Skip to main content
Erschienen in: Cancer and Metastasis Reviews 1/2024

03.01.2024 | REVIEW

Targeting the key players of phenotypic plasticity in cancer cells by phytochemicals

verfasst von: Sajad Fakhri, Seyed Zachariah Moradi, Fatemeh Abbaszadeh, Farahnaz Faraji, Roshanak Amirian, Dona Sinha, Emily G. McMahon, Anupam Bishayee

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 1/2024

Einloggen, um Zugang zu erhalten

Abstract

Plasticity of phenotypic traits refers to an organism’s ability to change in response to environmental stimuli. As a result, the response may alter an organism’s physiological state, morphology, behavior, and phenotype. Phenotypic plasticity in cancer cells describes the considerable ability of cancer cells to transform phenotypes through non-genetic molecular signaling activities that promote therapy evasion and tumor metastasis via amplifying cancer heterogeneity. As a result of metastable phenotypic state transitions, cancer cells can tolerate chemotherapy or develop transient adaptive resistance. Therefore, new findings have paved the road in identifying factors and agents that inhibit or suppress phenotypic plasticity. It has also investigated novel multitargeted agents that may promise new effective strategies in cancer treatment. Despite the efficiency of conventional chemotherapeutic agents, drug toxicity, development of resistance, and high-cost limit their use in cancer therapy. Recent research has shown that small molecules derived from natural sources are capable of suppressing cancer by focusing on the plasticity of phenotypic responses. This systematic, comprehensive, and critical review analyzes the current state of knowledge regarding the ability of phytocompounds to target phenotypic plasticity at both preclinical and clinical levels. Current challenges/pitfalls, limitations, and future perspectives are also discussed.
Literatur
1.
Zurück zum Zitat Stewart, B. W., Bray, F., Forman, D., Ohgaki, H., Straif, K., Ullrich, A., et al. (2016). Cancer prevention as part of precision medicine: 'Plenty to be done' Carcinogenesis, 37(1), 2–9.PubMed Stewart, B. W., Bray, F., Forman, D., Ohgaki, H., Straif, K., Ullrich, A., et al. (2016). Cancer prevention as part of precision medicine: 'Plenty to be done' Carcinogenesis, 37(1), 2–9.PubMed
2.
Zurück zum Zitat Hanahan, D. (2022). Hallmarks of cancer: New dimensions. Cancer Discovery, 12(1), 31–46.PubMed Hanahan, D. (2022). Hallmarks of cancer: New dimensions. Cancer Discovery, 12(1), 31–46.PubMed
3.
Zurück zum Zitat Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: The next generation. Cell, 144(5), 646–674.PubMed Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: The next generation. Cell, 144(5), 646–674.PubMed
4.
Zurück zum Zitat Kalluri, R., & Weinberg, R. A. (2009). The basics of epithelial-mesenchymal transition. The Journal of Clinical Investigation, 119(6), 1420–1428.PubMedPubMedCentral Kalluri, R., & Weinberg, R. A. (2009). The basics of epithelial-mesenchymal transition. The Journal of Clinical Investigation, 119(6), 1420–1428.PubMedPubMedCentral
5.
Zurück zum Zitat Ribatti, D., Tamma, R., & Annese, T. (2020). Epithelial-mesenchymal transition in cancer: A historical overview. Translational Oncology, 13(6), 100773.PubMedPubMedCentral Ribatti, D., Tamma, R., & Annese, T. (2020). Epithelial-mesenchymal transition in cancer: A historical overview. Translational Oncology, 13(6), 100773.PubMedPubMedCentral
6.
Zurück zum Zitat Cadoná, F. C., Dantas, R. F., de Mello, G. H., & Silva-Jr, F. P. (2022). Natural products targeting into cancer hallmarks: An update on caffeine, theobromine, and (+)-catechin. Critical Reviews in Food Science and Nutrition, 62(26), 7222–7241.PubMed Cadoná, F. C., Dantas, R. F., de Mello, G. H., & Silva-Jr, F. P. (2022). Natural products targeting into cancer hallmarks: An update on caffeine, theobromine, and (+)-catechin. Critical Reviews in Food Science and Nutrition, 62(26), 7222–7241.PubMed
8.
Zurück zum Zitat Huang, M., Lu, J.-J., & Ding, J. (2021). Natural products in cancer therapy: Past, present and future. Natural Products and Bioprospecting, 11(1), 5–13.PubMedPubMedCentral Huang, M., Lu, J.-J., & Ding, J. (2021). Natural products in cancer therapy: Past, present and future. Natural Products and Bioprospecting, 11(1), 5–13.PubMedPubMedCentral
11.
Zurück zum Zitat Ang, H. L., Mohan, C. D., Shanmugam, M. K., Leong, H. C., Makvandi, P., Rangappa, K. S., et al. (2023). Mechanism of epithelial-mesenchymal transition in cancer and its regulation by natural compounds. Medicinal Research Reviews, 43(4), 1141–1200.PubMed Ang, H. L., Mohan, C. D., Shanmugam, M. K., Leong, H. C., Makvandi, P., Rangappa, K. S., et al. (2023). Mechanism of epithelial-mesenchymal transition in cancer and its regulation by natural compounds. Medicinal Research Reviews, 43(4), 1141–1200.PubMed
12.
Zurück zum Zitat Das, B., Sarkar, N., Bishayee, A., & Sinha, D. (2019). Dietary phytochemicals in the regulation of epithelial to mesenchymal transition and associated enzymes: A promising anticancer therapeutic approach. In Semin Cancer Biol (Vol. 56, pp. 196–218): Elsevier Das, B., Sarkar, N., Bishayee, A., & Sinha, D. (2019). Dietary phytochemicals in the regulation of epithelial to mesenchymal transition and associated enzymes: A promising anticancer therapeutic approach. In Semin Cancer Biol (Vol. 56, pp. 196–218): Elsevier
13.
Zurück zum Zitat Avila-Carrasco, L., Majano, P., Sánchez-Toméro, J. A., Selgas, R., López-Cabrera, M., Aguilera, A., et al. (2019). Natural plants compounds as modulators of epithelial-to-mesenchymal transition. Frontiers in Pharmacology, 10, 715.PubMedPubMedCentral Avila-Carrasco, L., Majano, P., Sánchez-Toméro, J. A., Selgas, R., López-Cabrera, M., Aguilera, A., et al. (2019). Natural plants compounds as modulators of epithelial-to-mesenchymal transition. Frontiers in Pharmacology, 10, 715.PubMedPubMedCentral
14.
Zurück zum Zitat More, H. The immortality of the soul, so farre as it is demonstrable from the knowledge of nature and the light of reason. Eebo Editions, Proquest. More, H. The immortality of the soul, so farre as it is demonstrable from the knowledge of nature and the light of reason. Eebo Editions, Proquest.
15.
Zurück zum Zitat Cudworth, R. (1678). The true intellectual system of the universe: The first part; wherein, all the reason and philosophy of atheism is is confuted; and its impossibility demonstrated. Richard Royston. https://doi.org/10.1037/14226-000 Cudworth, R. (1678). The true intellectual system of the universe: The first part; wherein, all the reason and philosophy of atheism is is confuted; and its impossibility demonstrated. Richard Royston. https://​doi.​org/​10.​1037/​14226-000
16.
Zurück zum Zitat Darwin, C. (2004). On the origin of species, 1859. Routledge. Darwin, C. (2004). On the origin of species, 1859. Routledge.
17.
Zurück zum Zitat Baldwin, J, M. (1896). Physical and social heredity. American Naturalist, 422–428. Baldwin, J, M. (1896). Physical and social heredity. American Naturalist, 422–428.
18.
Zurück zum Zitat Woltereck, R. (1909). Weitere experimentelle Untersuchungen uber Artveranderung, speziell uberdas Wesen quantitativer Artunterschyiede bei Daphniden. Verhandlungen der Deutschen Zoologischen Gesellschaft, 1909, 110–172. Woltereck, R. (1909). Weitere experimentelle Untersuchungen uber Artveranderung, speziell uberdas Wesen quantitativer Artunterschyiede bei Daphniden. Verhandlungen der Deutschen Zoologischen Gesellschaft, 1909, 110–172.
19.
Zurück zum Zitat Poulton, E. B. (1892). XIX. Further experiments upon the colour‐relation between certain lepidopterous larvœ, pupœ, cocoons, and imagines and their surroundings. Transactions of the Royal Entomological Society of London, 40(4), 293–487. Poulton, E. B. (1892). XIX. Further experiments upon the colour‐relation between certain lepidopterous larvœ, pupœ, cocoons, and imagines and their surroundings. Transactions of the Royal Entomological Society of London, 40(4), 293–487.
21.
Zurück zum Zitat Johannsen, W. (1911). The genotype conception of heredity. The American Naturalist, 45(531), 129–159. Johannsen, W. (1911). The genotype conception of heredity. The American Naturalist, 45(531), 129–159.
22.
Zurück zum Zitat Schmalhausen, I. I. (1949). Factors of evolution: The theory of stabilizing selection. Blakiston. Schmalhausen, I. I. (1949). Factors of evolution: The theory of stabilizing selection. Blakiston.
23.
Zurück zum Zitat Waddington, C. H. (1975). The evolution of an evolutionist. Edinburgh: Edinburgh University Press. Waddington, C. H. (1975). The evolution of an evolutionist. Edinburgh: Edinburgh University Press.
24.
Zurück zum Zitat Mayr, E. (1963). Animal species and evolution. Cambridge, MA: Harvard University Press. Mayr, E. (1963). Animal species and evolution. Cambridge, MA: Harvard University Press.
25.
Zurück zum Zitat Bradshaw, A. D. (1965). Evolutionary significance of phenotypic plasticity in plants. Advances in Genetics, 13, 115–155. Bradshaw, A. D. (1965). Evolutionary significance of phenotypic plasticity in plants. Advances in Genetics, 13, 115–155.
26.
Zurück zum Zitat Gilbert, S. F. (2005). Mechanisms for the environmental regulation of gene expression: Ecological aspects of animal development. Journal of Biosciences, 30, 65–74.PubMed Gilbert, S. F. (2005). Mechanisms for the environmental regulation of gene expression: Ecological aspects of animal development. Journal of Biosciences, 30, 65–74.PubMed
27.
Zurück zum Zitat Clark, M. S. (2020). Molecular mechanisms of biomineralization in marine invertebrates. Journal of Experimental Biology, 223(11), jeb206961.PubMedPubMedCentral Clark, M. S. (2020). Molecular mechanisms of biomineralization in marine invertebrates. Journal of Experimental Biology, 223(11), jeb206961.PubMedPubMedCentral
28.
Zurück zum Zitat Kucharski, R., Maleszka, J., Foret, S., & Maleszka, R. (2008). Nutritional control of reproductive status in honeybees via DNA methylation. Science, 319(5871), 1827–1830.PubMed Kucharski, R., Maleszka, J., Foret, S., & Maleszka, R. (2008). Nutritional control of reproductive status in honeybees via DNA methylation. Science, 319(5871), 1827–1830.PubMed
29.
Zurück zum Zitat Gupta, P. B., Pastushenko, I., Skibinski, A., Blanpain, C., & Kuperwasser, C. (2019). Phenotypic plasticity: Driver of cancer initiation, progression, and therapy resistance. Cell Stem Cell, 24(1), 65–78.PubMed Gupta, P. B., Pastushenko, I., Skibinski, A., Blanpain, C., & Kuperwasser, C. (2019). Phenotypic plasticity: Driver of cancer initiation, progression, and therapy resistance. Cell Stem Cell, 24(1), 65–78.PubMed
30.
Zurück zum Zitat Pastushenko, I., & Blanpain, C. (2019). EMT transition states during tumor progression and metastasis. Trends in Cell Biology, 29(3), 212–226.PubMed Pastushenko, I., & Blanpain, C. (2019). EMT transition states during tumor progression and metastasis. Trends in Cell Biology, 29(3), 212–226.PubMed
31.
Zurück zum Zitat Javaid, S., Zhang, J., Anderssen, E., Black, J. C., Wittner, B. S., Tajima, K., et al. (2013). Dynamic chromatin modification sustains epithelial-mesenchymal transition following inducible expression of Snail-1. Cell Reports, 5(6), 1679–1689.PubMed Javaid, S., Zhang, J., Anderssen, E., Black, J. C., Wittner, B. S., Tajima, K., et al. (2013). Dynamic chromatin modification sustains epithelial-mesenchymal transition following inducible expression of Snail-1. Cell Reports, 5(6), 1679–1689.PubMed
32.
Zurück zum Zitat Marcucci, F., Stassi, G., & De Maria, R. (2016). Epithelial–mesenchymal transition: A new target in anticancer drug discovery. Nature Reviews Drug Discovery, 15(5), 311–325.PubMed Marcucci, F., Stassi, G., & De Maria, R. (2016). Epithelial–mesenchymal transition: A new target in anticancer drug discovery. Nature Reviews Drug Discovery, 15(5), 311–325.PubMed
33.
Zurück zum Zitat Ungefroren, H., Thürling, I., Färber, B., Kowalke, T., Fischer, T., De Assis, L. V. M., et al. (2022). The quasimesenchymal pancreatic ductal epithelial cell line PANC-1-A useful model to study clonal heterogeneity and EMT subtype shifting. Cancers (Basel), 14(9), https://doi.org/10.3390/cancers14092057 Ungefroren, H., Thürling, I., Färber, B., Kowalke, T., Fischer, T., De Assis, L. V. M., et al. (2022). The quasimesenchymal pancreatic ductal epithelial cell line PANC-1-A useful model to study clonal heterogeneity and EMT subtype shifting. Cancers (Basel), 14(9), https://​doi.​org/​10.​3390/​cancers14092057
34.
Zurück zum Zitat Dongre, A., & Weinberg, R. A. (2019). New insights into the mechanisms of epithelial–mesenchymal transition and implications for cancer. Nature Reviews Molecular Cell Biology, 20(2), 69–84.PubMed Dongre, A., & Weinberg, R. A. (2019). New insights into the mechanisms of epithelial–mesenchymal transition and implications for cancer. Nature Reviews Molecular Cell Biology, 20(2), 69–84.PubMed
36.
Zurück zum Zitat Muz, B., de la Puente, P., Azab, F., & Azab, A. K. (2015). The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia, 3, 83.PubMedPubMedCentral Muz, B., de la Puente, P., Azab, F., & Azab, A. K. (2015). The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia, 3, 83.PubMedPubMedCentral
37.
Zurück zum Zitat Michealraj, K. A., Kumar, S. A., Kim, L. J., Cavalli, F. M., Przelicki, D., Wojcik, J. B., et al. (2020). Metabolic regulation of the epigenome drives lethal infantile ependymoma. Cell, 181(6), 1329–1345. e1324 Michealraj, K. A., Kumar, S. A., Kim, L. J., Cavalli, F. M., Przelicki, D., Wojcik, J. B., et al. (2020). Metabolic regulation of the epigenome drives lethal infantile ependymoma. Cell, 181(6), 1329–1345. e1324
38.
Zurück zum Zitat Li, L., & Hanahan, D. (2013). Hijacking the neuronal NMDAR signaling circuit to promote tumor growth and invasion. Cell, 153(1), 86–100.PubMed Li, L., & Hanahan, D. (2013). Hijacking the neuronal NMDAR signaling circuit to promote tumor growth and invasion. Cell, 153(1), 86–100.PubMed
39.
Zurück zum Zitat Mohammadi, H., & Sahai, E. (2018). Mechanisms and impact of altered tumour mechanics. Nature Cell Biology, 20(7), 766–774.PubMed Mohammadi, H., & Sahai, E. (2018). Mechanisms and impact of altered tumour mechanics. Nature Cell Biology, 20(7), 766–774.PubMed
40.
Zurück zum Zitat Visvader, J. E. (2011). Cells of origin in cancer. Nature, 469(7330), 314–322.PubMed Visvader, J. E. (2011). Cells of origin in cancer. Nature, 469(7330), 314–322.PubMed
41.
Zurück zum Zitat Rycaj, K., & Tang, D. G. (2015). Cell-of-origin of cancer versus cancer stem cells: Assays and interpretations. Cancer Research, 75(19), 4003–4011.PubMedPubMedCentral Rycaj, K., & Tang, D. G. (2015). Cell-of-origin of cancer versus cancer stem cells: Assays and interpretations. Cancer Research, 75(19), 4003–4011.PubMedPubMedCentral
42.
Zurück zum Zitat Ince, T. A., Richardson, A. L., Bell, G. W., Saitoh, M., Godar, S., Karnoub, A. E., et al. (2007). Transformation of different human breast epithelial cell types leads to distinct tumor phenotypes. Cancer Cell, 12(2), 160–170.PubMed Ince, T. A., Richardson, A. L., Bell, G. W., Saitoh, M., Godar, S., Karnoub, A. E., et al. (2007). Transformation of different human breast epithelial cell types leads to distinct tumor phenotypes. Cancer Cell, 12(2), 160–170.PubMed
44.
Zurück zum Zitat Suraneni, M. V., & Badeaux, M. D. (2013). Tumor-initiating cells, cancer metastasis and therapeutic implications. In Madame Curie Bioscience Database [Internet]: Landes Bioscience. Suraneni, M. V., & Badeaux, M. D. (2013). Tumor-initiating cells, cancer metastasis and therapeutic implications. In Madame Curie Bioscience Database [Internet]: Landes Bioscience.
45.
Zurück zum Zitat Cermeño, E. A., & García, A. J. (2016). Tumor-initiating cells: Emerging biophysical methods of isolation. Current stem cell reports, 2, 21–32.PubMedPubMedCentral Cermeño, E. A., & García, A. J. (2016). Tumor-initiating cells: Emerging biophysical methods of isolation. Current stem cell reports, 2, 21–32.PubMedPubMedCentral
47.
49.
Zurück zum Zitat van de Stolpe, A. (2013). On the origin and destination of cancer stem cells: A conceptual evaluation. American Journal of Cancer Research, 3(1), 107–116.PubMedPubMedCentral van de Stolpe, A. (2013). On the origin and destination of cancer stem cells: A conceptual evaluation. American Journal of Cancer Research, 3(1), 107–116.PubMedPubMedCentral
51.
Zurück zum Zitat Osman, A., Afify, S. M., Hassan, G., Fu, X., Seno, A., & Seno, M. (2020). Revisiting cancer stem cells as the origin of cancer-associated cells in the tumor microenvironment: A hypothetical view from the potential of iPSCs. Cancers, 12(4), 879.PubMedPubMedCentral Osman, A., Afify, S. M., Hassan, G., Fu, X., Seno, A., & Seno, M. (2020). Revisiting cancer stem cells as the origin of cancer-associated cells in the tumor microenvironment: A hypothetical view from the potential of iPSCs. Cancers, 12(4), 879.PubMedPubMedCentral
52.
Zurück zum Zitat Zhu, L., Gibson, P., Currle, D. S., Tong, Y., Richardson, R. J., Bayazitov, I. T., et al. (2009). Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation. Nature, 457(7229), 603–607.PubMed Zhu, L., Gibson, P., Currle, D. S., Tong, Y., Richardson, R. J., Bayazitov, I. T., et al. (2009). Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation. Nature, 457(7229), 603–607.PubMed
53.
Zurück zum Zitat Barker, N., Ridgway, R. A., Van Es, J. H., Van De Wetering, M., Begthel, H., Van Den Born, M., et al. (2009). Crypt stem cells as the cells-of-origin of intestinal cancer. Nature, 457(7229), 608–611.PubMed Barker, N., Ridgway, R. A., Van Es, J. H., Van De Wetering, M., Begthel, H., Van Den Born, M., et al. (2009). Crypt stem cells as the cells-of-origin of intestinal cancer. Nature, 457(7229), 608–611.PubMed
54.
Zurück zum Zitat Kim, C. F. B., Jackson, E. L., Woolfenden, A. E., Lawrence, S., Babar, I., Vogel, S., et al. (2005). Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell, 121(6), 823–835.PubMed Kim, C. F. B., Jackson, E. L., Woolfenden, A. E., Lawrence, S., Babar, I., Vogel, S., et al. (2005). Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell, 121(6), 823–835.PubMed
55.
Zurück zum Zitat Bouras, T., Pal, B., Vaillant, F., Harburg, G., Asselin-Labat, M.-L., Oakes, S. R., et al. (2008). Notch signaling regulates mammary stem cell function and luminal cell-fate commitment. Cell Stem Cell, 3(4), 429–441.PubMed Bouras, T., Pal, B., Vaillant, F., Harburg, G., Asselin-Labat, M.-L., Oakes, S. R., et al. (2008). Notch signaling regulates mammary stem cell function and luminal cell-fate commitment. Cell Stem Cell, 3(4), 429–441.PubMed
56.
Zurück zum Zitat Wang, X., Julio, M.K.-D., Economides, K. D., Walker, D., Yu, H., Halili, M. V., et al. (2009). A luminal epithelial stem cell that is a cell of origin for prostate cancer. Nature, 461(7263), 495–500.PubMedPubMedCentral Wang, X., Julio, M.K.-D., Economides, K. D., Walker, D., Yu, H., Halili, M. V., et al. (2009). A luminal epithelial stem cell that is a cell of origin for prostate cancer. Nature, 461(7263), 495–500.PubMedPubMedCentral
57.
Zurück zum Zitat Lawson, D. A., Zong, Y., Memarzadeh, S., Xin, L., Huang, J., & Witte, O. N. (2010). Basal epithelial stem cells are efficient targets for prostate cancer initiation. Proceedings of the National Academy of Sciences, 107(6), 2610-2615. Lawson, D. A., Zong, Y., Memarzadeh, S., Xin, L., Huang, J., & Witte, O. N. (2010). Basal epithelial stem cells are efficient targets for prostate cancer initiation. Proceedings of the National Academy of Sciences, 107(6), 2610-2615.
58.
Zurück zum Zitat Korsten, H., Ziel-van der Made, A., Ma, X., van der Kwast, T., & Trapman, J. (2009). Accumulating progenitor cells in the luminal epithelial cell layer are candidate tumor initiating cells in a Pten knockout mouse prostate cancer model. PLoS One, 4(5), e5662.PubMedPubMedCentral Korsten, H., Ziel-van der Made, A., Ma, X., van der Kwast, T., & Trapman, J. (2009). Accumulating progenitor cells in the luminal epithelial cell layer are candidate tumor initiating cells in a Pten knockout mouse prostate cancer model. PLoS One, 4(5), e5662.PubMedPubMedCentral
59.
Zurück zum Zitat Friedlander, S. Y. G., Chu, G. C., Snyder, E. L., Girnius, N., Dibelius, G., Crowley, D., et al. (2009). Context-dependent transformation of adult pancreatic cells by oncogenic K-Ras. Cancer Cell, 16(5), 379–389. Friedlander, S. Y. G., Chu, G. C., Snyder, E. L., Girnius, N., Dibelius, G., Crowley, D., et al. (2009). Context-dependent transformation of adult pancreatic cells by oncogenic K-Ras. Cancer Cell, 16(5), 379–389.
60.
Zurück zum Zitat Barker, N., Huch, M., Kujala, P., van de Wetering, M., Snippert, H. J., van Es, J. H., et al. (2010). Lgr5+ ve stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell, 6(1), 25–36.PubMed Barker, N., Huch, M., Kujala, P., van de Wetering, M., Snippert, H. J., van Es, J. H., et al. (2010). Lgr5+ ve stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell, 6(1), 25–36.PubMed
61.
Zurück zum Zitat Holland, E. C., Celestino, J., Dai, C., Schaefer, L., Sawaya, R. E., & Fuller, G. N. (2000). Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nature Genetics, 25(1), 55–57.PubMed Holland, E. C., Celestino, J., Dai, C., Schaefer, L., Sawaya, R. E., & Fuller, G. N. (2000). Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nature Genetics, 25(1), 55–57.PubMed
62.
Zurück zum Zitat Bachoo, R. M., Maher, E. A., Ligon, K. L., Sharpless, N. E., Chan, S. S., You, M. J., et al. (2002). Epidermal growth factor receptor and Ink4a/Arf: Convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis. Cancer Cell, 1(3), 269–277.PubMed Bachoo, R. M., Maher, E. A., Ligon, K. L., Sharpless, N. E., Chan, S. S., You, M. J., et al. (2002). Epidermal growth factor receptor and Ink4a/Arf: Convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis. Cancer Cell, 1(3), 269–277.PubMed
63.
Zurück zum Zitat Jacques, T. S., Swales, A., Brzozowski, M. J., Henriquez, N. V., Linehan, J. M., Mirzadeh, Z., et al. (2010). Combinations of genetic mutations in the adult neural stem cell compartment determine brain tumour phenotypes. The EMBO Journal, 29(1), 222–235.PubMed Jacques, T. S., Swales, A., Brzozowski, M. J., Henriquez, N. V., Linehan, J. M., Mirzadeh, Z., et al. (2010). Combinations of genetic mutations in the adult neural stem cell compartment determine brain tumour phenotypes. The EMBO Journal, 29(1), 222–235.PubMed
64.
Zurück zum Zitat Lindberg, N., Kastemar, M., Olofsson, T., Smits, A., & Uhrbom, L. (2009). Oligodendrocyte progenitor cells can act as cell of origin for experimental glioma. Oncogene, 28(23), 2266–2275.PubMed Lindberg, N., Kastemar, M., Olofsson, T., Smits, A., & Uhrbom, L. (2009). Oligodendrocyte progenitor cells can act as cell of origin for experimental glioma. Oncogene, 28(23), 2266–2275.PubMed
65.
Zurück zum Zitat Gibson, P., Tong, Y., Robinson, G., Thompson, M. C., Currle, D. S., Eden, C., et al. (2010). Subtypes of medulloblastoma have distinct developmental origins. Nature, 468(7327), 1095–1099.PubMedPubMedCentral Gibson, P., Tong, Y., Robinson, G., Thompson, M. C., Currle, D. S., Eden, C., et al. (2010). Subtypes of medulloblastoma have distinct developmental origins. Nature, 468(7327), 1095–1099.PubMedPubMedCentral
66.
Zurück zum Zitat Johnson, R. A., Wright, K. D., Poppleton, H., Mohankumar, K. M., Finkelstein, D., Pounds, S. B., et al. (2010). Cross-species genomics matches driver mutations and cell compartments to model ependymoma. Nature, 466(7306), 632–636.PubMedPubMedCentral Johnson, R. A., Wright, K. D., Poppleton, H., Mohankumar, K. M., Finkelstein, D., Pounds, S. B., et al. (2010). Cross-species genomics matches driver mutations and cell compartments to model ependymoma. Nature, 466(7306), 632–636.PubMedPubMedCentral
67.
Zurück zum Zitat Thiery, J. P., Acloque, H., Huang, R. Y., & Nieto, M. A. (2009). Epithelial-mesenchymal transitions in development and disease. Cell, 139(5), 871–890.PubMed Thiery, J. P., Acloque, H., Huang, R. Y., & Nieto, M. A. (2009). Epithelial-mesenchymal transitions in development and disease. Cell, 139(5), 871–890.PubMed
68.
Zurück zum Zitat Bhatia, S., Wang, P., Toh, A., & Thompson, E. W. (2020). New insights into the role of phenotypic plasticity and EMT in driving cancer progression. Frontiers in Molecular Biosciences, 7, 71.PubMedPubMedCentral Bhatia, S., Wang, P., Toh, A., & Thompson, E. W. (2020). New insights into the role of phenotypic plasticity and EMT in driving cancer progression. Frontiers in Molecular Biosciences, 7, 71.PubMedPubMedCentral
69.
Zurück zum Zitat Lambert, A. W., Pattabiraman, D. R., & Weinberg, R. A. (2017). Emerging biological principles of metastasis. Cell, 168(4), 670–691.PubMedPubMedCentral Lambert, A. W., Pattabiraman, D. R., & Weinberg, R. A. (2017). Emerging biological principles of metastasis. Cell, 168(4), 670–691.PubMedPubMedCentral
70.
Zurück zum Zitat Jehanno, C., Vulin, M., Richina, V., Richina, F., & Bentires-Alj, M. (2022). Phenotypic plasticity during metastatic colonization. Trends in Cell Biology. Jehanno, C., Vulin, M., Richina, V., Richina, F., & Bentires-Alj, M. (2022). Phenotypic plasticity during metastatic colonization. Trends in Cell Biology.
71.
Zurück zum Zitat Ocaña, O. H., Corcoles, R., Fabra, A., Moreno-Bueno, G., Acloque, H., Vega, S., et al. (2012). Metastatic colonization requires the repression of the epithelial-mesenchymal transition inducer Prrx1. Cancer Cell, 22(6), 709–724.PubMed Ocaña, O. H., Corcoles, R., Fabra, A., Moreno-Bueno, G., Acloque, H., Vega, S., et al. (2012). Metastatic colonization requires the repression of the epithelial-mesenchymal transition inducer Prrx1. Cancer Cell, 22(6), 709–724.PubMed
72.
Zurück zum Zitat Mani, S. A., Guo, W., Liao, M.-J., Eaton, E. N., Ayyanan, A., Zhou, A. Y., et al. (2008). The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 133(4), 704–715.PubMedPubMedCentral Mani, S. A., Guo, W., Liao, M.-J., Eaton, E. N., Ayyanan, A., Zhou, A. Y., et al. (2008). The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 133(4), 704–715.PubMedPubMedCentral
73.
Zurück zum Zitat Del Vecchio, C. A., Feng, Y., Sokol, E. S., Tillman, E. J., Sanduja, S., Reinhardt, F., et al. (2014). De-differentiation confers multidrug resistance via noncanonical PERK-Nrf2 signaling. PLoS Biology, 12(9), e1001945.PubMedPubMedCentral Del Vecchio, C. A., Feng, Y., Sokol, E. S., Tillman, E. J., Sanduja, S., Reinhardt, F., et al. (2014). De-differentiation confers multidrug resistance via noncanonical PERK-Nrf2 signaling. PLoS Biology, 12(9), e1001945.PubMedPubMedCentral
74.
Zurück zum Zitat Feng, Y.-X., Jin, D. X., Sokol, E. S., Reinhardt, F., Miller, D. H., & Gupta, P. B. (2017). Cancer-specific PERK signaling drives invasion and metastasis through CREB3L1. Nature Communications, 8(1), 1079.PubMedPubMedCentral Feng, Y.-X., Jin, D. X., Sokol, E. S., Reinhardt, F., Miller, D. H., & Gupta, P. B. (2017). Cancer-specific PERK signaling drives invasion and metastasis through CREB3L1. Nature Communications, 8(1), 1079.PubMedPubMedCentral
75.
Zurück zum Zitat Goldman, A. (2016). Tailoring combinatorial cancer therapies to target the origins of adaptive resistance. Molecular & cellular oncology, 3(1), e1030534. Goldman, A. (2016). Tailoring combinatorial cancer therapies to target the origins of adaptive resistance. Molecular & cellular oncology, 3(1), e1030534.
76.
Zurück zum Zitat Qin, S., Jiang, J., Lu, Y., Nice, E. C., Huang, C., Zhang, J., et al. (2020). Emerging role of tumor cell plasticity in modifying therapeutic response. Signal Transduction and Targeted Therapy, 5(1), 228.PubMedPubMedCentral Qin, S., Jiang, J., Lu, Y., Nice, E. C., Huang, C., Zhang, J., et al. (2020). Emerging role of tumor cell plasticity in modifying therapeutic response. Signal Transduction and Targeted Therapy, 5(1), 228.PubMedPubMedCentral
77.
Zurück zum Zitat Shibue, T., & Weinberg, R. A. (2017). EMT, CSCs, and drug resistance: The mechanistic link and clinical implications. Nature Reviews Clinical Oncology, 14(10), 611–629.PubMedPubMedCentral Shibue, T., & Weinberg, R. A. (2017). EMT, CSCs, and drug resistance: The mechanistic link and clinical implications. Nature Reviews Clinical Oncology, 14(10), 611–629.PubMedPubMedCentral
78.
Zurück zum Zitat Lüönd, F., Sugiyama, N., Bill, R., Bornes, L., Hager, C., Tang, F., et al. (2021). Distinct contributions of partial and full EMT to breast cancer malignancy. Developmental Cell, 56(23), 3203–3221. e3211 Lüönd, F., Sugiyama, N., Bill, R., Bornes, L., Hager, C., Tang, F., et al. (2021). Distinct contributions of partial and full EMT to breast cancer malignancy. Developmental Cell, 56(23), 3203–3221. e3211
79.
Zurück zum Zitat Bakir, B., Chiarella, A. M., Pitarresi, J. R., & Rustgi, A. K. (2020). EMT, MET, plasticity, and tumor metastasis. Trends in Cell Biology, 30(10), 764–776.PubMedPubMedCentral Bakir, B., Chiarella, A. M., Pitarresi, J. R., & Rustgi, A. K. (2020). EMT, MET, plasticity, and tumor metastasis. Trends in Cell Biology, 30(10), 764–776.PubMedPubMedCentral
80.
Zurück zum Zitat Pastushenko, I., Brisebarre, A., Sifrim, A., Fioramonti, M., Revenco, T., Boumahdi, S., et al. (2018). Identification of the tumour transition states occurring during EMT. Nature, 556(7702), 463–468.PubMed Pastushenko, I., Brisebarre, A., Sifrim, A., Fioramonti, M., Revenco, T., Boumahdi, S., et al. (2018). Identification of the tumour transition states occurring during EMT. Nature, 556(7702), 463–468.PubMed
81.
Zurück zum Zitat Shi, Z.-D., Pang, K., Wu, Z.-X., Dong, Y., Hao, L., Qin, J.-X., et al. (2023). Tumor cell plasticity in targeted therapy-induced resistance: Mechanisms and new strategies. Signal Transduction and Targeted Therapy, 8(1), 113.PubMedPubMedCentral Shi, Z.-D., Pang, K., Wu, Z.-X., Dong, Y., Hao, L., Qin, J.-X., et al. (2023). Tumor cell plasticity in targeted therapy-induced resistance: Mechanisms and new strategies. Signal Transduction and Targeted Therapy, 8(1), 113.PubMedPubMedCentral
82.
Zurück zum Zitat Merrell, A. J., & Stanger, B. Z. (2016). Adult cell plasticity in vivo: De-differentiation and transdifferentiation are back in style. Nature Reviews Molecular Cell Biology, 17(7), 413–425.PubMedPubMedCentral Merrell, A. J., & Stanger, B. Z. (2016). Adult cell plasticity in vivo: De-differentiation and transdifferentiation are back in style. Nature Reviews Molecular Cell Biology, 17(7), 413–425.PubMedPubMedCentral
83.
Zurück zum Zitat Das, M., & Law, S. (2018). Role of tumor microenvironment in cancer stem cell chemoresistance and recurrence. The International Journal of Biochemistry & Cell Biology, 103, 115–124. Das, M., & Law, S. (2018). Role of tumor microenvironment in cancer stem cell chemoresistance and recurrence. The International Journal of Biochemistry & Cell Biology, 103, 115–124.
84.
Zurück zum Zitat Yochum, Z. A., Cades, J., Wang, H., Chatterjee, S., Simons, B. W., O’Brien, J. P., et al. (2019). Targeting the EMT transcription factor TWIST1 overcomes resistance to EGFR inhibitors in EGFR-mutant non-small-cell lung cancer. Oncogene, 38(5), 656–670.PubMed Yochum, Z. A., Cades, J., Wang, H., Chatterjee, S., Simons, B. W., O’Brien, J. P., et al. (2019). Targeting the EMT transcription factor TWIST1 overcomes resistance to EGFR inhibitors in EGFR-mutant non-small-cell lung cancer. Oncogene, 38(5), 656–670.PubMed
85.
Zurück zum Zitat Dai, C., Heemers, H., & Sharifi, N. (2017). Androgen signaling in prostate cancer. Cold Spring Harbor Perspectives in Medicine, 7(9), a030452.PubMedPubMedCentral Dai, C., Heemers, H., & Sharifi, N. (2017). Androgen signaling in prostate cancer. Cold Spring Harbor Perspectives in Medicine, 7(9), a030452.PubMedPubMedCentral
86.
Zurück zum Zitat Lee, H., Jeong, A. J., & Ye, S.-K. (2019). Highlighted STAT3 as a potential drug target for cancer therapy. BMB Reports, 52(7), 415.PubMedPubMedCentral Lee, H., Jeong, A. J., & Ye, S.-K. (2019). Highlighted STAT3 as a potential drug target for cancer therapy. BMB Reports, 52(7), 415.PubMedPubMedCentral
87.
Zurück zum Zitat East, M. P., & Johnson, G. L. (2022). Adaptive chromatin remodeling and transcriptional changes of the functional kinome in tumor cells in response to targeted kinase inhibition. Journal of Biological Chemistry, 298(2), 101525.PubMed East, M. P., & Johnson, G. L. (2022). Adaptive chromatin remodeling and transcriptional changes of the functional kinome in tumor cells in response to targeted kinase inhibition. Journal of Biological Chemistry, 298(2), 101525.PubMed
88.
Zurück zum Zitat Salaritabar, A., Berindan-Neagoe, I., Darvish, B., Hadjiakhoondi, F., Manayi, A., Devi, K. P., et al. (2019). Targeting Hedgehog signaling pathway: Paving the road for cancer therapy. Pharmacological Research, 141, 466–480.PubMed Salaritabar, A., Berindan-Neagoe, I., Darvish, B., Hadjiakhoondi, F., Manayi, A., Devi, K. P., et al. (2019). Targeting Hedgehog signaling pathway: Paving the road for cancer therapy. Pharmacological Research, 141, 466–480.PubMed
89.
90.
Zurück zum Zitat Tan, T., Shi, P., Abbas, M. N., Wang, Y., Xu, J., Chen, Y., et al. (2022). Epigenetic modification regulates tumor progression and metastasis through EMT. International Journal of Oncology, 60(6), 1–17. Tan, T., Shi, P., Abbas, M. N., Wang, Y., Xu, J., Chen, Y., et al. (2022). Epigenetic modification regulates tumor progression and metastasis through EMT. International Journal of Oncology, 60(6), 1–17.
91.
Zurück zum Zitat Knoechel, B., Roderick, J. E., Williamson, K. E., Zhu, J., Lohr, J. G., Cotton, M. J., et al. (2014). An epigenetic mechanism of resistance to targeted therapy in T cell acute lymphoblastic leukemia. Nature Genetics, 46(4), 364–370.PubMedPubMedCentral Knoechel, B., Roderick, J. E., Williamson, K. E., Zhu, J., Lohr, J. G., Cotton, M. J., et al. (2014). An epigenetic mechanism of resistance to targeted therapy in T cell acute lymphoblastic leukemia. Nature Genetics, 46(4), 364–370.PubMedPubMedCentral
92.
Zurück zum Zitat Guo, L., Lee, Y.-T., Zhou, Y., & Huang, Y. (2022). Targeting epigenetic regulatory machinery to overcome cancer therapy resistance. In Seminars in Cancer Biology, (Vol. 83, pp. 487–502): Elsevier Guo, L., Lee, Y.-T., Zhou, Y., & Huang, Y. (2022). Targeting epigenetic regulatory machinery to overcome cancer therapy resistance. In Seminars in Cancer Biology, (Vol. 83, pp. 487–502): Elsevier
93.
Zurück zum Zitat Yosifov, D. Y., Bloehdorn, J., Döhner, H., Lichter, P., Stilgenbauer, S., & Mertens, D. (2020). DNA methylation of chronic lymphocytic leukemia with differential response to chemotherapy. Scientific Data, 7(1), 133.PubMedPubMedCentral Yosifov, D. Y., Bloehdorn, J., Döhner, H., Lichter, P., Stilgenbauer, S., & Mertens, D. (2020). DNA methylation of chronic lymphocytic leukemia with differential response to chemotherapy. Scientific Data, 7(1), 133.PubMedPubMedCentral
94.
Zurück zum Zitat Barzegar Behrooz, A., Talaie, Z., Jusheghani, F., Łos, M. J., Klonisch, T., & Ghavami, S. (2022). Wnt and PI3K/Akt/mTOR survival pathways as therapeutic targets in glioblastoma. International Journal of Molecular Sciences, 23(3), 1353.PubMedPubMedCentral Barzegar Behrooz, A., Talaie, Z., Jusheghani, F., Łos, M. J., Klonisch, T., & Ghavami, S. (2022). Wnt and PI3K/Akt/mTOR survival pathways as therapeutic targets in glioblastoma. International Journal of Molecular Sciences, 23(3), 1353.PubMedPubMedCentral
96.
Zurück zum Zitat Howe, L. R., Watanabe, O., Leonard, J., & Brown, A. M. (2003). Twist is up-regulated in response to Wnt1 and inhibits mouse mammary cell differentiation. Cancer Research, 63(8), 1906–1913.PubMed Howe, L. R., Watanabe, O., Leonard, J., & Brown, A. M. (2003). Twist is up-regulated in response to Wnt1 and inhibits mouse mammary cell differentiation. Cancer Research, 63(8), 1906–1913.PubMed
97.
Zurück zum Zitat Saad, S., Stanners, S., Yong, R., Tang, O., & Pollock, C. (2010). Notch mediated epithelial to mesenchymal transformation is associated with increased expression of the Snail transcription factor. The International Journal of Biochemistry & Cell Biology, 42(7), 1115–1122. Saad, S., Stanners, S., Yong, R., Tang, O., & Pollock, C. (2010). Notch mediated epithelial to mesenchymal transformation is associated with increased expression of the Snail transcription factor. The International Journal of Biochemistry & Cell Biology, 42(7), 1115–1122.
98.
Zurück zum Zitat Deshmukh, A. P., Vasaikar, S. V., Tomczak, K., Tripathi, S., Den Hollander, P., Arslan, E., et al. (2021). Identification of EMT signaling cross-talk and gene regulatory networks by single-cell RNA sequencing. Proceedings of the National Academy of Sciences, 118(19), e2102050118. Deshmukh, A. P., Vasaikar, S. V., Tomczak, K., Tripathi, S., Den Hollander, P., Arslan, E., et al. (2021). Identification of EMT signaling cross-talk and gene regulatory networks by single-cell RNA sequencing. Proceedings of the National Academy of Sciences, 118(19), e2102050118.
99.
Zurück zum Zitat von Arx, C., Capozzi, M., López-Jiménez, E., Ottaiano, A., Tatangelo, F., Di Mauro, A., et al. (2019). Updates on the role of molecular alterations and NOTCH signalling in the development of neuroendocrine neoplasms. Journal of Clinical Medicine, 8(9), 1277. von Arx, C., Capozzi, M., López-Jiménez, E., Ottaiano, A., Tatangelo, F., Di Mauro, A., et al. (2019). Updates on the role of molecular alterations and NOTCH signalling in the development of neuroendocrine neoplasms. Journal of Clinical Medicine, 8(9), 1277.
100.
Zurück zum Zitat Noman, M. Z., Hasmim, M., Lequeux, A., Xiao, M., Duhem, C., Chouaib, S., et al. (2019). Improving cancer immunotherapy by targeting the hypoxic tumor microenvironment: New opportunities and challenges. Cells, 8(9), 1083.PubMedPubMedCentral Noman, M. Z., Hasmim, M., Lequeux, A., Xiao, M., Duhem, C., Chouaib, S., et al. (2019). Improving cancer immunotherapy by targeting the hypoxic tumor microenvironment: New opportunities and challenges. Cells, 8(9), 1083.PubMedPubMedCentral
101.
Zurück zum Zitat Zheng, X., Yu, C., & Xu, M. (2021). Linking tumor microenvironment to plasticity of cancer stem cells: Mechanisms and application in cancer therapy. Frontiers in Oncology, 11, 678333.PubMedPubMedCentral Zheng, X., Yu, C., & Xu, M. (2021). Linking tumor microenvironment to plasticity of cancer stem cells: Mechanisms and application in cancer therapy. Frontiers in Oncology, 11, 678333.PubMedPubMedCentral
102.
Zurück zum Zitat Kalluri, R., & Zeisberg, M. (2006). Fibroblasts in cancer. Nature Reviews Cancer, 6(5), 392–401.PubMed Kalluri, R., & Zeisberg, M. (2006). Fibroblasts in cancer. Nature Reviews Cancer, 6(5), 392–401.PubMed
104.
Zurück zum Zitat Xu, W., Yang, Z., & Lu, N. (2015). A new role for the PI3K/Akt signaling pathway in the epithelial-mesenchymal transition. Cell Adhesion & Migration, 9(4), 317–324. Xu, W., Yang, Z., & Lu, N. (2015). A new role for the PI3K/Akt signaling pathway in the epithelial-mesenchymal transition. Cell Adhesion & Migration, 9(4), 317–324.
105.
Zurück zum Zitat Lee, M. K., Pardoux, C., Hall, M. C., Lee, P. S., Warburton, D., Qing, J., et al. (2007). TGF-β activates Erk MAP kinase signalling through direct phosphorylation of ShcA. The EMBO Journal, 26(17), 3957–3967.PubMedPubMedCentral Lee, M. K., Pardoux, C., Hall, M. C., Lee, P. S., Warburton, D., Qing, J., et al. (2007). TGF-β activates Erk MAP kinase signalling through direct phosphorylation of ShcA. The EMBO Journal, 26(17), 3957–3967.PubMedPubMedCentral
106.
Zurück zum Zitat Zhang, J., & Ma, L. (2012). MicroRNA control of epithelial–mesenchymal transition and metastasis. Cancer and Metastasis Reviews, 31, 653–662.PubMed Zhang, J., & Ma, L. (2012). MicroRNA control of epithelial–mesenchymal transition and metastasis. Cancer and Metastasis Reviews, 31, 653–662.PubMed
114.
115.
117.
119.
Zurück zum Zitat Di, J., Luo, J., Wang, R., Jin, S. Y., Zhang, S. W., & Jiang, B. (2022). Curcumin-coated poly(lactic-co-glycolic acid) nanoparticles affect colorectal cancer cells growth by regulating notch signaling pathway. Science of Advanced Materials, 14(4), 718–724. https://doi.org/10.1166/sam.2022.4250CrossRef Di, J., Luo, J., Wang, R., Jin, S. Y., Zhang, S. W., & Jiang, B. (2022). Curcumin-coated poly(lactic-co-glycolic acid) nanoparticles affect colorectal cancer cells growth by regulating notch signaling pathway. Science of Advanced Materials, 14(4), 718–724. https://​doi.​org/​10.​1166/​sam.​2022.​4250CrossRef
121.
123.
130.
Zurück zum Zitat Yu, G., Chen, L., Hu, Y., Yuan, Z., Luo, Y., & Xiong, Y. (2021). Antitumor effects of baicalein and its mechanism via TGF<i>β</i> pathway in cervical cancer HeLa Cells. Evidence-based Complementary and Alternative Medicine, 2021, https://doi.org/10.1155/2021/5527190 Yu, G., Chen, L., Hu, Y., Yuan, Z., Luo, Y., & Xiong, Y. (2021). Antitumor effects of baicalein and its mechanism via TGF<i>β</i> pathway in cervical cancer HeLa Cells. Evidence-based Complementary and Alternative Medicine, 2021, https://​doi.​org/​10.​1155/​2021/​5527190
132.
Zurück zum Zitat Xing-Cong, M., Yan, W., Zhi-Jun, D., Gao, X., Ma, Y., Xu, Q., et al. (2016). Baicalein suppresses metastasis of breast cancer cells by inhibiting EMT via downregulation of SATB1 and Wnt/β-catenin pathway. Drug Design, Development and Therapy, 10, 1419–1441. https://doi.org/10.2147/DDDT.S102541CrossRef Xing-Cong, M., Yan, W., Zhi-Jun, D., Gao, X., Ma, Y., Xu, Q., et al. (2016). Baicalein suppresses metastasis of breast cancer cells by inhibiting EMT via downregulation of SATB1 and Wnt/β-catenin pathway. Drug Design, Development and Therapy, 10, 1419–1441. https://​doi.​org/​10.​2147/​DDDT.​S102541CrossRef
133.
Zurück zum Zitat Zheng, L., Zhou, Z. Y., & He, Z. K. (2016). Baicalin inhibits TGF-beta 1-induced epithelial-to-mesenchymal transition and suppresses pancreatic cancer cell migration and invasion. International Journal of Clinical and Experimental Pathology, 9(2), 1054–1060. Zheng, L., Zhou, Z. Y., & He, Z. K. (2016). Baicalin inhibits TGF-beta 1-induced epithelial-to-mesenchymal transition and suppresses pancreatic cancer cell migration and invasion. International Journal of Clinical and Experimental Pathology, 9(2), 1054–1060.
135.
Zurück zum Zitat Weichao, D., Fan, Y., Hou, T., Wei, Y., Liu, B., Que, T., et al. (2022). Silibinin inhibits the migration, invasion and epithelial-mesenchymal transition of prostate cancer by activating the autophagic degradation of YAP. Journal of Cancer, 13(13), 3415–3426. https://doi.org/10.7150/jca.63514CrossRef Weichao, D., Fan, Y., Hou, T., Wei, Y., Liu, B., Que, T., et al. (2022). Silibinin inhibits the migration, invasion and epithelial-mesenchymal transition of prostate cancer by activating the autophagic degradation of YAP. Journal of Cancer, 13(13), 3415–3426. https://​doi.​org/​10.​7150/​jca.​63514CrossRef
137.
Zurück zum Zitat Chen, J. W., & Qiu, H. (2021). Analysis of inhibitory effects of kaempferol on migration and epithelial-mesenchymal transition in human lung cancer. Latin American Journal of Pharmacy, 40(1), 108–113. Chen, J. W., & Qiu, H. (2021). Analysis of inhibitory effects of kaempferol on migration and epithelial-mesenchymal transition in human lung cancer. Latin American Journal of Pharmacy, 40(1), 108–113.
139.
Zurück zum Zitat Zhang, Z., Qiao, Y., Yang, L., Chen, Z., Li, T., Gu, M., et al. (2021). Kaempferol 3-O-gentiobioside, an ALK5 inhibitor, affects the proliferation, migration, and invasion of tumor cells via blockade of the TGF-β/ALK5/Smad signaling pathway. Phytotherapy Research, 35(11), 6310–6323. https://doi.org/10.1002/ptr.7278CrossRefPubMed Zhang, Z., Qiao, Y., Yang, L., Chen, Z., Li, T., Gu, M., et al. (2021). Kaempferol 3-O-gentiobioside, an ALK5 inhibitor, affects the proliferation, migration, and invasion of tumor cells via blockade of the TGF-β/ALK5/Smad signaling pathway. Phytotherapy Research, 35(11), 6310–6323. https://​doi.​org/​10.​1002/​ptr.​7278CrossRefPubMed
140.
Zurück zum Zitat Wei, R., Penso, N. E. C., Hackman, R. M., Wang, Y., & Mackenzie, G. G. (2019). Epigallocatechin-3-gallate (EGCG) suppresses pancreatic cancer cell growth, invasion, and migration partly through the inhibition of Akt pathway and epithelial-mesenchymal transition: Enhanced efficacy when combined with gemcitabine. Nutrients, 11(8), https://doi.org/10.3390/nu11081856 Wei, R., Penso, N. E. C., Hackman, R. M., Wang, Y., & Mackenzie, G. G. (2019). Epigallocatechin-3-gallate (EGCG) suppresses pancreatic cancer cell growth, invasion, and migration partly through the inhibition of Akt pathway and epithelial-mesenchymal transition: Enhanced efficacy when combined with gemcitabine. Nutrients, 11(8), https://​doi.​org/​10.​3390/​nu11081856
141.
Zurück zum Zitat Shi, J., Liu, F., Zhang, W., Liu, X., Lin, B., & Tang, X. (2015). Epigallocatechin-3-gallate inhibits nicotine-induced migration and invasion by the suppression of angiogenesis and epithelial-mesenchymal transition in non-small cell lung cancer cells. Oncology Reports, 33(6), 2972–2980. https://doi.org/10.3892/or.2015.3889CrossRefPubMed Shi, J., Liu, F., Zhang, W., Liu, X., Lin, B., & Tang, X. (2015). Epigallocatechin-3-gallate inhibits nicotine-induced migration and invasion by the suppression of angiogenesis and epithelial-mesenchymal transition in non-small cell lung cancer cells. Oncology Reports, 33(6), 2972–2980. https://​doi.​org/​10.​3892/​or.​2015.​3889CrossRefPubMed
149.
150.
151.
Zurück zum Zitat Prasad, P., Vasas, A., Hohmann, J., Bishayee, A., & Sinha, D. (2019). Cirsiliol suppressed epithelial to mesenchymal transition in B16F10 malignant melanoma cells through alteration of the PI3K/Akt/NF-κB signaling pathway. International Journal of Molecular Sciences, 20(3), https://doi.org/10.3390/ijms20030608. Prasad, P., Vasas, A., Hohmann, J., Bishayee, A., & Sinha, D. (2019). Cirsiliol suppressed epithelial to mesenchymal transition in B16F10 malignant melanoma cells through alteration of the PI3K/Akt/NF-κB signaling pathway. International Journal of Molecular Sciences, 20(3), https://​doi.​org/​10.​3390/​ijms20030608.
160.
161.
Zurück zum Zitat Singh, T., Prasad, R., & Katiyar, S. K. (2016). Therapeutic intervention of silymarin on the migration of non-small cell lung cancer cells is associated with the axis of multiple molecular targets including class 1 HDACs, ZEB1 expression, and restoration of miR-203 and E-cadherin expression. American Journal of Cancer Research, 6(6), 1287–1301.PubMedPubMedCentral Singh, T., Prasad, R., & Katiyar, S. K. (2016). Therapeutic intervention of silymarin on the migration of non-small cell lung cancer cells is associated with the axis of multiple molecular targets including class 1 HDACs, ZEB1 expression, and restoration of miR-203 and E-cadherin expression. American Journal of Cancer Research, 6(6), 1287–1301.PubMedPubMedCentral
163.
Zurück zum Zitat Jia, H., Liu, M. Y., Wang, X. Y., Jiang, Q. Y., Wang, S., Santhanam, R. K., et al. (2021). Cimigenoside functions as a novel gamma-secretase inhibitor and inhibits the proliferation or metastasis of human breast cancer cells by gamma-secretase/Notch axis. Pharmacological Research, 169, https://doi.org/10.1016/j.phrs.2021.105686 Jia, H., Liu, M. Y., Wang, X. Y., Jiang, Q. Y., Wang, S., Santhanam, R. K., et al. (2021). Cimigenoside functions as a novel gamma-secretase inhibitor and inhibits the proliferation or metastasis of human breast cancer cells by gamma-secretase/Notch axis. Pharmacological Research, 169, https://​doi.​org/​10.​1016/​j.​phrs.​2021.​105686
165.
Zurück zum Zitat Lee, J., Jin, H., Lee, W. S., Nagappan, A., Choi, Y. H., Kim, G. S., et al. (2016). Morin, a flavonoid from moraceae, inhibits cancer cell adhesion to endothelial cells and EMT by downregulating VCAM1 and Ncadherin. Asian Pacific Journal of Cancer Prevention, 17(7), 3071–3075.PubMed Lee, J., Jin, H., Lee, W. S., Nagappan, A., Choi, Y. H., Kim, G. S., et al. (2016). Morin, a flavonoid from moraceae, inhibits cancer cell adhesion to endothelial cells and EMT by downregulating VCAM1 and Ncadherin. Asian Pacific Journal of Cancer Prevention, 17(7), 3071–3075.PubMed
177.
179.
Zurück zum Zitat Lu, K. H., Chen, P. N., Hsieh, Y. H., Lin, C. Y., Cheng, F. Y., Chiu, P. C., et al. (2016). 3-Hydroxyflavone inhibits human osteosarcoma U2OS and 143B cells metastasis by affecting EMT and repressing u-PA/MMP-2 via FAK-Src to MEK/ERK and RhoA/MLC2 pathways and reduces 143B tumor growth in vivo. Food and Chemical Toxicology, 97, 177–186. https://doi.org/10.1016/j.fct.2016.09.006CrossRefPubMed Lu, K. H., Chen, P. N., Hsieh, Y. H., Lin, C. Y., Cheng, F. Y., Chiu, P. C., et al. (2016). 3-Hydroxyflavone inhibits human osteosarcoma U2OS and 143B cells metastasis by affecting EMT and repressing u-PA/MMP-2 via FAK-Src to MEK/ERK and RhoA/MLC2 pathways and reduces 143B tumor growth in vivo. Food and Chemical Toxicology, 97, 177–186. https://​doi.​org/​10.​1016/​j.​fct.​2016.​09.​006CrossRefPubMed
182.
Zurück zum Zitat Chen, H. Y., Chiang, Y. F., Huang, J. S., Huang, T. C., Shih, Y. H., Wang, K. L., et al. (2021). Isoliquiritigenin reverses epithelial-mesenchymal transition through modulation of the TGF-β/Smad signaling pathway in endometrial cancer. Cancers (Basel), 13(6). https://doi.org/10.3390/cancers13061236 Chen, H. Y., Chiang, Y. F., Huang, J. S., Huang, T. C., Shih, Y. H., Wang, K. L., et al. (2021). Isoliquiritigenin reverses epithelial-mesenchymal transition through modulation of the TGF-β/Smad signaling pathway in endometrial cancer. Cancers (Basel), 13(6). https://​doi.​org/​10.​3390/​cancers13061236
183.
Zurück zum Zitat Chen, S. M., Feng, J. N., Zhao, C. K., Yao, L. C., Wang, L. X., Meng, L., et al. (2022). A multi-targeting natural product, aiphanol, inhibits tumor growth and metastasis. American Journal of Cancer Research, 12(11), 4930–4953.PubMedPubMedCentral Chen, S. M., Feng, J. N., Zhao, C. K., Yao, L. C., Wang, L. X., Meng, L., et al. (2022). A multi-targeting natural product, aiphanol, inhibits tumor growth and metastasis. American Journal of Cancer Research, 12(11), 4930–4953.PubMedPubMedCentral
185.
Zurück zum Zitat López-Lázaro, M. (2009). Distribution and biological activities of the flavonoid luteolin. Mini Reviews in Medicinal Chemistry, 9(1), 31–59.PubMed López-Lázaro, M. (2009). Distribution and biological activities of the flavonoid luteolin. Mini Reviews in Medicinal Chemistry, 9(1), 31–59.PubMed
190.
Zurück zum Zitat Khan, F., Niaz, K., Maqbool, F., Ismail Hassan, F., Abdollahi, M., Nagulapalli Venkata, K. C., et al. (2016). Molecular targets underlying the anticancer effects of quercetin: An update. Nutrients, 8(9), https://doi.org/10.3390/nu8090529. Khan, F., Niaz, K., Maqbool, F., Ismail Hassan, F., Abdollahi, M., Nagulapalli Venkata, K. C., et al. (2016). Molecular targets underlying the anticancer effects of quercetin: An update. Nutrients, 8(9), https://​doi.​org/​10.​3390/​nu8090529.
194.
Zurück zum Zitat Morshed, A., Paul, S., Hossain, A., Basak, T., Hossain, M. S., Hasan, M. M., et al. (2023). Baicalein as promising anticancer agent: A comprehensive analysis on molecular mechanisms and therapeutic perspectives. Cancers (Basel), 15(7), https://doi.org/10.3390/cancers15072128 Morshed, A., Paul, S., Hossain, A., Basak, T., Hossain, M. S., Hasan, M. M., et al. (2023). Baicalein as promising anticancer agent: A comprehensive analysis on molecular mechanisms and therapeutic perspectives. Cancers (Basel), 15(7), https://​doi.​org/​10.​3390/​cancers15072128
195.
199.
Zurück zum Zitat Fakhri, S., Abdian, S., Zarneshan, S. N., Moradi, S. Z., Farzaei, M. H., & Abdollahi, M. (2022). Nanoparticles in combating neuronal dysregulated signaling pathways: Recent approaches to the nanoformulations of phytochemicals and synthetic drugs against neurodegenerative diseases. International Journal of Nanomedicine, 299–331. https://doi.org/10.2147/IJN.S347187 Fakhri, S., Abdian, S., Zarneshan, S. N., Moradi, S. Z., Farzaei, M. H., & Abdollahi, M. (2022). Nanoparticles in combating neuronal dysregulated signaling pathways: Recent approaches to the nanoformulations of phytochemicals and synthetic drugs against neurodegenerative diseases. International Journal of Nanomedicine, 299–331. https://​doi.​org/​10.​2147/​IJN.​S347187
200.
Zurück zum Zitat Moradi, S. Z., Momtaz, S., Bayrami, Z., Farzaei, M. H., & Abdollahi, M. (2020). Nanoformulations of herbal extracts in treatment of neurodegenerative disorders. Frontiers in Bioengineering and Biotechnology, 8, 238.PubMedPubMedCentral Moradi, S. Z., Momtaz, S., Bayrami, Z., Farzaei, M. H., & Abdollahi, M. (2020). Nanoformulations of herbal extracts in treatment of neurodegenerative disorders. Frontiers in Bioengineering and Biotechnology, 8, 238.PubMedPubMedCentral
201.
Zurück zum Zitat Sajadimajd, S., Moradi, S. Z., Akbari, V., Aghaz, F., & Farzaei, M. H. (2022). Nanoformulated herbal bioactives for the treatment of neurodegenerative disorders. In Herbal bioactive-based drug delivery systems (pp. 371–391): Elsevier. Sajadimajd, S., Moradi, S. Z., Akbari, V., Aghaz, F., & Farzaei, M. H. (2022). Nanoformulated herbal bioactives for the treatment of neurodegenerative disorders. In Herbal bioactive-based drug delivery systems (pp. 371–391): Elsevier.
204.
205.
Zurück zum Zitat Kubina, R., Krzykawski, K., Kabała-Dzik, A., Wojtyczka, R. D., Chodurek, E., & Dziedzic, A. (2022). Fisetin, a potent anticancer flavonol exhibiting cytotoxic activity against neoplastic malignant cells and cancerous conditions: A scoping, comprehensive review. Nutrients, 14(13), https://doi.org/10.3390/nu14132604 Kubina, R., Krzykawski, K., Kabała-Dzik, A., Wojtyczka, R. D., Chodurek, E., & Dziedzic, A. (2022). Fisetin, a potent anticancer flavonol exhibiting cytotoxic activity against neoplastic malignant cells and cancerous conditions: A scoping, comprehensive review. Nutrients, 14(13), https://​doi.​org/​10.​3390/​nu14132604
208.
210.
Zurück zum Zitat Liu, C. H., Tang, W. C., Sia, P., Huang, C. C., Yang, P. M., Wu, M. H., et al. (2015). Berberine inhibits the metastatic ability of prostate cancer cells by suppressing epithelial-to-mesenchymal transition (EMT)-associated genes with predictive and prognostic relevance. International Journal of Medical Sciences, 12(1), 63–71. https://doi.org/10.7150/ijms.9982CrossRefPubMedPubMedCentral Liu, C. H., Tang, W. C., Sia, P., Huang, C. C., Yang, P. M., Wu, M. H., et al. (2015). Berberine inhibits the metastatic ability of prostate cancer cells by suppressing epithelial-to-mesenchymal transition (EMT)-associated genes with predictive and prognostic relevance. International Journal of Medical Sciences, 12(1), 63–71. https://​doi.​org/​10.​7150/​ijms.​9982CrossRefPubMedPubMedCentral
212.
Zurück zum Zitat Wang, Z. H., Wang, L. X., Shi, B. Y., Sun, X. L., Xie, Y. R., Yang, H. N., et al. (2021). Demethyleneberberine promotes apoptosis and suppresses TGF-beta/Smads induced EMT in the colon cancer cells HCT-116. Cell Biochemistry and Function, 39(6), 763–770. https://doi.org/10.1002/cbf.3638CrossRefPubMed Wang, Z. H., Wang, L. X., Shi, B. Y., Sun, X. L., Xie, Y. R., Yang, H. N., et al. (2021). Demethyleneberberine promotes apoptosis and suppresses TGF-beta/Smads induced EMT in the colon cancer cells HCT-116. Cell Biochemistry and Function, 39(6), 763–770. https://​doi.​org/​10.​1002/​cbf.​3638CrossRefPubMed
214.
Zurück zum Zitat Liu, T., Li, K., Zhang, Z., Peng, J., Yang, J., Law, B. Y. K., et al. (2023). Tetrandrine inhibits cancer stem cell characteristics and epithelial to mesenchymal transition in triple-negative breast cancer via SOD1/ROS signaling pathway. The American Journal of Chinese Medicine, 1–20. https://doi.org/10.1142/s0192415x23500222 Liu, T., Li, K., Zhang, Z., Peng, J., Yang, J., Law, B. Y. K., et al. (2023). Tetrandrine inhibits cancer stem cell characteristics and epithelial to mesenchymal transition in triple-negative breast cancer via SOD1/ROS signaling pathway. The American Journal of Chinese Medicine, 1–20. https://​doi.​org/​10.​1142/​s0192415x2350022​2
215.
Zurück zum Zitat Zhang, Z., Liu, T., Yu, M., Li, K., & Li, W. (2018). The plant alkaloid tetrandrine inhibits metastasis via autophagy-dependent Wnt/β-catenin and metastatic tumor antigen 1 signaling in human liver cancer cells. Journal of Experimental & Clinical Cancer Research, 37(1), 7. https://doi.org/10.1186/s13046-018-0678-6CrossRef Zhang, Z., Liu, T., Yu, M., Li, K., & Li, W. (2018). The plant alkaloid tetrandrine inhibits metastasis via autophagy-dependent Wnt/β-catenin and metastatic tumor antigen 1 signaling in human liver cancer cells. Journal of Experimental & Clinical Cancer Research, 37(1), 7. https://​doi.​org/​10.​1186/​s13046-018-0678-6CrossRef
216.
Zurück zum Zitat Zhao, B., Hui, X., Wang, J., Zeng, H., Yan, Y., Hu, Q., et al. (2021). Matrine suppresses lung cancer metastasis via targeting M2-like tumour-associated-macrophages polarization. American Journal of Cancer Research, 11(9), 4308–4328.PubMedPubMedCentral Zhao, B., Hui, X., Wang, J., Zeng, H., Yan, Y., Hu, Q., et al. (2021). Matrine suppresses lung cancer metastasis via targeting M2-like tumour-associated-macrophages polarization. American Journal of Cancer Research, 11(9), 4308–4328.PubMedPubMedCentral
220.
Zurück zum Zitat He, J., Chen, S., Yu, T., Chen, W., Huang, J., Peng, C., et al. (2022). Harmine suppresses breast cancer cell migration and invasion by regulating TAZ-mediated epithelial-mesenchymal transition. American Journal of Cancer Research, 12(6), 2612–2626.PubMedPubMedCentral He, J., Chen, S., Yu, T., Chen, W., Huang, J., Peng, C., et al. (2022). Harmine suppresses breast cancer cell migration and invasion by regulating TAZ-mediated epithelial-mesenchymal transition. American Journal of Cancer Research, 12(6), 2612–2626.PubMedPubMedCentral
221.
Zurück zum Zitat Shi, S., Li, C., Zhang, Y., Deng, C., Tan, M., Pan, G., et al. (2021). Lycorine hydrochloride inhibits melanoma cell proliferation, migration and invasion via down-regulating p21(Cip1/WAF1). American Journal of Cancer Research, 11(4), 1391–1409.PubMedPubMedCentral Shi, S., Li, C., Zhang, Y., Deng, C., Tan, M., Pan, G., et al. (2021). Lycorine hydrochloride inhibits melanoma cell proliferation, migration and invasion via down-regulating p21(Cip1/WAF1). American Journal of Cancer Research, 11(4), 1391–1409.PubMedPubMedCentral
222.
Zurück zum Zitat Yuan, X. H., Zhang, P., Yu, T. T., Huang, H. K., Zhang, L. L., Yang, C. M., et al. (2020). Lycorine inhibits tumor growth of human osteosarcoma cells by blocking Wnt/β-catenin, ERK1/2/MAPK and PI3K/AKT signaling pathway. American Journal of Translational Research, 12(9), 5381–5398.PubMedPubMedCentral Yuan, X. H., Zhang, P., Yu, T. T., Huang, H. K., Zhang, L. L., Yang, C. M., et al. (2020). Lycorine inhibits tumor growth of human osteosarcoma cells by blocking Wnt/β-catenin, ERK1/2/MAPK and PI3K/AKT signaling pathway. American Journal of Translational Research, 12(9), 5381–5398.PubMedPubMedCentral
223.
Zurück zum Zitat Kun-Hung, S., Jui-Hsiang, H., Liao, Y.-C., Shu-Ting, T., Wu, M.-J., & Chen, P.-S. (2020). Sinomenine inhibits migration and invasion of human lung cancer cell through downregulating expression of miR-21 and MMPs. International Journal of Molecular Sciences, 21(9), 3080. https://doi.org/10.3390/ijms21093080CrossRef Kun-Hung, S., Jui-Hsiang, H., Liao, Y.-C., Shu-Ting, T., Wu, M.-J., & Chen, P.-S. (2020). Sinomenine inhibits migration and invasion of human lung cancer cell through downregulating expression of miR-21 and MMPs. International Journal of Molecular Sciences, 21(9), 3080. https://​doi.​org/​10.​3390/​ijms21093080CrossRef
224.
Zurück zum Zitat Li, H. M., Lin, Z. K., Bai, Y. X., Chi, X. M., Fu, H. L., Sun, R., et al. (2017). Sinomenine inhibits ovarian cancer cell growth and metastasis by mediating the Wnt/beta-catenin pathway via targeting MCM2. RSC Advances, 7(79), 50017–50026. https://doi.org/10.1039/c7ra10057dCrossRef Li, H. M., Lin, Z. K., Bai, Y. X., Chi, X. M., Fu, H. L., Sun, R., et al. (2017). Sinomenine inhibits ovarian cancer cell growth and metastasis by mediating the Wnt/beta-catenin pathway via targeting MCM2. RSC Advances, 7(79), 50017–50026. https://​doi.​org/​10.​1039/​c7ra10057dCrossRef
226.
Zurück zum Zitat Lee, H., Ko, J. H., Baek, S. H., Nam, D., Lee, S. G., Lee, J., et al. (2016). Embelin inhibits invasion and migration of MDA-MB-231 breast cancer cells by suppression of CXC chemokine receptor 4, matrix metalloproteinases-9/2, and epithelial-mesenchymal transition. Phytotherapy Research, 30(6), 1021–1032. https://doi.org/10.1002/ptr.5612CrossRefPubMed Lee, H., Ko, J. H., Baek, S. H., Nam, D., Lee, S. G., Lee, J., et al. (2016). Embelin inhibits invasion and migration of MDA-MB-231 breast cancer cells by suppression of CXC chemokine receptor 4, matrix metalloproteinases-9/2, and epithelial-mesenchymal transition. Phytotherapy Research, 30(6), 1021–1032. https://​doi.​org/​10.​1002/​ptr.​5612CrossRefPubMed
229.
Zurück zum Zitat Rajendran, P., Rebai Ben, A., Fatma, J. A. S., Maged Elsayed, M., Islam, M. I. H., & Saeed, Y. A. R. (2020). Thidiazuron decreases epithelial-mesenchymal transition activity through the NF-kB and PI3K/AKT signalling pathways in breast cancer. Journal of Cellular and Molecular Medicine (Online), 24(24), 14525–14538. https://doi.org/10.1111/jcmm.16079CrossRef Rajendran, P., Rebai Ben, A., Fatma, J. A. S., Maged Elsayed, M., Islam, M. I. H., & Saeed, Y. A. R. (2020). Thidiazuron decreases epithelial-mesenchymal transition activity through the NF-kB and PI3K/AKT signalling pathways in breast cancer. Journal of Cellular and Molecular Medicine (Online), 24(24), 14525–14538. https://​doi.​org/​10.​1111/​jcmm.​16079CrossRef
230.
Zurück zum Zitat Young Yun, J., Chakrabhavi, D. M., Eng, H., Narula, A. S., Namjoshi, O. A., Blough, B. E., et al. (2022). 2,3,5,6-Tetramethylpyrazine targets epithelial-mesenchymal transition by abrogating manganese superoxide dismutase expression and TGFβ-driven signaling cascades in colon cancer cells. Biomolecules, 12(7), 891. https://doi.org/10.3390/biom12070891CrossRef Young Yun, J., Chakrabhavi, D. M., Eng, H., Narula, A. S., Namjoshi, O. A., Blough, B. E., et al. (2022). 2,3,5,6-Tetramethylpyrazine targets epithelial-mesenchymal transition by abrogating manganese superoxide dismutase expression and TGFβ-driven signaling cascades in colon cancer cells. Biomolecules, 12(7), 891. https://​doi.​org/​10.​3390/​biom12070891CrossRef
242.
Zurück zum Zitat Fakhri, S., Darvish, E., Narimani, F., Moradi, S. Z., Abbaszadeh, F., & Khan, H. (2023). The regulatory role of non-coding RNAs and their interactions with phytochemicals in neurodegenerative diseases: A systematic review. Briefings in Functional Genomics, 22(2), 143–160. Fakhri, S., Darvish, E., Narimani, F., Moradi, S. Z., Abbaszadeh, F., & Khan, H. (2023). The regulatory role of non-coding RNAs and their interactions with phytochemicals in neurodegenerative diseases: A systematic review. Briefings in Functional Genomics22(2), 143–160.
243.
Zurück zum Zitat Fakhri, S., Iranpanah, A., Gravandi, M. M., Moradi, S. Z., Ranjbari, M., Majnooni, M. B., et al. (2021). Natural products attenuate PI3K/Akt/mTOR signaling pathway: A promising strategy in regulating neurodegeneration. Phytomedicine, 91, 153664.PubMed Fakhri, S., Iranpanah, A., Gravandi, M. M., Moradi, S. Z., Ranjbari, M., Majnooni, M. B., et al. (2021). Natural products attenuate PI3K/Akt/mTOR signaling pathway: A promising strategy in regulating neurodegeneration. Phytomedicine, 91, 153664.PubMed
244.
Zurück zum Zitat Fakhri, S., Moradi, S. Z., Farzaei, M. H., & Bishayee, A. (2022). Modulation of dysregulated cancer metabolism by plant secondary metabolites: A mechanistic review. In Semin Cancer Biol, (Vol. 80, pp. 276–305): Elsevier Fakhri, S., Moradi, S. Z., Farzaei, M. H., & Bishayee, A. (2022). Modulation of dysregulated cancer metabolism by plant secondary metabolites: A mechanistic review. In Semin Cancer Biol, (Vol. 80, pp. 276–305): Elsevier
245.
Zurück zum Zitat Fakhri, S., Moradi, S. Z., Nouri, Z., Cao, H., Wang, H., Khan, H., et al. (2022). Modulation of integrin receptor by polyphenols: Downstream Nrf2-Keap1/ARE and associated cross-talk mediators in cardiovascular diseases. Critical Reviews in Food Science and Nutrition, 1–25. https://doi.org/10.1080/10408398.2022.2118226 Fakhri, S., Moradi, S. Z., Nouri, Z., Cao, H., Wang, H., Khan, H., et al. (2022). Modulation of integrin receptor by polyphenols: Downstream Nrf2-Keap1/ARE and associated cross-talk mediators in cardiovascular diseases. Critical Reviews in Food Science and Nutrition, 1–25. https://​doi.​org/​10.​1080/​10408398.​2022.​2118226
246.
Zurück zum Zitat Fakhri, S., Moradi, S. Z., Yarmohammadi, A., Narimani, F., Wallace, C. E., & Bishayee, A. (2022). Modulation of TLR/NF-κB/NLRP signaling by bioactive phytocompounds: A promising strategy to augment cancer chemotherapy and immunotherapy. Frontiers in Oncology, 12, 834072.PubMedPubMedCentral Fakhri, S., Moradi, S. Z., Yarmohammadi, A., Narimani, F., Wallace, C. E., & Bishayee, A. (2022). Modulation of TLR/NF-κB/NLRP signaling by bioactive phytocompounds: A promising strategy to augment cancer chemotherapy and immunotherapy. Frontiers in Oncology, 12, 834072.PubMedPubMedCentral
250.
254.
Zurück zum Zitat Xu, L., Bi, Y., Xu, Y., Zhang, Z., Xu, W., Zhang, S., et al. (2020). Oridonin inhibits the migration and epithelial-to-mesenchymal transition of small cell lung cancer cells by suppressing FAK-ERK1/2 signalling pathway. Journal of Cellular and Molecular Medicine (Online), 24(8), 4480–4493. https://doi.org/10.1111/jcmm.15106CrossRef Xu, L., Bi, Y., Xu, Y., Zhang, Z., Xu, W., Zhang, S., et al. (2020). Oridonin inhibits the migration and epithelial-to-mesenchymal transition of small cell lung cancer cells by suppressing FAK-ERK1/2 signalling pathway. Journal of Cellular and Molecular Medicine (Online), 24(8), 4480–4493. https://​doi.​org/​10.​1111/​jcmm.​15106CrossRef
259.
Zurück zum Zitat Hu, J. H., Yang, D. S., Ren, X. Q., Wang, C. Y., He, Z. K., & Zhang, X. F. (2016). ArdipusillosideIinhibits the growth, invasion and epithelial-to-mesenchymal transitionof gastric cancer cells through the JAK/STAT3 signaling pathway. International Journal of Clinical and Experimental Medicine, 9(2), 1801–1807. Hu, J. H., Yang, D. S., Ren, X. Q., Wang, C. Y., He, Z. K., & Zhang, X. F. (2016). ArdipusillosideIinhibits the growth, invasion and epithelial-to-mesenchymal transitionof gastric cancer cells through the JAK/STAT3 signaling pathway. International Journal of Clinical and Experimental Medicine, 9(2), 1801–1807.
260.
262.
Zurück zum Zitat Subramani, R., Gonzalez, E., Arumugam, A., Nandy, S., Gonzalez, V., Medel, J., et al. (2016). Nimbolide inhibits pancreatic cancer growth and metastasis through ROS-mediated apoptosis and inhibition of epithelial-to-mesenchymal transition. Scientific Reports (Nature Publisher Group), 6, 19819. https://doi.org/10.1038/srep19819CrossRef Subramani, R., Gonzalez, E., Arumugam, A., Nandy, S., Gonzalez, V., Medel, J., et al. (2016). Nimbolide inhibits pancreatic cancer growth and metastasis through ROS-mediated apoptosis and inhibition of epithelial-to-mesenchymal transition. Scientific Reports (Nature Publisher Group), 6, 19819. https://​doi.​org/​10.​1038/​srep19819CrossRef
264.
266.
Zurück zum Zitat Lee, J., Hwangbo, C., Lee, J. J., Seo, J., & Lee, J. H. (2010). The sesquiterpene lactone eupatolide sensitizes breast cancer cells to TRAIL through down-regulation of c-FLIP expression. Oncology Reports, 23(1), 229–237.PubMed Lee, J., Hwangbo, C., Lee, J. J., Seo, J., & Lee, J. H. (2010). The sesquiterpene lactone eupatolide sensitizes breast cancer cells to TRAIL through down-regulation of c-FLIP expression. Oncology Reports, 23(1), 229–237.PubMed
268.
271.
Zurück zum Zitat Jiang, S. Y., Yu, J., Zhu, M., Zhang, X. M., Zhang, Y. Y., Zhang, Q., et al. (2022). Gambogic acid inhibits epithelial-mesenchymal transition in breast cancer cells through upregulation of SIRT1 expression in vitro. Precision Medical Sciences, 11(1), 14–22. https://doi.org/10.1002/prm2.12057CrossRef Jiang, S. Y., Yu, J., Zhu, M., Zhang, X. M., Zhang, Y. Y., Zhang, Q., et al. (2022). Gambogic acid inhibits epithelial-mesenchymal transition in breast cancer cells through upregulation of SIRT1 expression in vitro. Precision Medical Sciences, 11(1), 14–22. https://​doi.​org/​10.​1002/​prm2.​12057CrossRef
274.
Zurück zum Zitat Zhang, X., Li, Y., Zhang, Y., Song, J., Wang, Q., Zheng, L., et al. (2013). Beta-elemene blocks epithelial-mesenchymal transition in human breast cancer cell line MCF-7 through Smad3-mediated down-regulation of nuclear transcription factors. PloS One, 8(3). https://doi.org/10.1371/journal.pone.0058719 Zhang, X., Li, Y., Zhang, Y., Song, J., Wang, Q., Zheng, L., et al. (2013). Beta-elemene blocks epithelial-mesenchymal transition in human breast cancer cell line MCF-7 through Smad3-mediated down-regulation of nuclear transcription factors. PloS One, 8(3). https://​doi.​org/​10.​1371/​journal.​pone.​0058719
275.
Zurück zum Zitat Cao, Z. Q., Wang, X. X., Lu, L., Xu, J. W., Li, X. B., Zhang, G. R., et al. (2018). β-Sitosterol and gemcitabine exhibit synergistic anti-pancreatic cancer activity by modulating apoptosis and inhibiting epithelial-mesenchymal transition by deactivating Akt/GSK-3β signaling. Frontiers in Pharmacology, 9, 1525. https://doi.org/10.3389/fphar.2018.01525CrossRefPubMed Cao, Z. Q., Wang, X. X., Lu, L., Xu, J. W., Li, X. B., Zhang, G. R., et al. (2018). β-Sitosterol and gemcitabine exhibit synergistic anti-pancreatic cancer activity by modulating apoptosis and inhibiting epithelial-mesenchymal transition by deactivating Akt/GSK-3β signaling. Frontiers in Pharmacology, 9, 1525. https://​doi.​org/​10.​3389/​fphar.​2018.​01525CrossRefPubMed
283.
Zurück zum Zitat Ghanbari-Movahed, M., Mondal, A., Farzaei, M. H., & Bishayee, A. (2022). Quercetin-and rutin-based nano-formulations for cancer treatment: A systematic review of improved efficacy and molecular mechanisms. Phytomedicine, 97, 153909.PubMed Ghanbari-Movahed, M., Mondal, A., Farzaei, M. H., & Bishayee, A. (2022). Quercetin-and rutin-based nano-formulations for cancer treatment: A systematic review of improved efficacy and molecular mechanisms. Phytomedicine, 97, 153909.PubMed
284.
Zurück zum Zitat Ghanbari-Movahed, M., Kaceli, T., Mondal, A., Farzaei, M. H., & Bishayee, A. (2021). Recent advances in improved anticancer efficacies of camptothecin nano-formulations: A systematic review. Biomedicines, 9(5), 480.PubMedPubMedCentral Ghanbari-Movahed, M., Kaceli, T., Mondal, A., Farzaei, M. H., & Bishayee, A. (2021). Recent advances in improved anticancer efficacies of camptothecin nano-formulations: A systematic review. Biomedicines, 9(5), 480.PubMedPubMedCentral
285.
Zurück zum Zitat Kashyap, D., Tuli, H. S., Yerer, M. B., Sharma, A., Sak, K., Srivastava, S., et al. (2021). Natural product-based nanoformulations for cancer therapy: Opportunities and challenges. In Semin Cancer Biol, (Vol. 69, pp. 5–23): Elsevier Kashyap, D., Tuli, H. S., Yerer, M. B., Sharma, A., Sak, K., Srivastava, S., et al. (2021). Natural product-based nanoformulations for cancer therapy: Opportunities and challenges. In Semin Cancer Biol, (Vol. 69, pp. 5–23): Elsevier
286.
Zurück zum Zitat Lagoa, R., Silva, J., Rodrigues, J. R., & Bishayee, A. (2020). Advances in phytochemical delivery systems for improved anticancer activity. Biotechnology Advances, 38, 107382.PubMed Lagoa, R., Silva, J., Rodrigues, J. R., & Bishayee, A. (2020). Advances in phytochemical delivery systems for improved anticancer activity. Biotechnology Advances, 38, 107382.PubMed
Metadaten
Titel
Targeting the key players of phenotypic plasticity in cancer cells by phytochemicals
verfasst von
Sajad Fakhri
Seyed Zachariah Moradi
Fatemeh Abbaszadeh
Farahnaz Faraji
Roshanak Amirian
Dona Sinha
Emily G. McMahon
Anupam Bishayee
Publikationsdatum
03.01.2024
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 1/2024
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-023-10161-8

Weitere Artikel der Ausgabe 1/2024

Cancer and Metastasis Reviews 1/2024 Zur Ausgabe

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Erhöhtes Risiko fürs Herz unter Checkpointhemmer-Therapie

28.05.2024 Nebenwirkungen der Krebstherapie Nachrichten

Kardiotoxische Nebenwirkungen einer Therapie mit Immuncheckpointhemmern mögen selten sein – wenn sie aber auftreten, wird es für Patienten oft lebensgefährlich. Voruntersuchung und Monitoring sind daher obligat.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.