Skip to main content
Erschienen in: Inflammation 5/2023

22.05.2023 | RESEARCH

Ursolic Acid Promotes Autophagy by Inhibiting Akt/mTOR and TNF-α/TNFR1 Signaling Pathways to Alleviate Pyroptosis and Necroptosis in Mycobacterium tuberculosis-Infected Macrophages

verfasst von: Jingjing Shen, Yan Fu, Fanglin Liu, Bangzuo Ning, Xin Jiang

Erschienen in: Inflammation | Ausgabe 5/2023

Einloggen, um Zugang zu erhalten

Abstract

As a lethal infectious disease, tuberculosis (TB) is caused by Mycobacterium tuberculosis (Mtb). Its complex pathophysiological process limits the effectiveness of many clinical treatments. By regulating host cell death, Mtb manipulates macrophages, the first line of defense against invading pathogens, to evade host immunity and promote the spread of bacteria and intracellular inflammatory substances to neighboring cells, resulting in widespread chronic inflammation and persistent lung damage. Autophagy, a metabolic pathway by which cells protect themselves, has been shown to fight intracellular microorganisms, such as Mtb, and they also play a crucial role in regulating cell survival and death. Therefore, host-directed therapy (HDT) based on antimicrobial and anti-inflammatory interventions is a pivotal adjunct to current TB treatment, enhancing anti-TB efficacy. In the present study, we showed that a secondary plant metabolite, ursolic acid (UA), inhibited Mtb-induced pyroptosis and necroptosis of macrophages. In addition, UA induced macrophage autophagy and enhanced intracellular killing of Mtb. To investigate the underlying molecular mechanisms, we explored the signaling pathways associated with autophagy as well as cell death. The results showed that UA could synergistically inhibit the Akt/mTOR and TNF-α/TNFR1 signaling pathways and promote autophagy, thus achieving its regulatory effects on pyroptosis and necroptosis of macrophages. Collectively, UA could be a potential adjuvant drug for host-targeted anti-TB therapy, as it could effectively inhibit pyroptosis and necroptosis of macrophages and counteract the excessive inflammatory response caused by Mtb-infected macrophages via modulating the host immune response, potentially improving clinical outcomes.
Literatur
1.
Zurück zum Zitat Ravesloot-Chavez, M.M., E. Van Dis, and S.A. Stanley. 2021. The innate immune response to Mycobacterium tuberculosis infection. Annual Review of Immunology 39: 611–637.PubMed Ravesloot-Chavez, M.M., E. Van Dis, and S.A. Stanley. 2021. The innate immune response to Mycobacterium tuberculosis infection. Annual Review of Immunology 39: 611–637.PubMed
2.
Zurück zum Zitat Tiberi, S., et al. 2018. Tuberculosis: Progress and advances in development of new drugs, treatment regimens, and host-directed therapies. The Lancet Infectious Diseases 18(7): e183–e198.PubMed Tiberi, S., et al. 2018. Tuberculosis: Progress and advances in development of new drugs, treatment regimens, and host-directed therapies. The Lancet Infectious Diseases 18(7): e183–e198.PubMed
3.
Zurück zum Zitat Ameisen, J.C. 2002. On the origin, evolution, and nature of programmed cell death: A timeline of four billion years. Cell Death and Differentiation 9(4): 367–393.PubMed Ameisen, J.C. 2002. On the origin, evolution, and nature of programmed cell death: A timeline of four billion years. Cell Death and Differentiation 9(4): 367–393.PubMed
4.
Zurück zum Zitat Liu, X., and J. Lieberman. 2017. A mechanistic understanding of pyroptosis: The fiery death triggered by invasive infection. Advances in Immunology 135: 81–117.PubMedPubMedCentral Liu, X., and J. Lieberman. 2017. A mechanistic understanding of pyroptosis: The fiery death triggered by invasive infection. Advances in Immunology 135: 81–117.PubMedPubMedCentral
5.
Zurück zum Zitat Weinlich, R., et al. 2017. Necroptosis in development, inflammation and disease. Nature Reviews Molecular Cell Biology 18(2): 127–136.PubMed Weinlich, R., et al. 2017. Necroptosis in development, inflammation and disease. Nature Reviews Molecular Cell Biology 18(2): 127–136.PubMed
6.
Zurück zum Zitat Frank, D., and J.E. Vince. 2019. Pyroptosis versus necroptosis: Similarities, differences, and crosstalk. Cell Death and Differentiation 26(1): 99–114.PubMed Frank, D., and J.E. Vince. 2019. Pyroptosis versus necroptosis: Similarities, differences, and crosstalk. Cell Death and Differentiation 26(1): 99–114.PubMed
7.
Zurück zum Zitat Beckwith, K.S., et al. 2020. Plasma membrane damage causes NLRP3 activation and pyroptosis during Mycobacterium tuberculosis infection. Nature Communications 11(1): 2270.PubMedPubMedCentral Beckwith, K.S., et al. 2020. Plasma membrane damage causes NLRP3 activation and pyroptosis during Mycobacterium tuberculosis infection. Nature Communications 11(1): 2270.PubMedPubMedCentral
8.
Zurück zum Zitat Li, Y., et al. 2022. Tanshinone IIA alleviates NLRP3 inflammasome-mediated pyroptosis in Mycobacterium tuberculosis-(H37Ra-) infected macrophages by inhibiting endoplasmic reticulum stress. Journal of Ethnopharmacology 282: 114595.PubMed Li, Y., et al. 2022. Tanshinone IIA alleviates NLRP3 inflammasome-mediated pyroptosis in Mycobacterium tuberculosis-(H37Ra-) infected macrophages by inhibiting endoplasmic reticulum stress. Journal of Ethnopharmacology 282: 114595.PubMed
9.
Zurück zum Zitat Espert, L., B. Beaumelle, and I. Vergne. 2015. Autophagy in Mycobacterium tuberculosis and HIV infections. Frontiers in Cellular and Infection Microbiology 5: 49.PubMedPubMedCentral Espert, L., B. Beaumelle, and I. Vergne. 2015. Autophagy in Mycobacterium tuberculosis and HIV infections. Frontiers in Cellular and Infection Microbiology 5: 49.PubMedPubMedCentral
10.
Zurück zum Zitat Castillo, E.F., et al. 2012. Autophagy protects against active tuberculosis by suppressing bacterial burden and inflammation. Proceedings of the National Academy of Sciences of the United States of America 109(46): E3168-E3176.PubMedPubMedCentral Castillo, E.F., et al. 2012. Autophagy protects against active tuberculosis by suppressing bacterial burden and inflammation. Proceedings of the National Academy of Sciences of the United States of America 109(46): E3168-E3176.PubMedPubMedCentral
11.
Zurück zum Zitat van der Vaart, M., et al. 2014. The DNA damage-regulated autophagy modulator DRAM1 links mycobacterial recognition via TLR-MYD88 to autophagic defense [corrected]. Cell Host & Microbe 15(6): 753–767. van der Vaart, M., et al. 2014. The DNA damage-regulated autophagy modulator DRAM1 links mycobacterial recognition via TLR-MYD88 to autophagic defense [corrected]. Cell Host & Microbe 15(6): 753–767.
12.
Zurück zum Zitat Zhang, Q., et al. 2017. Antimycobacterial and anti-inflammatory mechanisms of baicalin via induced autophagy in macrophages infected with Mycobacterium tuberculosis. Frontiers in Microbiology 8: 2142.PubMedPubMedCentral Zhang, Q., et al. 2017. Antimycobacterial and anti-inflammatory mechanisms of baicalin via induced autophagy in macrophages infected with Mycobacterium tuberculosis. Frontiers in Microbiology 8: 2142.PubMedPubMedCentral
13.
14.
Zurück zum Zitat Leng, S., et al. 2016. Ursolic acid enhances macrophage autophagy and attenuates atherogenesis. Journal of Lipid Research 57(6): 1006–1016.PubMedPubMedCentral Leng, S., et al. 2016. Ursolic acid enhances macrophage autophagy and attenuates atherogenesis. Journal of Lipid Research 57(6): 1006–1016.PubMedPubMedCentral
15.
Zurück zum Zitat Wang, C., et al. 2020. Ursolic acid protects chondrocytes, exhibits anti-inflammatory properties via regulation of the NF-kappaB/NLRP3 inflammasome pathway and ameliorates osteoarthritis. Biomedicine & Pharmacotherapy 130: 110568. Wang, C., et al. 2020. Ursolic acid protects chondrocytes, exhibits anti-inflammatory properties via regulation of the NF-kappaB/NLRP3 inflammasome pathway and ameliorates osteoarthritis. Biomedicine & Pharmacotherapy 130: 110568.
16.
Zurück zum Zitat Jimenez-Arellanes, A., et al. 2013. Ursolic and oleanolic acids as antimicrobial and immunomodulatory compounds for tuberculosis treatment. BMC Complementary and Alternative Medicine 13: 258.PubMedPubMedCentral Jimenez-Arellanes, A., et al. 2013. Ursolic and oleanolic acids as antimicrobial and immunomodulatory compounds for tuberculosis treatment. BMC Complementary and Alternative Medicine 13: 258.PubMedPubMedCentral
17.
Zurück zum Zitat Chen, A.Q., et al. 2019. Microglia-derived TNF-alpha mediates endothelial necroptosis aggravating blood brain-barrier disruption after ischemic stroke. Cell Death & Disease 10(7): 487. Chen, A.Q., et al. 2019. Microglia-derived TNF-alpha mediates endothelial necroptosis aggravating blood brain-barrier disruption after ischemic stroke. Cell Death & Disease 10(7): 487.
18.
Zurück zum Zitat Wang, Y., et al. 2020. TNF-alpha/HMGB1 inflammation signalling pathway regulates pyroptosis during liver failure and acute kidney injury. Cell Proliferation 53(6): e12829.PubMedPubMedCentral Wang, Y., et al. 2020. TNF-alpha/HMGB1 inflammation signalling pathway regulates pyroptosis during liver failure and acute kidney injury. Cell Proliferation 53(6): e12829.PubMedPubMedCentral
19.
20.
Zurück zum Zitat Liang, F., et al. 2020. The advances in pyroptosis initiated by inflammasome in inflammatory and immune diseases. Inflammation Research 69(2): 159–166.PubMed Liang, F., et al. 2020. The advances in pyroptosis initiated by inflammasome in inflammatory and immune diseases. Inflammation Research 69(2): 159–166.PubMed
21.
Zurück zum Zitat Kesavardhana, S., and T.D. Kanneganti. 2017. Mechanisms governing inflammasome activation, assembly and pyroptosis induction. International Immunology 29(5): 201–210.PubMedPubMedCentral Kesavardhana, S., and T.D. Kanneganti. 2017. Mechanisms governing inflammasome activation, assembly and pyroptosis induction. International Immunology 29(5): 201–210.PubMedPubMedCentral
22.
Zurück zum Zitat Ning, B., et al. 2023. Baicalein suppresses NLRP3 and AIM2 inflammasome-mediated pyroptosis in macrophages infected by Mycobacterium tuberculosis via induced autophagy. Microbiol Spectrum p. e0471122. Ning, B., et al. 2023. Baicalein suppresses NLRP3 and AIM2 inflammasome-mediated pyroptosis in macrophages infected by Mycobacterium tuberculosis via induced autophagy. Microbiol Spectrum p. e0471122.
23.
Zurück zum Zitat Choi, M.E., et al. 2019. Necroptosis: a crucial pathogenic mediator of human disease. JCI Insight 4(15). Choi, M.E., et al. 2019. Necroptosis: a crucial pathogenic mediator of human disease. JCI Insight 4(15).
24.
Zurück zum Zitat Zhang, Y., et al. 2018. Plasma membrane changes during programmed cell deaths. Cell Research 28(1): 9–21.PubMed Zhang, Y., et al. 2018. Plasma membrane changes during programmed cell deaths. Cell Research 28(1): 9–21.PubMed
25.
Zurück zum Zitat Lam, A., et al. 2017. Role of apoptosis and autophagy in tuberculosis. American Journal of Physiology. Lung Cellular and Molecular Physiology 313(2): L218–L229.PubMedPubMedCentral Lam, A., et al. 2017. Role of apoptosis and autophagy in tuberculosis. American Journal of Physiology. Lung Cellular and Molecular Physiology 313(2): L218–L229.PubMedPubMedCentral
26.
Zurück zum Zitat Weiss, G., and U.E. Schaible. 2015. Macrophage defense mechanisms against intracellular bacteria. Immunological Reviews 264(1): 182–203.PubMedPubMedCentral Weiss, G., and U.E. Schaible. 2015. Macrophage defense mechanisms against intracellular bacteria. Immunological Reviews 264(1): 182–203.PubMedPubMedCentral
27.
Zurück zum Zitat Chai, Q., et al. 2020. New insights into the evasion of host innate immunity by Mycobacterium tuberculosis. Cellular & Molecular Immunology 17(9): 901–913. Chai, Q., et al. 2020. New insights into the evasion of host innate immunity by Mycobacterium tuberculosis. Cellular & Molecular Immunology 17(9): 901–913.
28.
Zurück zum Zitat Sun, K., et al. 2020. The PI3K/AKT/mTOR signaling pathway in osteoarthritis: A narrative review. Osteoarthritis Cartilage 28(4): 400–409.PubMed Sun, K., et al. 2020. The PI3K/AKT/mTOR signaling pathway in osteoarthritis: A narrative review. Osteoarthritis Cartilage 28(4): 400–409.PubMed
29.
Zurück zum Zitat Liu, B., et al. 2020. Scoparone improves hepatic inflammation and autophagy in mice with nonalcoholic steatohepatitis by regulating the ROS/P38/Nrf2 axis and PI3K/AKT/mTOR pathway in macrophages. Biomedicine & Pharmacotherapy 125: 109895. Liu, B., et al. 2020. Scoparone improves hepatic inflammation and autophagy in mice with nonalcoholic steatohepatitis by regulating the ROS/P38/Nrf2 axis and PI3K/AKT/mTOR pathway in macrophages. Biomedicine & Pharmacotherapy 125: 109895.
30.
Zurück zum Zitat Li, M.Y., et al. 2019. Adrenomedullin alleviates the pyroptosis of Leydig cells by promoting autophagy via the ROS-AMPK-mTOR axis. Cell Death & Disease 10(7): 489. Li, M.Y., et al. 2019. Adrenomedullin alleviates the pyroptosis of Leydig cells by promoting autophagy via the ROS-AMPK-mTOR axis. Cell Death & Disease 10(7): 489.
31.
Zurück zum Zitat Meng, Q., et al. 2021. Estrogen prevent atherosclerosis by attenuating endothelial cell pyroptosis via activation of estrogen receptor alpha-mediated autophagy. Journal of Advanced Research 28: 149–164.PubMed Meng, Q., et al. 2021. Estrogen prevent atherosclerosis by attenuating endothelial cell pyroptosis via activation of estrogen receptor alpha-mediated autophagy. Journal of Advanced Research 28: 149–164.PubMed
32.
Zurück zum Zitat Wu, C., et al. 2021. Betulinic acid inhibits pyroptosis in spinal cord injury by augmenting autophagy via the AMPK-mTOR-TFEB signaling pathway. International Journal of Biological Sciences 17(4): 1138–1152.PubMedPubMedCentral Wu, C., et al. 2021. Betulinic acid inhibits pyroptosis in spinal cord injury by augmenting autophagy via the AMPK-mTOR-TFEB signaling pathway. International Journal of Biological Sciences 17(4): 1138–1152.PubMedPubMedCentral
33.
Zurück zum Zitat Xu, C., et al. 2021. TNF-alpha-dependent neuronal necroptosis regulated in Alzheimer’s disease by coordination of RIPK1-p62 complex with autophagic UVRAG. Theranostics 11(19): 9452–9469.PubMedPubMedCentral Xu, C., et al. 2021. TNF-alpha-dependent neuronal necroptosis regulated in Alzheimer’s disease by coordination of RIPK1-p62 complex with autophagic UVRAG. Theranostics 11(19): 9452–9469.PubMedPubMedCentral
34.
Zurück zum Zitat Matsuzawa-Ishimoto, Y., et al. 2017. Autophagy protein ATG16L1 prevents necroptosis in the intestinal epithelium. Journal of Experimental Medicine 214(12): 3687–3705.PubMedPubMedCentral Matsuzawa-Ishimoto, Y., et al. 2017. Autophagy protein ATG16L1 prevents necroptosis in the intestinal epithelium. Journal of Experimental Medicine 214(12): 3687–3705.PubMedPubMedCentral
35.
Zurück zum Zitat Sanz, L., et al. 1999. The interaction of p62 with RIP links the atypical PKCs to NF-kappaB activation. EMBO Journal 18(11): 3044–3053.PubMedPubMedCentral Sanz, L., et al. 1999. The interaction of p62 with RIP links the atypical PKCs to NF-kappaB activation. EMBO Journal 18(11): 3044–3053.PubMedPubMedCentral
36.
Zurück zum Zitat Xu, D., C. Zou, and J. Yuan. 2021. Genetic regulation of RIPK1 and necroptosis. Annual Review of Genetics 55: 235–263.PubMed Xu, D., C. Zou, and J. Yuan. 2021. Genetic regulation of RIPK1 and necroptosis. Annual Review of Genetics 55: 235–263.PubMed
37.
Zurück zum Zitat Yao, F., et al. 2022. HDAC11 promotes both NLRP3/caspase-1/GSDMD and caspase-3/GSDME pathways causing pyroptosis via ERG in vascular endothelial cells. Cell Death Discovery 8(1): 112.PubMedPubMedCentral Yao, F., et al. 2022. HDAC11 promotes both NLRP3/caspase-1/GSDMD and caspase-3/GSDME pathways causing pyroptosis via ERG in vascular endothelial cells. Cell Death Discovery 8(1): 112.PubMedPubMedCentral
38.
Zurück zum Zitat Ezquerro, S., et al. 2019. Ghrelin reduces TNF-alpha-induced human hepatocyte apoptosis, autophagy, and pyroptosis: Role in obesity-associated NAFLD. Journal of Clinical Endocrinology and Metabolism 104(1): 21–37.PubMed Ezquerro, S., et al. 2019. Ghrelin reduces TNF-alpha-induced human hepatocyte apoptosis, autophagy, and pyroptosis: Role in obesity-associated NAFLD. Journal of Clinical Endocrinology and Metabolism 104(1): 21–37.PubMed
39.
Zurück zum Zitat Hmama, Z., et al. 2015. Immunoevasion and immunosuppression of the macrophage by Mycobacterium tuberculosis. Immunological Reviews 264(1): 220–232.PubMed Hmama, Z., et al. 2015. Immunoevasion and immunosuppression of the macrophage by Mycobacterium tuberculosis. Immunological Reviews 264(1): 220–232.PubMed
40.
41.
Zurück zum Zitat D’Arcy, M.S. 2019. Cell death: A review of the major forms of apoptosis, necrosis and autophagy. Cell Biology International 43(6): 582–592.PubMed D’Arcy, M.S. 2019. Cell death: A review of the major forms of apoptosis, necrosis and autophagy. Cell Biology International 43(6): 582–592.PubMed
42.
Zurück zum Zitat Zhao, J., et al. 2021. Apoptosis, autophagy, NETosis, necroptosis, and pyroptosis mediated programmed cell death as targets for innovative therapy in rheumatoid arthritis. Frontiers in Immunology 12: 809806.PubMedPubMedCentral Zhao, J., et al. 2021. Apoptosis, autophagy, NETosis, necroptosis, and pyroptosis mediated programmed cell death as targets for innovative therapy in rheumatoid arthritis. Frontiers in Immunology 12: 809806.PubMedPubMedCentral
43.
Zurück zum Zitat Zhang, R., et al. 2020. Deficiency in the autophagy modulator Dram1 exacerbates pyroptotic cell death of Mycobacteria-infected macrophages. Cell Death & Disease 11(4): 277. Zhang, R., et al. 2020. Deficiency in the autophagy modulator Dram1 exacerbates pyroptotic cell death of Mycobacteria-infected macrophages. Cell Death & Disease 11(4): 277.
44.
Zurück zum Zitat Jouan-Lanhouet, S., et al. 2014. Necroptosis, in vivo detection in experimental disease models. Seminars in Cell & Developmental Biology 35: 2–13. Jouan-Lanhouet, S., et al. 2014. Necroptosis, in vivo detection in experimental disease models. Seminars in Cell & Developmental Biology 35: 2–13.
45.
Zurück zum Zitat Riebeling, T., et al. 2021. Primidone blocks RIPK1-driven cell death and inflammation. Cell Death and Differentiation 28(5): 1610–1626.PubMed Riebeling, T., et al. 2021. Primidone blocks RIPK1-driven cell death and inflammation. Cell Death and Differentiation 28(5): 1610–1626.PubMed
46.
Zurück zum Zitat Wu, W., et al. 2021. TNF-induced necroptosis initiates early autophagy events via RIPK3-dependent AMPK activation, but inhibits late autophagy. Autophagy 17(12): 3992–4009.PubMedPubMedCentral Wu, W., et al. 2021. TNF-induced necroptosis initiates early autophagy events via RIPK3-dependent AMPK activation, but inhibits late autophagy. Autophagy 17(12): 3992–4009.PubMedPubMedCentral
47.
Zurück zum Zitat Palendira, U., et al. 2002. Lymphocyte recruitment and protective efficacy against pulmonary mycobacterial infection are independent of the route of prior Mycobacterium bovis BCG immunization. Infection and Immunity 70(3): 1410–1416.PubMedPubMedCentral Palendira, U., et al. 2002. Lymphocyte recruitment and protective efficacy against pulmonary mycobacterial infection are independent of the route of prior Mycobacterium bovis BCG immunization. Infection and Immunity 70(3): 1410–1416.PubMedPubMedCentral
48.
Zurück zum Zitat Zheng, H., et al. 2008. Genetic basis of virulence attenuation revealed by comparative genomic analysis of Mycobacterium tuberculosis strain H37Ra versus H37Rv. PLoS ONE 3(6): e2375.PubMedPubMedCentral Zheng, H., et al. 2008. Genetic basis of virulence attenuation revealed by comparative genomic analysis of Mycobacterium tuberculosis strain H37Ra versus H37Rv. PLoS ONE 3(6): e2375.PubMedPubMedCentral
49.
Zurück zum Zitat Pi, J., et al. 2016. Ursolic acid nanocrystals for dissolution rate and bioavailability enhancement: Influence of different particle size. Current Drug Delivery 13(8): 1358–1366.PubMed Pi, J., et al. 2016. Ursolic acid nanocrystals for dissolution rate and bioavailability enhancement: Influence of different particle size. Current Drug Delivery 13(8): 1358–1366.PubMed
50.
Zurück zum Zitat Qiu, L., et al. 2019. Ursolic acid nanoparticles for oral delivery prepared by emulsion solvent evaporation method: Characterization, in vitro evaluation of radical scavenging activity and bioavailability. Artif Cells Nanomed Biotechnol 47(1): 610–621.PubMed Qiu, L., et al. 2019. Ursolic acid nanoparticles for oral delivery prepared by emulsion solvent evaporation method: Characterization, in vitro evaluation of radical scavenging activity and bioavailability. Artif Cells Nanomed Biotechnol 47(1): 610–621.PubMed
51.
Zurück zum Zitat Panda, S.S., M. Thangaraju, and B.L. Lokeshwar. 2022. Ursolic acid analogs as potential therapeutics for cancer. Molecules 27(24): 8981.PubMedPubMedCentral Panda, S.S., M. Thangaraju, and B.L. Lokeshwar. 2022. Ursolic acid analogs as potential therapeutics for cancer. Molecules 27(24): 8981.PubMedPubMedCentral
Metadaten
Titel
Ursolic Acid Promotes Autophagy by Inhibiting Akt/mTOR and TNF-α/TNFR1 Signaling Pathways to Alleviate Pyroptosis and Necroptosis in Mycobacterium tuberculosis-Infected Macrophages
verfasst von
Jingjing Shen
Yan Fu
Fanglin Liu
Bangzuo Ning
Xin Jiang
Publikationsdatum
22.05.2023
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 5/2023
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-023-01839-w

Weitere Artikel der Ausgabe 5/2023

Inflammation 5/2023 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

Nach Herzinfarkt mit Typ-1-Diabetes schlechtere Karten als mit Typ 2?

29.05.2024 Herzinfarkt Nachrichten

Bei Menschen mit Typ-2-Diabetes sind die Chancen, einen Myokardinfarkt zu überleben, in den letzten 15 Jahren deutlich gestiegen – nicht jedoch bei Betroffenen mit Typ 1.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.