Kawashima, Y. (2011). Oral nuclear factor-κB decoy oligonucleotides delivery system with chitosan modified poly (D, L-lactide-co-glycolide) nanospheres for inflammatory bowel disease. Biomaterials, 32(3), 870–878.PubMedCrossRef
45.
Zurück zum Zitat Zhang, J., Tang, C., & Yin, C. (2013). Galactosylated trimethyl chitosan–cysteine nanoparticles loaded with Map4k4 siRNA for targeting activated macrophages. Biomaterials, 34(14), 3667–3677.PubMedCrossRef Zhang, J., Tang, C., & Yin, C. (2013). Galactosylated trimethyl chitosan–cysteine nanoparticles loaded with Map4k4 siRNA for targeting activated macrophages. Biomaterials, 34(14), 3667–3677.PubMedCrossRef
46.
Zurück zum Zitat Khare, P., Dave, K. M., Kamte, Y. S., Manoharan, M. A., O’Donnell, L. A., & Manickam, D. S. (2021). Development of lipidoid nanoparticles for siRNA delivery to neural cells. The AAPS journal, 24(1), 8.PubMedCrossRef Khare, P., Dave, K. M., Kamte, Y. S., Manoharan, M. A., O’Donnell, L. A., & Manickam, D. S. (2021). Development of lipidoid nanoparticles for siRNA delivery to neural cells. The AAPS journal, 24(1), 8.PubMedCrossRef
47.
Zurück zum Zitat Taira, M. C., Chiaramoni, N. S., Pecuch, K. M., & Alonso-Romanowski, S. (2004). Stability of liposomal formulations in physiological conditions for oral drug delivery. Drug Delivery, 11(2), 123–128.PubMedCrossRef Taira, M. C., Chiaramoni, N. S., Pecuch, K. M., & Alonso-Romanowski, S. (2004). Stability of liposomal formulations in physiological conditions for oral drug delivery. Drug Delivery, 11(2), 123–128.PubMedCrossRef
52.
Zurück zum Zitat Guyton, A. C., & Hall, J. E. (1986). Textbook of medical physiology. Elsevier and Saunders. Guyton, A. C., & Hall, J. E. (1986). Textbook of medical physiology. Elsevier and Saunders.
57.
Zurück zum Zitat Atuma, C., Strugala, V., Allen, A., & Holm, L. (2001). The adherent gastrointestinal mucus gel layer thickness and physical state in vivo. American Journal of Physiology-Gastrointestinal and Liver Physiology, 280(5), G922–G929. Atuma, C., Strugala, V., Allen, A., & Holm, L. (2001). The adherent gastrointestinal mucus gel layer thickness and physical state in vivo. American Journal of Physiology-Gastrointestinal and Liver Physiology, 280(5), G922–G929.
58.
Zurück zum Zitat Shen, L., & Sasakawa, C. (2009). Molecular mechanisms of bacterial infection via the gut. Springer. Shen, L., & Sasakawa, C. (2009). Molecular mechanisms of bacterial infection via the gut. Springer.
59.
Zurück zum Zitat Cone, R. A. (2009). Barrier properties of mucus. Advanced Drug Delivery Reviews, 61(2), 75–85.PubMedCrossRef Cone, R. A. (2009). Barrier properties of mucus. Advanced Drug Delivery Reviews, 61(2), 75–85.PubMedCrossRef
61.
62.
Zurück zum Zitat Wang, Y.-Y., Schroeder, H. A., Nunn, K. L., Woods, K., Anderson, D. J., Lai, S. K., & Cone, R. A. (2016). Diffusion of immunoglobulin g in shed vaginal epithelial cells and in cell-free regions of human cervicovaginal mucus. PLoS ONE, 11(6), e0158338.PubMedPubMedCentralCrossRef Wang, Y.-Y., Schroeder, H. A., Nunn, K. L., Woods, K., Anderson, D. J., Lai, S. K., & Cone, R. A. (2016). Diffusion of immunoglobulin g in shed vaginal epithelial cells and in cell-free regions of human cervicovaginal mucus. PLoS ONE, 11(6), e0158338.PubMedPubMedCentralCrossRef
64.
Zurück zum Zitat Maturin, L., Sr., & Curtiss, R., III. (1977). Degradation of DNA by nucleases in intestinal tract of rats. Science, 196(4286), 216–218.PubMedCrossRef Maturin, L., Sr., & Curtiss, R., III. (1977). Degradation of DNA by nucleases in intestinal tract of rats. Science, 196(4286), 216–218.PubMedCrossRef
67.
Zurück zum Zitat Geary, R. S., Khatsenko, O., Bunker, K., Crooke, R., Moore, M., Burckin, T., Truong, L., Sasmor, H., & Levin, A. A. (2001). Absolute bioavailability of 2′-O-(2-methoxyethyl)-modified antisense oligonucleotides following intraduodenal instillation in rats. Journal of Pharmacology and Experimental Therapeutics, 296(3), 898–904.PubMed Geary, R. S., Khatsenko, O., Bunker, K., Crooke, R., Moore, M., Burckin, T., Truong, L., Sasmor, H., & Levin, A. A. (2001). Absolute bioavailability of 2′-O-(2-methoxyethyl)-modified antisense oligonucleotides following intraduodenal instillation in rats. Journal of Pharmacology and Experimental Therapeutics, 296(3), 898–904.PubMed
68.
Zurück zum Zitat Bennett, K. M., Walker, S. L., & Lo, D. D. (2014). Epithelial microvilli establish an electrostatic barrier to microbial adhesion. Infection and immunity, 82(7), 2860–2871.PubMedPubMedCentralCrossRef Bennett, K. M., Walker, S. L., & Lo, D. D. (2014). Epithelial microvilli establish an electrostatic barrier to microbial adhesion. Infection and immunity, 82(7), 2860–2871.PubMedPubMedCentralCrossRef
69.
Zurück zum Zitat Goldberg, M. (2003). Gomez-Orellana I. Challenges for the oral delivery of macromolecules. Nature Reviews. Drug Discovery, 2, 289–295.PubMedCrossRef Goldberg, M. (2003). Gomez-Orellana I. Challenges for the oral delivery of macromolecules. Nature Reviews. Drug Discovery, 2, 289–295.PubMedCrossRef
70.
Zurück zum Zitat Luzio, J. P., Pryor, P. R., & Bright, N. A. (2007). Lysosomes: Fusion and function. Nature Reviews Molecular Cell Biology, 8(8), 622–632.PubMedCrossRef Luzio, J. P., Pryor, P. R., & Bright, N. A. (2007). Lysosomes: Fusion and function. Nature Reviews Molecular Cell Biology, 8(8), 622–632.PubMedCrossRef
71.
Zurück zum Zitat Maxfield, F. R., & McGraw, T. E. (2004). Endocytic recycling. Nature reviews Molecular cell biology, 5(2), 121–132.PubMedCrossRef Maxfield, F. R., & McGraw, T. E. (2004). Endocytic recycling. Nature reviews Molecular cell biology, 5(2), 121–132.PubMedCrossRef
72.
78.
Zurück zum Zitat Woodle, M. C., & Lu, P. Y. (2005). Nanoparticles deliver RNAi therapy. Materials Today, 8, 34–41.CrossRef Woodle, M. C., & Lu, P. Y. (2005). Nanoparticles deliver RNAi therapy. Materials Today, 8, 34–41.CrossRef
79.
Zurück zum Zitat Gupta, N., Rai, D. B., Jangid, A. K., Pooja, D., & Kulhari, H. (2019). Nanomaterials-based siRNA delivery: Routes of administration, hurdles and role of nanocarriers. In S. Singh & P. K. Maurya (Eds.), Nanotechnology in modern animal biotechnology: Recent trends and future perspectives (pp. 67–114). Springer. https://doi.org/10.1007/978-981-13-6004-6_3 Gupta, N., Rai, D. B., Jangid, A. K., Pooja, D., & Kulhari, H. (2019). Nanomaterials-based siRNA delivery: Routes of administration, hurdles and role of nanocarriers. In S. Singh & P. K. Maurya (Eds.), Nanotechnology in modern animal biotechnology: Recent trends and future perspectives (pp. 67–114). Springer. https://​doi.​org/​10.​1007/​978-981-13-6004-6_​3
80.
Zurück zum Zitat Eloy, J. O., Petrilli, R., Raspantini, G. L., & Lee, R. J. (2018). Targeted liposomes for siRNA delivery to cancer. Current Pharmaceutical Design, 24(23), 2664–2672.PubMedCrossRef Eloy, J. O., Petrilli, R., Raspantini, G. L., & Lee, R. J. (2018). Targeted liposomes for siRNA delivery to cancer. Current Pharmaceutical Design, 24(23), 2664–2672.PubMedCrossRef
81.
Zurück zum Zitat Etheridge, M. L., Campbell, S. A., Erdman, A. G., Haynes, C. L., Wolf, S. M., & McCullough, J. (2013). The big picture on nanomedicine: The state of investigational and approved nanomedicine products. Nanomedicine: Nanotechnology, Biology and Medicine, 9(1), 1–14.PubMedCrossRef Etheridge, M. L., Campbell, S. A., Erdman, A. G., Haynes, C. L., Wolf, S. M., & McCullough, J. (2013). The big picture on nanomedicine: The state of investigational and approved nanomedicine products. Nanomedicine: Nanotechnology, Biology and Medicine, 9(1), 1–14.PubMedCrossRef
84.
Zurück zum Zitat Kanasty, R., Dorkin, J. R., Vegas, A., & Anderson, D. (2013). Delivery materials for siRNA therapeutics. Nature Materials, 12(11), 967–977.PubMedCrossRef Kanasty, R., Dorkin, J. R., Vegas, A., & Anderson, D. (2013). Delivery materials for siRNA therapeutics. Nature Materials, 12(11), 967–977.PubMedCrossRef
85.
Zurück zum Zitat Xia, Y., Tian, J., & Chen, X. (2016). Effect of surface properties on liposomal siRNA delivery. Biomaterials, 79, 56–68.PubMedCrossRef Xia, Y., Tian, J., & Chen, X. (2016). Effect of surface properties on liposomal siRNA delivery. Biomaterials, 79, 56–68.PubMedCrossRef
86.
Zurück zum Zitat Wang, C., Liu, Q., Zhang, Z., Wang, Y., Zheng, Y., Hao, J., Zhao, X., Liu, Y., & Shi, L. (2021). Tumor targeted delivery of siRNA by a nano-scale quaternary polyplex for cancer treatment. Chemical Engineering Journal, 425, 130590.CrossRef Wang, C., Liu, Q., Zhang, Z., Wang, Y., Zheng, Y., Hao, J., Zhao, X., Liu, Y., & Shi, L. (2021). Tumor targeted delivery of siRNA by a nano-scale quaternary polyplex for cancer treatment. Chemical Engineering Journal, 425, 130590.CrossRef
87.
Zurück zum Zitat Hattori, Y., Tamaki, K., Sakasai, S., Ozaki, K., & Onishi, H. (2020). Effects of PEG anchors in PEGylated siRNA lipoplexes on in vitro gene-silencing effects and siRNA biodistribution in mice. Molecular Medicine Reports, 22(5), 4183–4196. Hattori, Y., Tamaki, K., Sakasai, S., Ozaki, K., & Onishi, H. (2020). Effects of PEG anchors in PEGylated siRNA lipoplexes on in vitro gene-silencing effects and siRNA biodistribution in mice. Molecular Medicine Reports, 22(5), 4183–4196.
88.
Zurück zum Zitat Lee, H., Lytton-Jean, A. K. R., Chen, Y., Love, K. T., Park, A. I., Karagiannis, E. D., Sehgal, A., Querbes, W., Zurenko, C. S., Jayaraman, M., Peng, C. G., Charisse, K., Borodovsky, A., Manoharan, M., Donahoe, J. S., Truelove, J., Nahrendorf, M., Langer, R., & Anderson, D. G. (2012). Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery. Nature Nanotechnology, 7(6), 389–393. Lee, H., Lytton-Jean, A. K. R., Chen, Y., Love, K. T., Park, A. I., Karagiannis, E. D., Sehgal, A., Querbes, W., Zurenko, C. S., Jayaraman, M., Peng, C. G., Charisse, K., Borodovsky, A., Manoharan, M., Donahoe, J. S., Truelove, J., Nahrendorf, M., Langer, R., & Anderson, D. G. (2012). Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery. Nature Nanotechnology, 7(6), 389–393.
89.
Zurück zum Zitat Shim, G., Choi, H., Lee, S., Choi, J., Yu, Y. H., Park, D.-E., Choi, Y., Kim, C.-W., & Oh, Y.-K. (2013). Enhanced intrapulmonary delivery of anticancer siRNA for lung cancer therapy using cationic ethylphosphocholine-based nanolipoplexes. Molecular Therapy, 21(4), 816–824.PubMedPubMedCentralCrossRef Shim, G., Choi, H., Lee, S., Choi, J., Yu, Y. H., Park, D.-E., Choi, Y., Kim, C.-W., & Oh, Y.-K. (2013). Enhanced intrapulmonary delivery of anticancer siRNA for lung cancer therapy using cationic ethylphosphocholine-based nanolipoplexes. Molecular Therapy, 21(4), 816–824.PubMedPubMedCentralCrossRef
90.
Zurück zum Zitat Ball, R. L., Knapp, C. M., & Whitehead, K. A. (2015). Lipidoid nanoparticles for siRNA delivery to the intestinal epithelium: In vitro investigations in a Caco-2 model. PLoS ONE, 10(7), e0133154. Ball, R. L., Knapp, C. M., & Whitehead, K. A. (2015). Lipidoid nanoparticles for siRNA delivery to the intestinal epithelium: In vitro investigations in a Caco-2 model. PLoS ONE, 10(7), e0133154.
91.
Zurück zum Zitat Ball, R. L., Bajaj, P., & Whitehead, K. A. (2018). Oral delivery of siRNA lipid nanoparticles: Fate in the GI tract. Scientific Reports, 8(1), 1–12.CrossRef Ball, R. L., Bajaj, P., & Whitehead, K. A. (2018). Oral delivery of siRNA lipid nanoparticles: Fate in the GI tract. Scientific Reports, 8(1), 1–12.CrossRef
92.
Zurück zum Zitat Beuzelin, D., Pitard, B., & Kaeffer, B. (2019). Oral delivery of miRNA with lipidic aminoglycoside derivatives in the breastfed rat. Frontiers in physiology, 10, 1037.PubMedPubMedCentralCrossRef Beuzelin, D., Pitard, B., & Kaeffer, B. (2019). Oral delivery of miRNA with lipidic aminoglycoside derivatives in the breastfed rat. Frontiers in physiology, 10, 1037.PubMedPubMedCentralCrossRef
93.
Zurück zum Zitat Tavares, G. A., Torres, A., Le Drean, G., Queignec, M., Castellano, B., Tesson, L., Remy, S., Anegon, I., Pitard, B., & Kaeffer, B. (2022). Oral delivery of miR-320–3p with lipidic aminoglycoside derivatives at mid-lactation alters miR-320–3p endogenous levels in the gut and brain of adult rats according to early or regular weaning. International Journal of Molecular Sciences, 24(1), 191.PubMedPubMedCentralCrossRef Tavares, G. A., Torres, A., Le Drean, G., Queignec, M., Castellano, B., Tesson, L., Remy, S., Anegon, I., Pitard, B., & Kaeffer, B. (2022). Oral delivery of miR-320–3p with lipidic aminoglycoside derivatives at mid-lactation alters miR-320–3p endogenous levels in the gut and brain of adult rats according to early or regular weaning. International Journal of Molecular Sciences, 24(1), 191.PubMedPubMedCentralCrossRef
94.
Zurück zum Zitat Chen, Q., Zhang, F., Dong, L., Wu, H., Xu, J., Li, H., Wang, J., Zhou, Z., Liu, C., Wang, Y., Liu, Y., Lu, L., Wang, C., Liu, M., Chen, X., Wang, C., Zhang, C., Li, D., Zen, K., Wang, F., Zhang, Q., & Wang, C.-Y. (2021). SIDT1-dependent absorption in the stomach mediates host uptake of dietary and orally administered microRNAs. Cell Research, 31(3), 247–258. Chen, Q., Zhang, F., Dong, L., Wu, H., Xu, J., Li, H., Wang, J., Zhou, Z., Liu, C., Wang, Y., Liu, Y., Lu, L., Wang, C., Liu, M., Chen, X., Wang, C., Zhang, C., Li, D., Zen, K., Wang, F., Zhang, Q., & Wang, C.-Y. (2021). SIDT1-dependent absorption in the stomach mediates host uptake of dietary and orally administered microRNAs. Cell Research, 31(3), 247–258.
95.
Zurück zum Zitat Çetin, M., Aytekin, E., Yavuz, B., & Bozdağ-Pehlivan, S. (2017). Nanoscience in targeted brain drug delivery. In Y. Gürsoy-Özdemir, S. Bozdağ-Pehlivan, & E. Sekerdag (Eds.), Nanotechnology methods for neurological diseases and brain tumors (pp. 117–147). Elsevier.CrossRef Çetin, M., Aytekin, E., Yavuz, B., & Bozdağ-Pehlivan, S. (2017). Nanoscience in targeted brain drug delivery. In Y. Gürsoy-Özdemir, S. Bozdağ-Pehlivan, & E. Sekerdag (Eds.), Nanotechnology methods for neurological diseases and brain tumors (pp. 117–147). Elsevier.CrossRef
96.
Zurück zum Zitat Min, H. S., Kim, H. J., Ahn, J., Naito, M., Hayashi, K., Toh, K., Kim, B. S., Matsumura, Y., Kwon, I. C., & Miyata, K. (2018). Tuned density of anti-tissue factor antibody fragment onto siRNA-loaded polyion complex micelles for optimizing targetability into pancreatic cancer cells. Biomacromolecules, 19(6), 2320–2329.PubMedCrossRef Min, H. S., Kim, H. J., Ahn, J., Naito, M., Hayashi, K., Toh, K., Kim, B. S., Matsumura, Y., Kwon, I. C., & Miyata, K. (2018). Tuned density of anti-tissue factor antibody fragment onto siRNA-loaded polyion complex micelles for optimizing targetability into pancreatic cancer cells. Biomacromolecules, 19(6), 2320–2329.PubMedCrossRef
97.
Zurück zum Zitat Hazekawa, M., Nishinakagawa, T., Kawakubo-Yasukochi, T., & Nakashima, M. (2019). Glypican-3 gene silencing for ovarian cancer using siRNA-PLGA hybrid micelles in a murine peritoneal dissemination model. Journal of Pharmacological Sciences, 139(3), 231–239.PubMedCrossRef Hazekawa, M., Nishinakagawa, T., Kawakubo-Yasukochi, T., & Nakashima, M. (2019). Glypican-3 gene silencing for ovarian cancer using siRNA-PLGA hybrid micelles in a murine peritoneal dissemination model. Journal of Pharmacological Sciences, 139(3), 231–239.PubMedCrossRef
98.
Zurück zum Zitat Lu, Y., Zhong, L., Jiang, Z., Pan, H., Zhang, Y., Zhu, G., Bai, L., Tong, R., Shi, J., & Duan, X. (2019). Cationic micelle-based siRNA delivery for efficient colon cancer gene therapy. Nanoscale Research Letters, 14(1), 1–9.CrossRef Lu, Y., Zhong, L., Jiang, Z., Pan, H., Zhang, Y., Zhu, G., Bai, L., Tong, R., Shi, J., & Duan, X. (2019). Cationic micelle-based siRNA delivery for efficient colon cancer gene therapy. Nanoscale Research Letters, 14(1), 1–9.CrossRef
99.
Zurück zum Zitat Cunningham, A. J., Gibson, V. P., Banquy, X., Zhu, X. X., & Jeanne, L. C. (2020). Cholic acid-based mixed micelles as siRNA delivery agents for gene therapy. International Journal of Pharmaceutics, 578, 119078.PubMedCrossRef Cunningham, A. J., Gibson, V. P., Banquy, X., Zhu, X. X., & Jeanne, L. C. (2020). Cholic acid-based mixed micelles as siRNA delivery agents for gene therapy. International Journal of Pharmaceutics, 578, 119078.PubMedCrossRef
100.
Zurück zum Zitat Muddineti, O. S., Shah, A., Rompicharla, S. V. K., Ghosh, B., & Biswas, S. (2018). Cholesterol-grafted chitosan micelles as a nanocarrier system for drug-siRNA co-delivery to the lung cancer cells. International Journal of Biological Macromolecules, 118, 857–863.PubMedCrossRef Muddineti, O. S., Shah, A., Rompicharla, S. V. K., Ghosh, B., & Biswas, S. (2018). Cholesterol-grafted chitosan micelles as a nanocarrier system for drug-siRNA co-delivery to the lung cancer cells. International Journal of Biological Macromolecules, 118, 857–863.PubMedCrossRef
101.
Zurück zum Zitat Shi, L., Feng, H., Li, Z., Shi, J., Jin, L., & Li, J. (2021). Co-delivery of paclitaxel and siRNA with pH-responsive polymeric micelles for synergistic cancer therapy. Journal of Biomedical Nanotechnology, 17(2), 322–329.PubMedCrossRef Shi, L., Feng, H., Li, Z., Shi, J., Jin, L., & Li, J. (2021). Co-delivery of paclitaxel and siRNA with pH-responsive polymeric micelles for synergistic cancer therapy. Journal of Biomedical Nanotechnology, 17(2), 322–329.PubMedCrossRef
102.
Zurück zum Zitat Potluri, P., & Betageri, G. V. (2006). Mixed-micellar proliposomal systems for enhanced oral delivery of progesterone. Drug Delivery, 13(3), 227–232.PubMedCrossRef Potluri, P., & Betageri, G. V. (2006). Mixed-micellar proliposomal systems for enhanced oral delivery of progesterone. Drug Delivery, 13(3), 227–232.PubMedCrossRef
105.
Zurück zum Zitat Ibaraki, H., Hatakeyama, N., Takeda, A., Arima, N., & Kanazawa, T. (2022). Multifunctional peptide carrier-modified polymer micelle accelerates oral siRNA-delivery to the colon and improves gene silencing-mediated therapeutic effects in ulcerative colitis. Journal of Drug Delivery Science and Technology, 73, 103481. https://doi.org/10.1016/j.jddst.2022.103481CrossRef Ibaraki, H., Hatakeyama, N., Takeda, A., Arima, N., & Kanazawa, T. (2022). Multifunctional peptide carrier-modified polymer micelle accelerates oral siRNA-delivery to the colon and improves gene silencing-mediated therapeutic effects in ulcerative colitis. Journal of Drug Delivery Science and Technology, 73, 103481. https://​doi.​org/​10.​1016/​j.​jddst.​2022.​103481CrossRef
106.
Zurück zum Zitat Abbasi, E., Aval, S. F., Akbarzadeh, A., Milani, M., Nasrabadi, H. T., Joo, S. W., Hanifehpour, Y., Nejati-Koshki, K., & Pashaei-Asl, R. (2014). Dendrimers: Synthesis, applications, and properties. Nanoscale Research Letters, 9(1), 1–10.CrossRef Abbasi, E., Aval, S. F., Akbarzadeh, A., Milani, M., Nasrabadi, H. T., Joo, S. W., Hanifehpour, Y., Nejati-Koshki, K., & Pashaei-Asl, R. (2014). Dendrimers: Synthesis, applications, and properties. Nanoscale Research Letters, 9(1), 1–10.CrossRef
107.
Zurück zum Zitat Tambe, V., Thakkar, S., Raval, N., Sharma, D., Kalia, K., & Tekade, R. K. (2017). Surface engineered dendrimers in siRNA delivery and gene silencing. Current Pharmaceutical Design, 23(20), 2952–2975.PubMedCrossRef Tambe, V., Thakkar, S., Raval, N., Sharma, D., Kalia, K., & Tekade, R. K. (2017). Surface engineered dendrimers in siRNA delivery and gene silencing. Current Pharmaceutical Design, 23(20), 2952–2975.PubMedCrossRef
108.
Zurück zum Zitat Michlewska, S., Ionov, M., Maroto-Díaz, M., Szwed, A., Ihnatsyeu-Kachan, A., Loznikova, S., Shcharbin, D., Maly, M., Ramirez, R. G., & de la Mata, F. J. (2018). Ruthenium dendrimers as carriers for anticancer siRNA. Journal of Inorganic Biochemistry, 181, 18–27.PubMedCrossRef Michlewska, S., Ionov, M., Maroto-Díaz, M., Szwed, A., Ihnatsyeu-Kachan, A., Loznikova, S., Shcharbin, D., Maly, M., Ramirez, R. G., & de la Mata, F. J. (2018). Ruthenium dendrimers as carriers for anticancer siRNA. Journal of Inorganic Biochemistry, 181, 18–27.PubMedCrossRef
109.
Zurück zum Zitat Tarach, P., & Janaszewska, A. (2021). Recent advances in preclinical research using PAMAM dendrimers for cancer gene therapy. International Journal of Molecular Sciences, 22(6), 2912.PubMedPubMedCentralCrossRef Tarach, P., & Janaszewska, A. (2021). Recent advances in preclinical research using PAMAM dendrimers for cancer gene therapy. International Journal of Molecular Sciences, 22(6), 2912.PubMedPubMedCentralCrossRef
110.
Zurück zum Zitat Abedi-Gaballu, F., Dehghan, G., Ghaffari, M., Yekta, R., Abbaspour-Ravasjani, S., Baradaran, B., Dolatabadi, J. E. N., & Hamblin, M. R. (2018). PAMAM dendrimers as efficient drug and gene delivery nanosystems for cancer therapy. Applied Materials Today, 12, 177–190.PubMedPubMedCentralCrossRef Abedi-Gaballu, F., Dehghan, G., Ghaffari, M., Yekta, R., Abbaspour-Ravasjani, S., Baradaran, B., Dolatabadi, J. E. N., & Hamblin, M. R. (2018). PAMAM dendrimers as efficient drug and gene delivery nanosystems for cancer therapy. Applied Materials Today, 12, 177–190.PubMedPubMedCentralCrossRef
111.
Zurück zum Zitat Ghaffari, M., Dehghan, G., Baradaran, B., Zarebkohan, A., Mansoori, B., Soleymani, J., & Hamblin, M. R. (2020). Co-delivery of curcumin and Bcl-2 siRNA by PAMAM dendrimers for enhancement of the therapeutic efficacy in HeLa cancer cells. Colloids and Surfaces B: Biointerfaces, 188, 110762.PubMedCrossRef Ghaffari, M., Dehghan, G., Baradaran, B., Zarebkohan, A., Mansoori, B., Soleymani, J., & Hamblin, M. R. (2020). Co-delivery of curcumin and Bcl-2 siRNA by PAMAM dendrimers for enhancement of the therapeutic efficacy in HeLa cancer cells. Colloids and Surfaces B: Biointerfaces, 188, 110762.PubMedCrossRef
112.
Zurück zum Zitat Ambrosio, L., Argenziano, M., Cucci, M. A., Grattarola, M., de Graaf, I. A. M., Dianzani, C., Barrera, G., Sánchez Nieves, J., Gomez, R., & Cavalli, R. (2020). Carbosilane dendrimers loaded with siRNA targeting Nrf2 as a tool to overcome cisplatin chemoresistance in bladder cancer cells. Antioxidants, 9(10), 993.PubMedPubMedCentralCrossRef Ambrosio, L., Argenziano, M., Cucci, M. A., Grattarola, M., de Graaf, I. A. M., Dianzani, C., Barrera, G., Sánchez Nieves, J., Gomez, R., & Cavalli, R. (2020). Carbosilane dendrimers loaded with siRNA targeting Nrf2 as a tool to overcome cisplatin chemoresistance in bladder cancer cells. Antioxidants, 9(10), 993.PubMedPubMedCentralCrossRef
113.
Zurück zum Zitat Taratula, O., Garbuzenko, O., Savla, R., Andrew Wang, Y., He, H., & Minko, T. (2011). Multifunctional nanomedicine platform for cancer specific delivery of siRNA by superparamagnetic iron oxide nanoparticles-dendrimer complexes. Current Drug Delivery, 8(1), 59–69.PubMedCrossRef Taratula, O., Garbuzenko, O., Savla, R., Andrew Wang, Y., He, H., & Minko, T. (2011). Multifunctional nanomedicine platform for cancer specific delivery of siRNA by superparamagnetic iron oxide nanoparticles-dendrimer complexes. Current Drug Delivery, 8(1), 59–69.PubMedCrossRef
114.
Zurück zum Zitat Liu, X., Rocchi, P., Qu, F., Zheng, S., Liang, Z., Gleave, M., Iovanna, J., & Peng, L. (2009). PAMAM dendrimers mediate siRNA delivery to target Hsp27 and produce potent antiproliferative effects on prostate cancer cells. ChemMedChem, 4(8), 1302–1310.PubMedCrossRef Liu, X., Rocchi, P., Qu, F., Zheng, S., Liang, Z., Gleave, M., Iovanna, J., & Peng, L. (2009). PAMAM dendrimers mediate siRNA delivery to target Hsp27 and produce potent antiproliferative effects on prostate cancer cells. ChemMedChem, 4(8), 1302–1310.PubMedCrossRef
115.
Zurück zum Zitat Abedi Gaballu, F., Cho, W. C.-S., Dehghan, G., Zarebkohan, A., Baradaran, B., Mansoori, B., Abbaspour-Ravasjani, S., Mohammadi, A., Sheibani, N., & Aghanejad, A. (2021). Silencing of HMGA2 by siRNA loaded methotrexate functionalized polyamidoamine dendrimer for human breast cancer cell therapy. Genes, 12(7), 1102.PubMedPubMedCentralCrossRef Abedi Gaballu, F., Cho, W. C.-S., Dehghan, G., Zarebkohan, A., Baradaran, B., Mansoori, B., Abbaspour-Ravasjani, S., Mohammadi, A., Sheibani, N., & Aghanejad, A. (2021). Silencing of HMGA2 by siRNA loaded methotrexate functionalized polyamidoamine dendrimer for human breast cancer cell therapy. Genes, 12(7), 1102.PubMedPubMedCentralCrossRef
117.
Zurück zum Zitat Fernandes, G., Pandey, A., Kulkarni, S., Mutalik, S. P., Nikam, A. N., Seetharam, R. N., Kulkarni, S. S., & Mutalik, S. (2021). Supramolecular dendrimers based novel platforms for effective oral delivery of therapeutic moieties. Journal of Drug Delivery Science and Technology, 64, 102647. https://doi.org/10.1016/j.jddst.2021.102647CrossRef Fernandes, G., Pandey, A., Kulkarni, S., Mutalik, S. P., Nikam, A. N., Seetharam, R. N., Kulkarni, S. S., & Mutalik, S. (2021). Supramolecular dendrimers based novel platforms for effective oral delivery of therapeutic moieties. Journal of Drug Delivery Science and Technology, 64, 102647. https://​doi.​org/​10.​1016/​j.​jddst.​2021.​102647CrossRef
118.
Zurück zum Zitat Gandhi, N. S., Godeshala, S., Koomoa-Lange, D.-L. T., Miryala, B., Rege, K., & Chougule, M. B. (2018). Bioreducible poly (amino ethers) based mTOR siRNA delivery for lung cancer. Pharmaceutical Research, 35(10), 1–20.CrossRef Gandhi, N. S., Godeshala, S., Koomoa-Lange, D.-L. T., Miryala, B., Rege, K., & Chougule, M. B. (2018). Bioreducible poly (amino ethers) based mTOR siRNA delivery for lung cancer. Pharmaceutical Research, 35(10), 1–20.CrossRef
119.
Zurück zum Zitat Hartl, N., Adams, F., Costabile, G., Isert, L., Döblinger, M., Xiao, X., Liu, R., & Merkel, O. M. (2019). The impact of Nylon-3 copolymer composition on the efficiency of siRNA delivery to glioblastoma Cells. Nanomaterials, 9(7), 986.PubMedPubMedCentralCrossRef Hartl, N., Adams, F., Costabile, G., Isert, L., Döblinger, M., Xiao, X., Liu, R., & Merkel, O. M. (2019). The impact of Nylon-3 copolymer composition on the efficiency of siRNA delivery to glioblastoma Cells. Nanomaterials, 9(7), 986.PubMedPubMedCentralCrossRef
120.
Zurück zum Zitat Karlsson, J., Tzeng, S. Y., Hemmati, S., Luly, K. M., Choi, O., Rui, Y., Wilson, D. R., Kozielski, K. L., Quiñones-Hinojosa, A., & Green, J. J. (2021). Photocrosslinked bioreducible polymeric nanoparticles for enhanced systemic siRNA delivery as cancer therapy. Advanced Functional Materials, 31(17), 2009768.PubMedPubMedCentralCrossRef Karlsson, J., Tzeng, S. Y., Hemmati, S., Luly, K. M., Choi, O., Rui, Y., Wilson, D. R., Kozielski, K. L., Quiñones-Hinojosa, A., & Green, J. J. (2021). Photocrosslinked bioreducible polymeric nanoparticles for enhanced systemic siRNA delivery as cancer therapy. Advanced Functional Materials, 31(17), 2009768.PubMedPubMedCentralCrossRef
121.
Zurück zum Zitat Yao, H., Sun, L., Li, J., Zhou, X., Li, R., Shao, R., Zhang, Y., & Li, L. (2020). A novel therapeutic siRNA nanoparticle designed for dual-targeting CD44 and Gli1 of gastric cancer stem cells. International Journal of Nanomedicine, 15, 7013.PubMedPubMedCentralCrossRef Yao, H., Sun, L., Li, J., Zhou, X., Li, R., Shao, R., Zhang, Y., & Li, L. (2020). A novel therapeutic siRNA nanoparticle designed for dual-targeting CD44 and Gli1 of gastric cancer stem cells. International Journal of Nanomedicine, 15, 7013.PubMedPubMedCentralCrossRef
122.
Zurück zum Zitat Kozielski, K. L., Ruiz-Valls, A., Tzeng, S. Y., Guerrero-Cázares, H., Rui, Y., Li, Y., Vaughan, H. J., Gionet-Gonzales, M., Vantucci, C., & Kim, J. (2019). Cancer-selective nanoparticles for combinatorial siRNA delivery to primary human GBM in vitro and in vivo. Biomaterials, 209, 79–87.PubMedPubMedCentralCrossRef Kozielski, K. L., Ruiz-Valls, A., Tzeng, S. Y., Guerrero-Cázares, H., Rui, Y., Li, Y., Vaughan, H. J., Gionet-Gonzales, M., Vantucci, C., & Kim, J. (2019). Cancer-selective nanoparticles for combinatorial siRNA delivery to primary human GBM in vitro and in vivo. Biomaterials, 209, 79–87.PubMedPubMedCentralCrossRef
123.
Zurück zum Zitat Kourani, K., Jain, P., Kumar, A., Jangid, A. K., Swaminathan, G., Durgempudi, V. R., Jose, J., Reddy, R., Pooja, D., Kulhari, H., & Kumar, L. D. (2022). Inulin coated Mn3O4 nanocuboids coupled with RNA interference reverse intestinal tumorigenesis in Apc knockout murine colon cancer models. Nanomedicine: Nanotechnology, Biology and Medicine, 40, 102504. https://doi.org/10.1016/j.nano.2021.102504 Kourani, K., Jain, P., Kumar, A., Jangid, A. K., Swaminathan, G., Durgempudi, V. R., Jose, J., Reddy, R., Pooja, D., Kulhari, H., & Kumar, L. D. (2022). Inulin coated Mn3O4 nanocuboids coupled with RNA interference reverse intestinal tumorigenesis in Apc knockout murine colon cancer models. Nanomedicine: Nanotechnology, Biology and Medicine, 40, 102504. https://​doi.​org/​10.​1016/​j.​nano.​2021.​102504
124.
Zurück zum Zitat Pędziwiatr-Werbicka, E., Gorzkiewicz, M., Michlewska, S., Ionov, M., Shcharbin, D., Klajnert-Maculewicz, B., Pena-Gonzalez, C. E., Sanchez-Nieves, J., Gomez, R., & de la Mata, F. J. (2021). Evaluation of dendronized gold nanoparticles as siRNAs carriers into cancer cells. Journal of Molecular Liquids, 324, 114726.CrossRef Pędziwiatr-Werbicka, E., Gorzkiewicz, M., Michlewska, S., Ionov, M., Shcharbin, D., Klajnert-Maculewicz, B., Pena-Gonzalez, C. E., Sanchez-Nieves, J., Gomez, R., & de la Mata, F. J. (2021). Evaluation of dendronized gold nanoparticles as siRNAs carriers into cancer cells. Journal of Molecular Liquids, 324, 114726.CrossRef
125.
Zurück zum Zitat Yang, L., Kim, T., Cho, H., Luo, J., Lee, J., Chueng, S. D., Hou, Y., Yin, P. T., Han, J., & Kim, J. H. (2021). Hybrid graphene-gold nanoparticle-based nucleic acid conjugates for cancer-specific multimodal imaging and combined therapeutics. Advanced Functional Materials, 31(5), 2006918.PubMedCrossRef Yang, L., Kim, T., Cho, H., Luo, J., Lee, J., Chueng, S. D., Hou, Y., Yin, P. T., Han, J., & Kim, J. H. (2021). Hybrid graphene-gold nanoparticle-based nucleic acid conjugates for cancer-specific multimodal imaging and combined therapeutics. Advanced Functional Materials, 31(5), 2006918.PubMedCrossRef
126.
Zurück zum Zitat Yu, A. Y.-H., Fu, R.-H., Hsu, S., Chiu, C.-F., Fang, W.-H., Yeh, C.-A., Tang, C.-M., Hsieh, H.-H., & Hung, H.-S. (2021). Epidermal growth factor receptors siRNA-conjugated collagen modified gold nanoparticles for targeted imaging and therapy of lung cancer. Materials Today Advances, 12, 100191.CrossRef Yu, A. Y.-H., Fu, R.-H., Hsu, S., Chiu, C.-F., Fang, W.-H., Yeh, C.-A., Tang, C.-M., Hsieh, H.-H., & Hung, H.-S. (2021). Epidermal growth factor receptors siRNA-conjugated collagen modified gold nanoparticles for targeted imaging and therapy of lung cancer. Materials Today Advances, 12, 100191.CrossRef
127.
Zurück zum Zitat Cho, H.-J., Oh, J., Choo, M.-K., Ha, J.-I., Park, Y., & Maeng, H.-J. (2014). Chondroitin sulfate-capped gold nanoparticles for the oral delivery of insulin. International Journal of Biological Macromolecules, 63, 15–20.PubMedCrossRef Cho, H.-J., Oh, J., Choo, M.-K., Ha, J.-I., Park, Y., & Maeng, H.-J. (2014). Chondroitin sulfate-capped gold nanoparticles for the oral delivery of insulin. International Journal of Biological Macromolecules, 63, 15–20.PubMedCrossRef
128.
Zurück zum Zitat Kumari, Y., Singh, S. K., Kumar, R., Kumar, B., Kaur, G., Gulati, M., Tewari, D., Gowthamarajan, K., Karri, V. V. S. N. R., & Ayinkamiye, C. (2020). Modified apple polysaccharide capped gold nanoparticles for oral delivery of insulin. International Journal of Biological Macromolecules, 149, 976–988.PubMedCrossRef Kumari, Y., Singh, S. K., Kumar, R., Kumar, B., Kaur, G., Gulati, M., Tewari, D., Gowthamarajan, K., Karri, V. V. S. N. R., & Ayinkamiye, C. (2020). Modified apple polysaccharide capped gold nanoparticles for oral delivery of insulin. International Journal of Biological Macromolecules, 149, 976–988.PubMedCrossRef
129.
Zurück zum Zitat Cheng, F.-F., Chen, W., Hu, L.-H., Chen, G., Miao, H.-T., Li, C., & Zhu, J.-J. (2013). Highly dispersible PEGylated graphene/Au composites as gene delivery vector and potential cancer therapeutic agent. Journal of Materials Chemistry B, 1(38), 4956–4962.PubMedCrossRef Cheng, F.-F., Chen, W., Hu, L.-H., Chen, G., Miao, H.-T., Li, C., & Zhu, J.-J. (2013). Highly dispersible PEGylated graphene/Au composites as gene delivery vector and potential cancer therapeutic agent. Journal of Materials Chemistry B, 1(38), 4956–4962.PubMedCrossRef
131.
Zurück zum Zitat Sengupta, A., Mezencev, R., McDonald, J. F., & Prausnitz, M. R. (2015). Delivery of siRNA to ovarian cancer cells using laser-activated carbon nanoparticles. Nanomedicine, 10(11), 1775–1784.PubMedCrossRef Sengupta, A., Mezencev, R., McDonald, J. F., & Prausnitz, M. R. (2015). Delivery of siRNA to ovarian cancer cells using laser-activated carbon nanoparticles. Nanomedicine, 10(11), 1775–1784.PubMedCrossRef
132.
Zurück zum Zitat Yin, F., Hu, K., Chen, Y., Yu, M., Wang, D., Wang, Q., Yong, K.-T., Lu, F., Liang, Y., & Li, Z. (2017). SiRNA delivery with PEGylated graphene oxide nanosheets for combined photothermal and genetherapy for pancreatic cancer. Theranostics, 7(5), 1133.PubMedPubMedCentralCrossRef Yin, F., Hu, K., Chen, Y., Yu, M., Wang, D., Wang, Q., Yong, K.-T., Lu, F., Liang, Y., & Li, Z. (2017). SiRNA delivery with PEGylated graphene oxide nanosheets for combined photothermal and genetherapy for pancreatic cancer. Theranostics, 7(5), 1133.PubMedPubMedCentralCrossRef
133.
Zurück zum Zitat Bae, K. H., Lee, K., Kim, C., & Park, T. G. (2011). Surface functionalized hollow manganese oxide nanoparticles for cancer targeted siRNA delivery and magnetic resonance imaging. Biomaterials, 32(1), 176–184.PubMedCrossRef Bae, K. H., Lee, K., Kim, C., & Park, T. G. (2011). Surface functionalized hollow manganese oxide nanoparticles for cancer targeted siRNA delivery and magnetic resonance imaging. Biomaterials, 32(1), 176–184.PubMedCrossRef
134.
Zurück zum Zitat Rea, I., Martucci, N. M., De Stefano, L., Ruggiero, I., Terracciano, M., Dardano, P., Migliaccio, N., Arcari, P., Taté, R., & Rendina, I. (2014). Diatomite biosilica nanocarriers for siRNA transport inside cancer cells. Biochimica et Biophysica Acta (BBA)-General Subjects, 1840(12), 3393–3403.PubMedCrossRef Rea, I., Martucci, N. M., De Stefano, L., Ruggiero, I., Terracciano, M., Dardano, P., Migliaccio, N., Arcari, P., Taté, R., & Rendina, I. (2014). Diatomite biosilica nanocarriers for siRNA transport inside cancer cells. Biochimica et Biophysica Acta (BBA)-General Subjects, 1840(12), 3393–3403.PubMedCrossRef
135.
Zurück zum Zitat Cristofolini, T., Dalmina, M., Sierra, J. A., Silva, A. H., Pasa, A. A., Pittella, F., & Creczynski-Pasa, T. B. (2020). Multifunctional hybrid nanoparticles as magnetic delivery systems for siRNA targeting the HER2 gene in breast cancer cells. Materials Science and Engineering: C, 109, 110555.PubMedCrossRef Cristofolini, T., Dalmina, M., Sierra, J. A., Silva, A. H., Pasa, A. A., Pittella, F., & Creczynski-Pasa, T. B. (2020). Multifunctional hybrid nanoparticles as magnetic delivery systems for siRNA targeting the HER2 gene in breast cancer cells. Materials Science and Engineering: C, 109, 110555.PubMedCrossRef
136.
Zurück zum Zitat Mohammed, M. R. S., Ahmad, V., Ahmad, A., Tabrez, S., Choudhry, H., Zamzami, M. A., Bakhrebah, M. A., Ahmad, A., Wasi, S., & Mukhtar, H. (2021). Prospective of nanoscale metal organic frameworks [NMOFs] for cancer therapy. In Seminars in cancer biology (Vol. 69, pp. 129–139). Elsevier. Mohammed, M. R. S., Ahmad, V., Ahmad, A., Tabrez, S., Choudhry, H., Zamzami, M. A., Bakhrebah, M. A., Ahmad, A., Wasi, S., & Mukhtar, H. (2021). Prospective of nanoscale metal organic frameworks [NMOFs] for cancer therapy. In Seminars in cancer biology (Vol. 69, pp. 129–139). Elsevier.
138.
Zurück zum Zitat Keskin, D., Zu, G., Forson, A. M., Tromp, L., Sjollema, J., & van Rijn, P. (2021). Nanogels: A novel approach in antimicrobial delivery systems and antimicrobial coatings. Bioactive Materials, 6(10), 3634–3657.PubMedPubMedCentralCrossRef Keskin, D., Zu, G., Forson, A. M., Tromp, L., Sjollema, J., & van Rijn, P. (2021). Nanogels: A novel approach in antimicrobial delivery systems and antimicrobial coatings. Bioactive Materials, 6(10), 3634–3657.PubMedPubMedCentralCrossRef
139.
Zurück zum Zitat Spencer, D. S., Shodeinde, A. B., Beckman, D. W., Luu, B. C., Hodges, H. R., & Peppas, N. A. (2021). Cytocompatibility, membrane disruption, and siRNA delivery using environmentally responsive cationic nanogels. Journal of Controlled Release, 332, 608–619.PubMedPubMedCentralCrossRef Spencer, D. S., Shodeinde, A. B., Beckman, D. W., Luu, B. C., Hodges, H. R., & Peppas, N. A. (2021). Cytocompatibility, membrane disruption, and siRNA delivery using environmentally responsive cationic nanogels. Journal of Controlled Release, 332, 608–619.PubMedPubMedCentralCrossRef
140.
Zurück zum Zitat Fujii, H., Shin-Ya, M., Takeda, S., Hashimoto, Y., Mukai, S., Sawada, S., Adachi, T., Akiyoshi, K., Miki, T., & Mazda, O. (2014). Cycloamylose-nanogel drug delivery system-mediated intratumor silencing of the vascular endothelial growth factor regulates neovascularization in tumor microenvironment. Cancer Science, 105(12), 1616–1625.PubMedPubMedCentralCrossRef Fujii, H., Shin-Ya, M., Takeda, S., Hashimoto, Y., Mukai, S., Sawada, S., Adachi, T., Akiyoshi, K., Miki, T., & Mazda, O. (2014). Cycloamylose-nanogel drug delivery system-mediated intratumor silencing of the vascular endothelial growth factor regulates neovascularization in tumor microenvironment. Cancer Science, 105(12), 1616–1625.PubMedPubMedCentralCrossRef
141.
Zurück zum Zitat Yavvari, P. S., Verma, P., Mustfa, S. A., Pal, S., Kumar, S., Awasthi, A. K., Ahuja, V., Srikanth, C. V., Srivastava, A., & Bajaj, A. (2019). A nanogel based oral gene delivery system targeting SUMOylation machinery to combat gut inflammation. Nanoscale, 11(11), 4970–4986. https://doi.org/10.1039/C8NR09599JCrossRefPubMed Yavvari, P. S., Verma, P., Mustfa, S. A., Pal, S., Kumar, S., Awasthi, A. K., Ahuja, V., Srikanth, C. V., Srivastava, A., & Bajaj, A. (2019). A nanogel based oral gene delivery system targeting SUMOylation machinery to combat gut inflammation. Nanoscale, 11(11), 4970–4986. https://​doi.​org/​10.​1039/​C8NR09599JCrossRefPubMed
143.
Zurück zum Zitat Valizadeh, A., & Mussa Farkhani, S. (2014). Electrospinning and electrospun nanofibres. IET Nanobiotechnology, 8(2), 83–92.PubMedCrossRef Valizadeh, A., & Mussa Farkhani, S. (2014). Electrospinning and electrospun nanofibres. IET Nanobiotechnology, 8(2), 83–92.PubMedCrossRef
144.
Zurück zum Zitat Lim, C. T. (2017). Nanofiber technology: Current status and emerging developments. Progress in Polymer Science, 70, 1–17.CrossRef Lim, C. T. (2017). Nanofiber technology: Current status and emerging developments. Progress in Polymer Science, 70, 1–17.CrossRef
145.
Zurück zum Zitat Hu, X., Liu, S., Zhou, G., Huang, Y., Xie, Z., & Jing, X. (2014). Electrospinning of polymeric nanofibers for drug delivery applications. Journal of Controlled Release, 185, 12–21.PubMedCrossRef Hu, X., Liu, S., Zhou, G., Huang, Y., Xie, Z., & Jing, X. (2014). Electrospinning of polymeric nanofibers for drug delivery applications. Journal of Controlled Release, 185, 12–21.PubMedCrossRef
146.
Zurück zum Zitat Chen, S., Boda, S. K., Batra, S. K., Li, X., & Xie, J. (2018). Emerging roles of electrospun nanofibers in cancer research. Advanced Healthcare Materials, 7(6), 1701024.CrossRef Chen, S., Boda, S. K., Batra, S. K., Li, X., & Xie, J. (2018). Emerging roles of electrospun nanofibers in cancer research. Advanced Healthcare Materials, 7(6), 1701024.CrossRef
147.
Zurück zum Zitat Stojanov, S., & Berlec, A. (2020). Electrospun nanofibers as carriers of microorganisms, stem cells, proteins, and nucleic acids in therapeutic and other applications. Frontiers in Bioengineering and Biotechnology, 8, 130.PubMedPubMedCentralCrossRef Stojanov, S., & Berlec, A. (2020). Electrospun nanofibers as carriers of microorganisms, stem cells, proteins, and nucleic acids in therapeutic and other applications. Frontiers in Bioengineering and Biotechnology, 8, 130.PubMedPubMedCentralCrossRef
148.
Zurück zum Zitat Rujitanaroj, P., Jao, B., Yang, J., Wang, F., Anderson, J. M., Wang, J., & Chew, S. Y. (2013). Controlling fibrous capsule formation through long-term down-regulation of collagen type I (COL1A1) expression by nanofiber-mediated siRNA gene silencing. Acta Biomaterialia, 9(1), 4513–4524.PubMedCrossRef Rujitanaroj, P., Jao, B., Yang, J., Wang, F., Anderson, J. M., Wang, J., & Chew, S. Y. (2013). Controlling fibrous capsule formation through long-term down-regulation of collagen type I (COL1A1) expression by nanofiber-mediated siRNA gene silencing. Acta Biomaterialia, 9(1), 4513–4524.PubMedCrossRef
149.
Zurück zum Zitat Pinese, C., Lin, J., Milbreta, U., Li, M., Wang, Y., Leong, K. W., & Chew, S. Y. (2018). Sustained delivery of siRNA/mesoporous silica nanoparticle complexes from nanofiber scaffolds for long-term gene silencing. Acta Biomaterialia, 76, 164–177.PubMedCrossRef Pinese, C., Lin, J., Milbreta, U., Li, M., Wang, Y., Leong, K. W., & Chew, S. Y. (2018). Sustained delivery of siRNA/mesoporous silica nanoparticle complexes from nanofiber scaffolds for long-term gene silencing. Acta Biomaterialia, 76, 164–177.PubMedCrossRef
150.
Zurück zum Zitat Ashrafizadeh, M., Delfi, M., Hashemi, F., Zabolian, A., Saleki, H., Bagherian, M., Azami, N., Farahani, M. V., Sharifzadeh, S. O., & Hamzehlou, S. (2021). Biomedical application of chitosan-based nanoscale delivery systems: Potential usefulness in siRNA delivery for cancer therapy. Carbohydrate Polymers, 260, 117809.PubMedCrossRef Ashrafizadeh, M., Delfi, M., Hashemi, F., Zabolian, A., Saleki, H., Bagherian, M., Azami, N., Farahani, M. V., Sharifzadeh, S. O., & Hamzehlou, S. (2021). Biomedical application of chitosan-based nanoscale delivery systems: Potential usefulness in siRNA delivery for cancer therapy. Carbohydrate Polymers, 260, 117809.PubMedCrossRef
151.
Zurück zum Zitat Yang, J., Dai, J., Wang, Q., Cheng, Y., Guo, J., Zhao, Z., Hong, Y., Lou, X., & Xia, F. (2020). Tumor-triggered disassembly of a multiple-agent-therapy probe for efficient cellular internalization. Angewandte Chemie, 132(46), 20585–20590.CrossRef Yang, J., Dai, J., Wang, Q., Cheng, Y., Guo, J., Zhao, Z., Hong, Y., Lou, X., & Xia, F. (2020). Tumor-triggered disassembly of a multiple-agent-therapy probe for efficient cellular internalization. Angewandte Chemie, 132(46), 20585–20590.CrossRef
152.
Zurück zum Zitat Serrano-Sevilla, I., Artiga, Á., Mitchell, S. G., De Matteis, L., & de la Fuente, J. M. (2019). Natural polysaccharides for siRNA delivery: Nanocarriers based on chitosan, hyaluronic acid, and their derivatives. Molecules, 24(14), 2570.PubMedPubMedCentralCrossRef Serrano-Sevilla, I., Artiga, Á., Mitchell, S. G., De Matteis, L., & de la Fuente, J. M. (2019). Natural polysaccharides for siRNA delivery: Nanocarriers based on chitosan, hyaluronic acid, and their derivatives. Molecules, 24(14), 2570.PubMedPubMedCentralCrossRef
154.
Zurück zum Zitat Snook, J. D., Chesson, C. B., Peniche, A. G., Dann, S. M., Paulucci, A., Pinchuk, I. V., & Rudra, J. S. (2016). Peptide nanofiber–CaCO 3 composite microparticles as adjuvant-free oral vaccine delivery vehicles. Journal of Materials Chemistry B, 4(9), 1640–1649. https://doi.org/10.1039/C5TB01623ACrossRefPubMed Snook, J. D., Chesson, C. B., Peniche, A. G., Dann, S. M., Paulucci, A., Pinchuk, I. V., & Rudra, J. S. (2016). Peptide nanofiber–CaCO 3 composite microparticles as adjuvant-free oral vaccine delivery vehicles. Journal of Materials Chemistry B, 4(9), 1640–1649. https://​doi.​org/​10.​1039/​C5TB01623ACrossRefPubMed
155.
Zurück zum Zitat Mousazadeh, H., Pilehvar-Soltanahmadi, Y., Dadashpour, M., & Zarghami, N. (2021). Cyclodextrin based natural nanostructured carbohydrate polymers as effective non-viral siRNA delivery systems for cancer gene therapy. Journal of Controlled Release, 330, 1046–1070.PubMedCrossRef Mousazadeh, H., Pilehvar-Soltanahmadi, Y., Dadashpour, M., & Zarghami, N. (2021). Cyclodextrin based natural nanostructured carbohydrate polymers as effective non-viral siRNA delivery systems for cancer gene therapy. Journal of Controlled Release, 330, 1046–1070.PubMedCrossRef
156.
Zurück zum Zitat Ganesh, S., Iyer, A. K., Weiler, J., Morrissey, D. V., & Amiji, M. M. (2013). Combination of siRNA-directed gene silencing with cisplatin reverses drug resistance in human non-small cell lung cancer. Molecular Therapy-Nucleic Acids, 2, e110.PubMedPubMedCentralCrossRef Ganesh, S., Iyer, A. K., Weiler, J., Morrissey, D. V., & Amiji, M. M. (2013). Combination of siRNA-directed gene silencing with cisplatin reverses drug resistance in human non-small cell lung cancer. Molecular Therapy-Nucleic Acids, 2, e110.PubMedPubMedCentralCrossRef
157.
Zurück zum Zitat Eivazy, P., Atyabi, F., Jadidi-Niaragh, F., Aghebati Maleki, L., Miahipour, A., Abdolalizadeh, J., & Yousefi, M. (2017). The impact of the codelivery of drug-siRNA by trimethyl chitosan nanoparticles on the efficacy of chemotherapy for metastatic breast cancer cell line (MDA-MB-231). Artificial Cells, Nanomedicine, and Biotechnology, 45(5), 889–896.PubMedCrossRef Eivazy, P., Atyabi, F., Jadidi-Niaragh, F., Aghebati Maleki, L., Miahipour, A., Abdolalizadeh, J., & Yousefi, M. (2017). The impact of the codelivery of drug-siRNA by trimethyl chitosan nanoparticles on the efficacy of chemotherapy for metastatic breast cancer cell line (MDA-MB-231). Artificial Cells, Nanomedicine, and Biotechnology, 45(5), 889–896.PubMedCrossRef
158.
Zurück zum Zitat Liang, Y., Wang, Y., Wang, L., Liang, Z., Li, D., Xu, X., Chen, Y., Yang, X., Zhang, H., & Niu, H. (2021). Self-crosslinkable chitosan-hyaluronic acid dialdehyde nanoparticles for CD44-targeted siRNA delivery to treat bladder cancer. Bioactive Materials, 6(2), 433–446.PubMedCrossRef Liang, Y., Wang, Y., Wang, L., Liang, Z., Li, D., Xu, X., Chen, Y., Yang, X., Zhang, H., & Niu, H. (2021). Self-crosslinkable chitosan-hyaluronic acid dialdehyde nanoparticles for CD44-targeted siRNA delivery to treat bladder cancer. Bioactive Materials, 6(2), 433–446.PubMedCrossRef
170.
Zurück zum Zitat Ahuja, A., Khar, R. K., & Ali, J. (1997). Mucoadhesive drug delivery systems. Drug Development and Industrial Pharmacy, 23(5), 489–515.CrossRef Ahuja, A., Khar, R. K., & Ali, J. (1997). Mucoadhesive drug delivery systems. Drug Development and Industrial Pharmacy, 23(5), 489–515.CrossRef
171.
Zurück zum Zitat Veuillez, F., Kalia, Y. N., Jacques, Y., Deshusses, J., & Buri, P. (2001). Factors and strategies for improving buccal absorption of peptides. European journal of Pharmaceutics and Biopharmaceutics, 51(2), 93–109.PubMedCrossRef Veuillez, F., Kalia, Y. N., Jacques, Y., Deshusses, J., & Buri, P. (2001). Factors and strategies for improving buccal absorption of peptides. European journal of Pharmaceutics and Biopharmaceutics, 51(2), 93–109.PubMedCrossRef
172.
Zurück zum Zitat Longer, M. A., & Robinson, J. R. (1986). Fundamental-aspects of bioadhesion. Pharmacy International, 7(5), 114–117. Longer, M. A., & Robinson, J. R. (1986). Fundamental-aspects of bioadhesion. Pharmacy International, 7(5), 114–117.
173.
Zurück zum Zitat Gu, J. M., Robinson, J. R., & Leung, S. H. (1988). Binding of acrylic polymers to mucin/epithelial surfaces: Structure-property relationships. Critical Reviews in Therapeutic Drug Carrier Systems, 5(1), 21–67.PubMed Gu, J. M., Robinson, J. R., & Leung, S. H. (1988). Binding of acrylic polymers to mucin/epithelial surfaces: Structure-property relationships. Critical Reviews in Therapeutic Drug Carrier Systems, 5(1), 21–67.PubMed
174.
Zurück zum Zitat Kinloch, A. J. (1980). The science of adhesion. Journal of Materials Science, 15(9), 2141–2166.CrossRef Kinloch, A. J. (1980). The science of adhesion. Journal of Materials Science, 15(9), 2141–2166.CrossRef
175.
Zurück zum Zitat Huntsberger, J. R. (1967). Mechanisms of adhesion. Journal Paint Technology, 39(507), 199–211. Huntsberger, J. R. (1967). Mechanisms of adhesion. Journal Paint Technology, 39(507), 199–211.
176.
Zurück zum Zitat Wake, W. C. (1976). Adhesion and the formulation of adhesives. Applied Science Publishers. Wake, W. C. (1976). Adhesion and the formulation of adhesives. Applied Science Publishers.
178.
Zurück zum Zitat Yang, X., & Robinson, J. (1998). Bioadhesion in mucosal drug delivery. Academic Press. Yang, X., & Robinson, J. (1998). Bioadhesion in mucosal drug delivery. Academic Press.
181.
Zurück zum Zitat Mao, S., Sun, W., & Kissel, T. (2010). Chitosan-based formulations for delivery of DNA and siRNA. Advanced Drug Delivery Reviews, 62(1), 12–27.PubMedCrossRef Mao, S., Sun, W., & Kissel, T. (2010). Chitosan-based formulations for delivery of DNA and siRNA. Advanced Drug Delivery Reviews, 62(1), 12–27.PubMedCrossRef
182.
Zurück zum Zitat Ilium, L. (1998). Chitosan and its use as a pharmaceutical excipient. Pharmaceutical Research, 15(9), 1326–1331.CrossRef Ilium, L. (1998). Chitosan and its use as a pharmaceutical excipient. Pharmaceutical Research, 15(9), 1326–1331.CrossRef
187.
Zurück zum Zitat Shu, X. Z., & Zhu, K. J. (2002). The influence of multivalent phosphate structure on the properties of ionically cross-linked chitosan films for controlled drug release. European Journal of Pharmaceutics and Biopharmaceutics, 54(2), 235–243.PubMedCrossRef Shu, X. Z., & Zhu, K. J. (2002). The influence of multivalent phosphate structure on the properties of ionically cross-linked chitosan films for controlled drug release. European Journal of Pharmaceutics and Biopharmaceutics, 54(2), 235–243.PubMedCrossRef
189.
Zurück zum Zitat Katas, H., & Alpar, H. O. (2006). Development and characterisation of chitosan nanoparticles for siRNA delivery. Journal of Controlled Release, 115(2), 216–225.PubMedCrossRef Katas, H., & Alpar, H. O. (2006). Development and characterisation of chitosan nanoparticles for siRNA delivery. Journal of Controlled Release, 115(2), 216–225.PubMedCrossRef
190.
Zurück zum Zitat Liu, X., Howard, K. A., Dong, M., Andersen, M. Ø., Rahbek, U. L., Johnsen, M. G., Hansen, O. C., Besenbacher, F., & Kjems, J. (2007). The influence of polymeric properties on chitosan/siRNA nanoparticle formulation and gene silencing. Biomaterials, 28(6), 1280–1288.PubMedCrossRef Liu, X., Howard, K. A., Dong, M., Andersen, M. Ø., Rahbek, U. L., Johnsen, M. G., Hansen, O. C., Besenbacher, F., & Kjems, J. (2007). The influence of polymeric properties on chitosan/siRNA nanoparticle formulation and gene silencing. Biomaterials, 28(6), 1280–1288.PubMedCrossRef
192.
Zurück zum Zitat Roșu, M. C., Mihnea, P. D., Ardelean, A., Moldovan, S. D., Popețiu, R. O., & Totolici, B. D. (2022). Clinical significance of tumor necrosis factor-alpha and carcinoembryonic antigen in gastric cancer. Journal of Medicine and Life, 15(1), 4–6.PubMedPubMedCentralCrossRef Roșu, M. C., Mihnea, P. D., Ardelean, A., Moldovan, S. D., Popețiu, R. O., & Totolici, B. D. (2022). Clinical significance of tumor necrosis factor-alpha and carcinoembryonic antigen in gastric cancer. Journal of Medicine and Life, 15(1), 4–6.PubMedPubMedCentralCrossRef
194.
Zurück zum Zitat Yu, L., Xiong, J., Guo, L., Miao, L., Liu, S., & Guo, F. (2015). The effects of lanthanum chloride on proliferation and apoptosis of cervical cancer cells: Involvement of let-7a and miR-34a microRNAs. BioMetals, 28(5), 879–890.PubMedCrossRef Yu, L., Xiong, J., Guo, L., Miao, L., Liu, S., & Guo, F. (2015). The effects of lanthanum chloride on proliferation and apoptosis of cervical cancer cells: Involvement of let-7a and miR-34a microRNAs. BioMetals, 28(5), 879–890.PubMedCrossRef
195.
Zurück zum Zitat Su, X., Zheng, X., & Ni, J. (2009). Lanthanum citrate induces anoikis of Hela cells. Cancer Letters, 285(2), 200–209.PubMedCrossRef Su, X., Zheng, X., & Ni, J. (2009). Lanthanum citrate induces anoikis of Hela cells. Cancer Letters, 285(2), 200–209.PubMedCrossRef
196.
Zurück zum Zitat He, C., Yin, L., Song, Y., Tang, C., & Yin, C. (2015). Optimization of multifunctional chitosan–siRNA nanoparticles for oral delivery applications, targeting TNF-α silencing in rats. Acta Biomaterialia, 17, 98–106.PubMedCrossRef He, C., Yin, L., Song, Y., Tang, C., & Yin, C. (2015). Optimization of multifunctional chitosan–siRNA nanoparticles for oral delivery applications, targeting TNF-α silencing in rats. Acta Biomaterialia, 17, 98–106.PubMedCrossRef
202.
Zurück zum Zitat Shahin, S. A., Wang, R., Simargi, S. I., Contreras, A., Parra Echavarria, L., Qu, L., Wen, W., Dellinger, T., Unternaehrer, J., Tamanoi, F., Zink, J. I., & Glackin, C. A. (2018). Hyaluronic acid conjugated nanoparticle delivery of siRNA against TWIST reduces tumor burden and enhances sensitivity to cisplatin in ovarian cancer. Nanomedicine: Nanotechnology, Biology and Medicine, 14(4), 1381–1394. https://doi.org/10.1016/j.nano.2018.04.008CrossRefPubMed Shahin, S. A., Wang, R., Simargi, S. I., Contreras, A., Parra Echavarria, L., Qu, L., Wen, W., Dellinger, T., Unternaehrer, J., Tamanoi, F., Zink, J. I., & Glackin, C. A. (2018). Hyaluronic acid conjugated nanoparticle delivery of siRNA against TWIST reduces tumor burden and enhances sensitivity to cisplatin in ovarian cancer. Nanomedicine: Nanotechnology, Biology and Medicine, 14(4), 1381–1394. https://​doi.​org/​10.​1016/​j.​nano.​2018.​04.​008CrossRefPubMed
203.
Zurück zum Zitat Bastaki, S., Aravindhan, S., Ahmadpour Saheb, N., Afsari Kashani, M., Evgenievich Dorofeev, A., Karoon Kiani, F., Jahandideh, H., Beigi Dargani, F., Aksoun, M., Nikkhoo, A., Masjedi, A., Mahmoodpoor, A., Ahmadi, M., Dolati, S., Namvar Aghdash, S., & Jadidi-Niaragh, F. (2021). Codelivery of STAT3 and PD-L1 siRNA by hyaluronate-TAT trimethyl/thiolated chitosan nanoparticles suppresses cancer progression in tumor-bearing mice. Life Sciences, 266, 118847. https://doi.org/10.1016/j.lfs.2020.118847CrossRefPubMed Bastaki, S., Aravindhan, S., Ahmadpour Saheb, N., Afsari Kashani, M., Evgenievich Dorofeev, A., Karoon Kiani, F., Jahandideh, H., Beigi Dargani, F., Aksoun, M., Nikkhoo, A., Masjedi, A., Mahmoodpoor, A., Ahmadi, M., Dolati, S., Namvar Aghdash, S., & Jadidi-Niaragh, F. (2021). Codelivery of STAT3 and PD-L1 siRNA by hyaluronate-TAT trimethyl/thiolated chitosan nanoparticles suppresses cancer progression in tumor-bearing mice. Life Sciences, 266, 118847. https://​doi.​org/​10.​1016/​j.​lfs.​2020.​118847CrossRefPubMed
205.
Zurück zum Zitat D’Cruz, O., Hwang, L., Fong, A., Ng, K., Nam, D., Wang, W., & Trieu, V. (2017). Preclinical and clinical studies on safety of CEQ508 bacteria engineered to deliver short-hairpin RNA to mediate RNA interference against β-catenin in the GI tract of patients with familial adenomatous polyposis: 297. Official Journal of the American College of Gastroenterology| ACG, 112, S162–S163.CrossRef D’Cruz, O., Hwang, L., Fong, A., Ng, K., Nam, D., Wang, W., & Trieu, V. (2017). Preclinical and clinical studies on safety of CEQ508 bacteria engineered to deliver short-hairpin RNA to mediate RNA interference against β-catenin in the GI tract of patients with familial adenomatous polyposis: 297. Official Journal of the American College of Gastroenterology| ACG, 112, S162–S163.CrossRef
206.
Zurück zum Zitat Trieu, V., Hwang, L., Ng, K., D’Cruz, O., Qazi, S., & Fong, A. (2017). First-in-human Phase I study of bacterial RNA interference therapeutic CEQ508 in patients with familial adenomatous polyposis (FAP). Annals of Oncology, 28, v174.CrossRef Trieu, V., Hwang, L., Ng, K., D’Cruz, O., Qazi, S., & Fong, A. (2017). First-in-human Phase I study of bacterial RNA interference therapeutic CEQ508 in patients with familial adenomatous polyposis (FAP). Annals of Oncology, 28, v174.CrossRef
207.
Zurück zum Zitat Zhang, L., Zhang, T., Wang, L., Shao, S., Chen, Z., & Zhang, Z. (2014). In vivo targeted delivery of CD40 shRNA to mouse intestinal dendritic cells by oral administration of recombinant Sacchromyces cerevisiae. Gene Therapy, 21(7), 709–714. Zhang, L., Zhang, T., Wang, L., Shao, S., Chen, Z., & Zhang, Z. (2014). In vivo targeted delivery of CD40 shRNA to mouse intestinal dendritic cells by oral administration of recombinant Sacchromyces cerevisiae. Gene Therapy, 21(7), 709–714.
208.
Zurück zum Zitat Zhang, L., Zhang, W., Peng, H., Li, Y., Leng, T., Xie, C., & Zhang, L. (2021). Oral gene therapy of HFD-obesity via nonpathogenic yeast microcapsules mediated shRNA delivery. Pharmaceutics, 13(10), 1536.PubMedPubMedCentralCrossRef Zhang, L., Zhang, W., Peng, H., Li, Y., Leng, T., Xie, C., & Zhang, L. (2021). Oral gene therapy of HFD-obesity via nonpathogenic yeast microcapsules mediated shRNA delivery. Pharmaceutics, 13(10), 1536.PubMedPubMedCentralCrossRef
209.
Zurück zum Zitat Zhang, L., Peng, H., Feng, M., Zhang, W., & Li, Y. (2021). Yeast microcapsule-mediated oral delivery of IL-1β shRNA for post-traumatic osteoarthritis therapy. Molecular Therapy-Nucleic Acids, 23, 336–346.PubMedCrossRef Zhang, L., Peng, H., Feng, M., Zhang, W., & Li, Y. (2021). Yeast microcapsule-mediated oral delivery of IL-1β shRNA for post-traumatic osteoarthritis therapy. Molecular Therapy-Nucleic Acids, 23, 336–346.PubMedCrossRef
216.
Zurück zum Zitat Cuellar, T. L., Barnes, D., Nelson, C., Tanguay, J., Yu, S.-F., Wen, X., Scales, S. J., Gesch, J., Davis, D., van Brabant Smith, A., Leake, D., Vandlen, R., & Siebel, C. W. (2015). Systematic evaluation of antibody-mediated siRNA delivery using an industrial platform of THIOMAB–siRNA conjugates. Nucleic Acids Research, 43(2), 1189–1203. https://doi.org/10.1093/nar/gku1362CrossRefPubMed Cuellar, T. L., Barnes, D., Nelson, C., Tanguay, J., Yu, S.-F., Wen, X., Scales, S. J., Gesch, J., Davis, D., van Brabant Smith, A., Leake, D., Vandlen, R., & Siebel, C. W. (2015). Systematic evaluation of antibody-mediated siRNA delivery using an industrial platform of THIOMAB–siRNA conjugates. Nucleic Acids Research, 43(2), 1189–1203. https://​doi.​org/​10.​1093/​nar/​gku1362CrossRefPubMed
221.
Zurück zum Zitat Yao, Y., Sun, T., Huang, S., Dou, S., Lin, L., Chen, J., Ruan, J., Mao, C., Yu, F., Zeng, M., Zang, J., Liu, Q., Su, F., Zhang, P., Lieberman, J., Wang, J., & Song, E. (2012). Targeted delivery of PLK1-siRNA by ScFv suppresses Her2 + breast cancer growth and metastasis. Science Translational Medicine, 4(130). https://doi.org/10.1126/scitranslmed.3003601 Yao, Y., Sun, T., Huang, S., Dou, S., Lin, L., Chen, J., Ruan, J., Mao, C., Yu, F., Zeng, M., Zang, J., Liu, Q., Su, F., Zhang, P., Lieberman, J., Wang, J., & Song, E. (2012). Targeted delivery of PLK1-siRNA by ScFv suppresses Her2 + breast cancer growth and metastasis. Science Translational Medicine, 4(130). https://​doi.​org/​10.​1126/​scitranslmed.​3003601
225.
Zurück zum Zitat DiFiglia, M., Sena-Esteves, M., Chase, K., Sapp, E., Pfister, E., Sass, M., Yoder, J., Reeves, P., Pandey, R. K., Rajeev, K. G., Manoharan, M., Sah, D. W. Y., Zamore, P. D., & Aronin, N. (2007). Therapeutic silencing of mutant huntingtin with siRNA attenuates striatal and cortical neuropathology and behavioral deficits. Proceedings of the National Academy of Sciences, 104(43), 17204–17209. https://doi.org/10.1073/pnas.0708285104CrossRef DiFiglia, M., Sena-Esteves, M., Chase, K., Sapp, E., Pfister, E., Sass, M., Yoder, J., Reeves, P., Pandey, R. K., Rajeev, K. G., Manoharan, M., Sah, D. W. Y., Zamore, P. D., & Aronin, N. (2007). Therapeutic silencing of mutant huntingtin with siRNA attenuates striatal and cortical neuropathology and behavioral deficits. Proceedings of the National Academy of Sciences, 104(43), 17204–17209. https://​doi.​org/​10.​1073/​pnas.​0708285104CrossRef
230.
Zurück zum Zitat Chabattula, S. C., Gupta, P. K., Tripathi, S. K., Gahtori, R., Padhi, P., Mahapatra, S., Biswal, B. K., Singh, S. K., Dua, K., Ruokolainen, J., Mishra, Y. K., Jha, N. K., Bishi, D. K., & Kesari, K. K. (2021). Anticancer therapeutic efficacy of biogenic Am-ZnO nanoparticles on 2D and 3D tumor models. Materials Today Chemistry, 22, 100618. https://doi.org/10.1016/j.mtchem.2021.100618CrossRef Chabattula, S. C., Gupta, P. K., Tripathi, S. K., Gahtori, R., Padhi, P., Mahapatra, S., Biswal, B. K., Singh, S. K., Dua, K., Ruokolainen, J., Mishra, Y. K., Jha, N. K., Bishi, D. K., & Kesari, K. K. (2021). Anticancer therapeutic efficacy of biogenic Am-ZnO nanoparticles on 2D and 3D tumor models. Materials Today Chemistry, 22, 100618. https://​doi.​org/​10.​1016/​j.​mtchem.​2021.​100618CrossRef
233.
Zurück zum Zitat Gong, D., Ben-Akiva, E., Singh, A., Yamagata, H., Est-Witte, S., Shade, J. K., Trayanova, N. A., & Green, J. J. (2022). Machine learning guided structure function predictions enable in silico nanoparticle screening for polymeric gene delivery. Acta Biomaterialia, 154, 349–358.PubMedCrossRef Gong, D., Ben-Akiva, E., Singh, A., Yamagata, H., Est-Witte, S., Shade, J. K., Trayanova, N. A., & Green, J. J. (2022). Machine learning guided structure function predictions enable in silico nanoparticle screening for polymeric gene delivery. Acta Biomaterialia, 154, 349–358.PubMedCrossRef
234.
Zurück zum Zitat Kearney, E., Wojcik, A., & Babu, D. (2020). Artificial intelligence in genetic services delivery: Utopia or apocalypse? Journal of Genetic Counseling, 29(1), 8–17.PubMedCrossRef Kearney, E., Wojcik, A., & Babu, D. (2020). Artificial intelligence in genetic services delivery: Utopia or apocalypse? Journal of Genetic Counseling, 29(1), 8–17.PubMedCrossRef
235.
Zurück zum Zitat Moore, J. A., & Chow, J. C. L. (2021). Recent progress and applications of gold nanotechnology in medical biophysics using artificial intelligence and mathematical modeling. Nano Express, 2(2), 22001.CrossRef Moore, J. A., & Chow, J. C. L. (2021). Recent progress and applications of gold nanotechnology in medical biophysics using artificial intelligence and mathematical modeling. Nano Express, 2(2), 22001.CrossRef
Metadaten
Titel
Oral delivery of RNAi for cancer therapy
verfasst von
Humayra Afrin
Renu Geetha Bai
Raj Kumar
Sheikh Shafin Ahmad
Sandeep K. Agarwal
Md Nurunnabi
Publikationsdatum
27.03.2023
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 3/2023
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-023-10099-x

Weitere Artikel der Ausgabe 3/2023

Cancer and Metastasis Reviews 3/2023 Zur Ausgabe

EditorialNotes

Preface

Announcement

Biographies

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Erhöhtes Risiko fürs Herz unter Checkpointhemmer-Therapie

28.05.2024 Nebenwirkungen der Krebstherapie Nachrichten

Kardiotoxische Nebenwirkungen einer Therapie mit Immuncheckpointhemmern mögen selten sein – wenn sie aber auftreten, wird es für Patienten oft lebensgefährlich. Voruntersuchung und Monitoring sind daher obligat.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.